首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Post-mortem human brain tissue represents a vast potential source of neural progenitor cells for use in basic research as well as therapeutic applications. Here we describe five human neural progenitor cell cultures derived from cortical tissue harvested from premature infants. Time-lapse videomicrography of the passaged cultures revealed them to be highly dynamic, with high motility and extensive, evanescent intercellular contacts. Karyotyping revealed normal chromosomal complements. Prior to differentiation, most of the cells were nestin, Sox2, vimentin, and/or GFAP positive, and a subpopulation was doublecortin positive. Multilineage potential of these cells was demonstrated after differentiation, with some subpopulations of cells expressing the neuronal markers beta-tubulin, MAP2ab, NeuN, FMRP, and Tau and others expressing the oligodendroglial marker O1. Still other cells expressed the classic glial marker glial fibrillary acidic protein (GFAP). RT-PCR confirmed nestin, SOX2, GFAP, and doublecortin expression and also showed epidermal growth factor receptor and nucleostemin expression during the expansion phase. Flow cytometry showed high levels of the neural stem cell markers CD133, CD44, CD81, CD184, CD90, and CD29. CD133 markedly decreased in high-passage, lineage-restricted cultures. Electrophysiological analysis after differentiation demonstrated that the majority of cells with neuronal morphology expressed voltage-gated sodium and potassium currents. These data suggest that post-mortem human brain tissue is an important source of neural progenitor cells that will be useful for analysis of neural differentiation and for transplantation studies.  相似文献   

2.
3.
Adult human and rodent brains contain neural stem and progenitor cells, and the presence of neural stem cells in the adult rodent spinal cord has also been described. Here, using electron microscopy, expression of neural precursor cell markers, and cell culture, we investigated whether neural precursor cells are also present in adult human spinal cord. In well-preserved nonpathological post-mortem human adult spinal cord, nestin, Sox2, GFAP, CD15, Nkx6.1, and PSA-NCAM were found to be expressed heterogeneously by cells located around the central canal. Ultrastructural analysis revealed the existence of immature cells close to the ependymal cells, which display characteristics of type B and C cells found in the adult rodent brain subventricular region, which are considered to be stem and progenitor cells, respectively. Completely dissociated spinal cord cells reproducibly formed Sox2(+) nestin(+) neurospheres containing proliferative precursor cells. On differentiation, these generate glial cells and gamma-aminobutyric acid (GABA)-ergic neurons. These results provide the first evidence for the existence in the adult human spinal cord of neural precursors with the potential to differentiate into neurons and glia. They represent a major interest for endogenous regeneration of spinal cord after trauma and in degenerative diseases.  相似文献   

4.
Glial fibrillary acidic protein (GFAP)-positive cells derived from the neurogenic areas of the brain can be stem/progenitor cells and give rise to new neurons in vitro and in vivo. We report here that a population of GFAP-positive cells derived from fetal human brain parenchyma coexpress markers of early neural and neuronal cells, and have neural progenitor cell characteristics. We used a monolayer culture system to expend and differentiate these cells. During the initial proliferative phase, all cells expressed GFAP, nestin and low levels of betaIII-tubulin. When these cells were cultured in serum and then basic fibroblast growth factor, they generated two distinct progenies: (i) betaIII-tubulin- and nestin-positive cells and (ii) GFAP- and nestin-positive cells. These cells, when subsequently cultured in serum-free media without growth factors, ceased to proliferate and differentiated into two major neural cell classes, neurons and glia. In the cells of neuronal lineage, nestin expression was down-regulated and betaIII-tubulin expression became robust. Cells of glial lineage differentiated by down-regulating nestin expression and up-regulating GFAP expression. These data suggest that populations of parenchymal brain cells, initially expressing both glial and neuronal markers, are capable of differentiating into single neuronal and glial lineages through asymmetric regulation of gene expression in these cells, rather than acquiring markers through differentiation.  相似文献   

5.
人脑胶质瘤干细胞初步研究   总被引:10,自引:0,他引:10  
目的从人脑胶质瘤体外细胞系和胶质瘤组织中分离、鉴定肿瘤干细胞,为进一步研究其生物学特性奠定基础。方法将人胶质瘤SHG44细胞和手术标本制成的单细胞,分别用含血清培养基(DMEM 10% FBS)和无血清培养基(DMEM/F12,添加bFGF、LIF和EGF)培养。用CD133免疫磁珠筛选,流式细胞仪和免疫荧光共聚焦显微镜检测干细胞、祖细胞和分化细胞特异性标志物。结果SHG44细胞培养1周,用CD133磁珠分离得到的CD133~ 细胞的比例:血清组为0.021%,无血清组为1.2%。流式细胞仪检测:(1)Hoechst 33342~-细胞比例:血清组为1.5%,无血清组为16.4%;(2)nestin~ 细胞比例:血清组为7.2%,无血清组为51.05%;(3)免疫磁珠分离的CD133~ 细胞再用流式细胞仪测得的CD133~ 细胞为83.02%,CD133~-细胞群中有3.32%的CD133~ 细胞。标本源肿瘤细胞在无血清条件下培养两天后CD133磁珠分离CD133~ 细胞比例为4%。CD133~ 细胞在分化不同阶段共表达或分别表达祖细胞标志物nestin、神经元和胶质细胞特异性标志蛋白MAP2和GFAP。结论在胶质瘤细胞系和胶质瘤组织中均存在CD133~ 的脑肿瘤干细胞,具有自我更新和多向分化潜能、在无血清培养下细胞球体中CD133~ 细胞仍占少数,而nestin~ 细胞占多数,可作为进一步研究脑肿瘤干细胞生物学特性的实验材料在相关领域中的应用。  相似文献   

6.
免疫磁珠法分离、培养人脑胶质瘤干细胞   总被引:2,自引:0,他引:2  
目的建立免疫磁珠法分离,并培养人脑胶质瘤干细胞的方法。方法将术中取得的脑胶质瘤标本,通过剪切、消化和吹打成单细胞悬液,筛网过滤,免疫磁珠分选试剂盒分选出CD133^+细胞,用神经干细胞无血清培养法培养出具有单细胞克隆能力的细胞球,取第3代进行诱导分化,分化前后用免疫细胞荧光化学方法鉴定肿瘤干细胞及分化后细胞。结果免疫磁珠分选出的CD133^+细胞,可悬浮生长并形成神经干细胞样细胞球,有较强的增殖能力,干细胞标志物巢蛋白(nestin)阳性,分化后细胞表达神经元小管相关蛋白β-3(β-tubulin3)和星形胶质细胞胶质纤维酸性蛋白质(GFAP)特异性抗原,而巢蛋白、CD133^+阴性,并具有肿瘤的核型。结论免疫磁珠分选法可避免原代培养中众多细胞混杂生长的发生,能够从大量肿瘤细胞中分离出只占极少比例的肿瘤干细胞,细胞结合磁珠后在体外可以长期培养和传代,进一步证实了肿瘤干细胞的存在,并为胶质瘤干细胞的研究奠定基础。  相似文献   

7.
目的探讨人脐带间充质干细胞(MSCs)的体外分离、纯化、扩增和向神经元样细胞的定向诱导分化,以期为脐带MSCs的神经移植提供理论依据。方法无菌条件下收集剖宫产新生儿脐带,酶消化法获取MSCs,进行培养。用流式细胞仪检测MSCs的表面标志。取扩增3,5,10代的MSCs分别向神经元样细胞诱导,用免疫组化和RT-PCR法检测神经元样细胞特异性标志。结果脐带富含MSCs,且脐带MSCs(UCMSCs)强表达CD13、29、CD44、CD105,弱表达CD106,不表达CD34、CD11a、CD14、CD33、CD45。神经条件培养基诱导后的细胞平均有70%左右呈现典型的神经元样表型。免疫组化法检测发现不同代数的MSCs经诱导后均表达nestin,NSE,NeuN,NF-M,弱表达GFAP。RT-PCR显示诱导后NSEmRNA表达增加。结论MSCs存在于人脐带中,并且在体外有较强的增殖能力,特定条件下能够分化为神经元样细胞。  相似文献   

8.
目的 成人骨髓间充质干细胞(hMSCs)体外定向诱导分化为神经元样细胞。方法 采用Percoll分离液离心分离hMSCs,体外扩增,分别采用含碱性成纤维细胞生长因子(bFGF)和2-巯基乙醇(2-ME)等无血清DMEM诱导hMSCs分化为神经元。免疫组化鉴定神经元烯醇化酶(NSE)、神经丝蛋白(NF)、胶质纤维酸性蛋白(GFAP)。结果 hMSCs在体外扩增传至5代后,流式细胞仪显示99.5%,97.8%,98.8%hMSCs表面抗原CD29、CD44、CD90表达阳性。接种到12孔板,3d后加入bFGF和2-ME联合或2-ME单种诱导剂诱导后,hMSCs胞体收缩,突起伸出;免疫组化显示诱导出的神经元样细胞NSE、NF表达阳性,GFAP阴性。结论 成人骨髓间干细胞在体外可以分化为神经元样细胞。  相似文献   

9.
Summary:  Purpose: Severe cortical dysplasia (CD) is characterized by the presence of cytomegalic neurons and balloon cells. These aberrant cells could participate in the generation of epileptic activity. The aim of this study was to morphologically and electrophysiologically characterize cells in pediatric CD tissue.
Methods: We used infrared video-microscopy to visualize normal and abnormal-appearing cells. To characterize electrophysiological properties, we used whole-cell patch clamp recordings in tissue slices obtained from 42 cases of pediatric CD (ages 0.2–14 years). The pipette contained biocytin for determination of morphological features.
Results: Approximately 25% of recorded cells displayed morphologic differences compared with normal-appearing pyramidal neurons, and were divided as follows: immature, misoriented, dysmorphic, cytomegalic, and balloon cells. Immature cells displayed electrophysiological membrane properties typical of developing neurons. Misoriented pyramidal neurons and pyramidal neurons with dysmorphic processes displayed properties similar to normal-appearing pyramidal neurons. In contrast, cytomegalic neurons and balloon cells displayed abnormal membrane properties. Balloon cells had a very high input resistance and lacked voltage-gated Na+ and Ca2+ currents. Cytomegalic neurons had a very high membrane capacitance, very low input resistance, and showed signs of hyperexcitability, as exemplified by the occurrence of repetitive, slowly inactivating Ca2+ spikes when depolarized.
Conclusions: We suggest that cytomegalic neurons but not balloon cells have the potential to be epileptic generators, although probably not instigators, in severe CD tissue.  相似文献   

10.
Glioblastoma is one of the most frequent primary brain tumors and is characterized by aggressive clinical behavior and biologic heterogeneity. To evaluate the prognostic implication of cancer stem cell markers in glioblastoma, the expression of these markers was investigated in a large series of glioblastoma patients in relation to the survival rate. This series includes 88 cases of glioblastoma that were diagnosed at the Chonnam University Hwasun Hospital from 2004 to 2009. The expression of newly established stem cell markers (nestin, CD133 and CD15) was detected using immunohistochemical analysis. The presence of immunopositive tumor cells was evaluated and interpreted in comparison with the patients' survival data. The expression of nestin was high in 60 cases (68.2%). CD133 and CD15 were positive in 52 cases (59.1%) and 40 cases (45.5%), respectively. No statistically significant difference in patient survival according to stem cell marker expression was observed (P > 0.05). However, gross total resection or combined radiation therapy and chemotherapy significantly prolonged survival (P = 0.04 and P = 0.04). Cox's proportional hazards model showed that the gross total resection and combined radiation therapy and chemotherapy were independent prognostic factors. Although the correlation of stem cell marker expression with clinical outcome in glioma is of considerable interest, the data do not support their prognostic value in glioblastoma. Identification of the key cells in the glioblastoma population in the context of clinical outcomes will provide insight into the mechanism of brain tumorigenesis and will be of paramount importance in determining therapeutically appropriate targets.  相似文献   

11.
12.
Neural precursor cells (NPCs) derived from human pluripotent stem cells (hPSCs) represent an attractive tool for the in vitro generation of various neural cell types. However, the developmentally early NPCs emerging during hPSC differentiation typically show a strong propensity for neuronal differentiation, with more limited potential for generating astrocytes and, in particular, for generating oligodendrocytes. This phenomenon corresponds well to the consecutive and protracted generation of neurons and GLIA during normal human development. To obtain a more gliogenic NPC type, we combined growth factor‐mediated expansion with pre‐exposure to the differentiation‐inducing agent retinoic acid and subsequent immunoisolation of CD133‐positive cells. This protocol yields an adherent and self‐renewing population of hindbrain/spinal cord radial glia (RG)‐like neural precursor cells (RGL‐NPCs) expressing typical neural stem cell markers such as nestin, ASCL1, SOX2, and PAX6 as well as RG markers BLBP, GLAST, vimentin, and GFAP. While RGL‐NPCs maintain the ability for tripotential differentiation into neurons, astrocytes, and oligodendrocytes, they exhibit greatly enhanced propensity for oligodendrocyte generation. Under defined differentiation conditions promoting the expression of the major oligodendrocyte fate‐determinants OLIG1/2, NKX6.2, NKX2.2, and SOX10, RGL‐NPCs efficiently convert into NG2‐positive oligodendroglial progenitor cells (OPCs) and are subsequently capable of in vivo myelination. Representing a stable intermediate between PSCs and OPCs, RGL‐NPCs expedite the generation of PSC‐derived oligodendrocytes with O4‐, 4860‐, and myelin basic protein (MBP)‐positive cells that already appear within 7 weeks following growth factor withdrawal‐induced differentiation. Thus, RGL‐NPCs may serve as robust tool for time‐efficient generation of human oligodendrocytes from embryonic and induced pluripotent stem cells. GLIA 2015;63:2152–2167  相似文献   

13.
To examine the fate of proliferating brain cells in hydrocephalus (Hydro), experimental Hydro was induced in neonatal rats by intracisternal injection of kaolin and, 3 weeks later, the rats were injected with bromodeoxyuridine (BrdU). The BrdU (+) cells were immunohistochemically analyzed by using antibodies against neural (nestin), neuronal (NeuN) and glial (GFAP and MBP) markers in the posterior cerebrum. The percentage of nestin expression for the BrdU (+) cells was 8% in control and increased from 17% in the Hydro to 33% in the Hydro at an earlier stage after the shunt procedure, but was restored to 6% in the Hydro at a later stage after the shunt procedure. The percentages of GFAP expression showed a similar tendency to those of nestin expression. The BrdU (+) cells did not express either NeuN or MBP throughout the experiments.  相似文献   

14.
In mice and in young adult humans, the subventricular zone (SVZ) contains multipotent, dividing astrocytes, some of which, when cultured, produce neurospheres that differentiate into neurons and glia. It is unknown whether the SVZ of very old humans has this capacity. Here, we report that neural stem/progenitor cells can also be cultured from rapid autopsy samples of SVZ from elderly human subjects, including patients with age‐related neurologic disorders. Histological sections of SVZ from these cases showed a glial fibrillary acidic protein (GFAP)‐positive ribbon of astrocytes similar to the astrocyte ribbon in human periventricular white matter biopsies that is reported to be a rich source of neural progenitors. Cultures of the SVZ contained 1) neurospheres with a core of Musashi‐1‐, nestin‐, and nucleostemin‐immunopositive cells as well as more differentiated GFAP‐positive astrocytes; 2) SMI‐311‐, MAP2a/b‐, and β‐tubulin(III)‐positive neurons; and 3) galactocerebroside‐positive oligodendrocytes. Neurospheres continued to generate differentiated progeny for months after primary culturing, in some cases nearly 2 years postinitial plating. Patch clamp studies of differentiated SVZ cells expressing neuron‐specific antigens revealed voltage‐dependent, tetrodotoxin‐sensitive, inward Na+ currents and voltage‐dependent, delayed, slowly inactivating K+ currents, electrophysiologic characteristics of neurons. A subpopulation of these cells also exhibited responses consistent with the kinetics and pharmacology of the h‐current. However, although these cells displayed some aspects of neuronal function, they remained immature, insofar as they did not fire action potentials. These studies suggest that human neural progenitor activity may remain viable throughout much of the life span, even in the face of severe neurodegenerative disease. J. Comp. Neurol. 515:269–294, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
There is now evidence that bone marrow (BM) can generate cells expressing neuronal antigens in adult mouse brain. In the present study, we examined the spinal cord and dorsal root ganglia (DRG) of adult mice 3 months after BM cell transplantation from transgenic donor mice expressing the enhanced green fluorescent protein (GFP). To determine whether GFP(+) cells acquire neuroectodermal phenotypes, we tested, by immunocytochemistry followed by confocal analysis, the coexpression of the astrocytic marker glial fibrillary acidic protein (GFAP) and the neuronal markers NeuN, neurofilament (NF), and class III beta-tubulin (TuJ1). Rare GFP(+) cells coexpressing TuJ1, NF, and NeuN were found both in spinal cord and in sensory ganglia. These cells have small dimensions and short cytoplasmic processes, probably reflecting an immature phenotype. Double GFP and GFAP positivity was found only in spinal cord. To determine whether cell fusion with endogenous cells occurred, we investigated the nuclear content of cells coexpressing GFP and neuronal or astrocytic markers, demonstrating that these cells have only one nucleus and a DNA ploidy that it is not different from that of surrounding neurons and astrocytes. Large numbers of GFP(+) cells are also positively stained for F4/80, a microglial-recognizing antibody, and present a characteristic microglial-like morphology both in spinal cord and, with a higher frequency, in sensory ganglia. These data support a potential role for BM-derived stem cells in spinal cord neuroneogenesis. They also confirm that the microglial compartment within the CNS and in DRG undergoes a relatively fast turnover, with the contribution of hematopoietic stem cells. Both these findings might prove useful for the development of treatments for spinal cord neurodegenerative and acquired disorders.  相似文献   

16.
Objects Balloon cells are histopathological hallmarks of cortical malformations, i.e., focal cortical dysplasia (FCD) of the Taylor type or the cortical tubers of tuberous sclerosis, and they are believed to be the epileptogenic substrate and cause therapeutic drug resistant epilepsy in man. This study was carried out to investigate the developmental histogenesis and epileptogenesis of balloon cells in FCD. Materials and methods We used an immunohistochemical approach to examine the expressions of primitive neuroepithelial cell antigens (CD34, nestin, and vimentin), ionotrophic glutamate receptor subunits (NR1, NR2A/B, GluR1, GluR2, GluR3, GluR4, and GluR5/6/7), and P-glycoprotein in balloon cells from FCD and normal cerebral cortex epileptogenic lesions. Conclusion Balloon cells presented in clusters or as scattered cells throughout FCD lesions involving the gray and white matter. We found the balloon cells to be classifiable into three subtypes based on glial fibrillary acidic protein (GFAP) and neurofilament protein (NF-L) immunohistochemistry, i.e., as neuronal, astrocytic, and uncommitted. Immunopositivity for nestin, CD34, and vimentin in balloon cells of FCD suggests that they may be derived from the abnormal development and differentiation of neural stem cells. Moreover, it appears that epileptogenesis in cortical dysplasia is partly caused by the upregulations of some glutamate receptor subunit proteins (NR1, NR2A/B, GluR1, and GluR3) in balloon cells and dysplastic neurons. We speculate that the presence of the drug resistance protein P-glycoprotein in balloon cells might explain medically refractory epilepsy in FCD.  相似文献   

17.
This study describes a detailed process for obtaining brain glioma stem cells from freshly dissected human brain glioma samples using an immunomagnetic bead technique combined with serum-free media pressure screening.Furthermore,the proliferation,differentiation and self-renewal biological features of brain glioma stem cells were identified.Results showed that a small number of CD133 positive tumor cells isolated from brain glioma samples survived as a cell suspension in serum-free media and proliferated.Subcultured CD133 positive cells maintained a potent self-renewal and proliferative ability,and expressed the stem cell-specific markers CD133 and nestin.After incubation with fetal bovine serum,the number of glial fibrillary acidic protein and microtubule associated protein 2 positive cells increased significantly,indicating that the cultured brain glioma stem cells can differentiate into astrocytes and neurons.Western blot analysis showed that tumor suppressor phosphatase and tensin homolog was highly expressed in tumor spheres compared with the differentiated tumor cells.These experimental findings indicate that the immunomagnetic beads technique is a useful method to obtain brain glioma stem cells from human brain tumors.  相似文献   

18.
目的 探索骨髓间充质干细胞 (MSCs)能否在体外诱导分化成神经样细胞 ,并初步探讨其分化机制。方法 培养大鼠MSCs,用二甲亚砜 (DMSO)和丁羟茴醚 (BHA)诱导分化 ,鉴定诱导分化前后的细胞是否表达神经细胞及神经干细胞的特异性标记蛋白 ,并研究其超微结构的变化。结果 诱导分化后 ,大部分MSCs变成双极、多极和锥形 ,并相互交织成网络结构 ,出现神经元特异性核蛋白 (NeuN)和巢蛋白 (Nestin)表达 ,无胶质纤维酸性蛋白(GFAP)和 2 3 环核苷酸磷酸二脂酶 (CNP)表达。部分MSCs转变为典型的神经元超微结构。结论 MSCs可以在体外诱导分化为神经元样细胞。  相似文献   

19.
It has recently been reported that adult hematopoietic stem cells can differentiate into neural cells, opening new frontiers in therapy for neurodegenerative diseases. In this study, adult human hematopoietic stem cells (HSCs) were isolated via magnetic bead sorting, using a specific CD34 antibody and cultured with human astrocyte culture conditioned medium (ACM). In order to evaluate their differentiation into neurons and/or astrocytes, ACM-treated cultures were probed for the expression of several neural markers. We observed morphological modifications and, after 20 days of treatment, cell morphology displayed extending processes. Immunocytochemistry, Western blotting and RT-PCR showed the expression of neuronal markers such as neurofilaments, neuron specific enolase (NSE) and NeuN in ACM-treated HSCs cultured in poly-L-lysine-coated dishes. On the contrary, when the same ACM-treated cells were grown on a plastic substrate, they expressed high levels of glial fibrillary acidic protein (GFAP), with only weak expression of neuronal markers. Nestin, a neural progenitor cell marker, was present in treated cells, regardless of the substrate. These results demonstrate that astrocytes can generate a suitable microenvironment for inducing HSCs to differentiate into neural cells. Therefore, adult bone marrow may represent a readily accessible source of cells for treating neurodegenerative diseases.  相似文献   

20.
目的研究大鼠骨髓间充质干细胞(bone marrow mesenchymal stemcells,MSCs)体外分化为神经干细胞(neural stemcells,NSCs)的可能性。方法取4~6周SD大鼠双侧股骨和胫骨骨髓细胞进行体外培养,通过传代得到纯化的MSCs后换用分化液诱导,通过形态学观察诱导后细胞形态变化,并用免疫荧光检测不同天数细胞nestin的表达率;NSCs分化实验对所诱导的NSC的分化潜能进行检测。结果MSCs诱导后的细胞nestin表达率随天数增加逐渐升高,1周后形成高表达nestin的神经干细胞球形细胞团;在含血清培养基中可自然分化为神经元和神经胶质样细胞。结论MSCs能于体外分化出神经干细胞,且具有进一步的分化能力,骨髓来源的神经干细胞将可能作为种子细胞用于神经系统疾病的治疗。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号