首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Naringenin is a naturally occurring citrus flavanone, which has been reported to have a wide range of pharmacological properties. The present work was carried out to evaluate the effect of naringenin on antioxidant and lipid peroxidation status in liver of oxytetracycline-intoxicated rats. Intraperitonial administration of oxytetracycline 200 mg/kg for 15 days resulted a significant elevation in serum hepatospecific markers such as aspartate transaminase, alanine transaminase, alkaline phosphatase, lactate dehydrogenase, and bilirubin and the levels of lipid peroxidation markers (thiobarbituric acid reactive substances (TBARS) and lipid hydroperoxides) in liver. Oxytetracycline also caused a significant reduction in the activities of superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione (GSH), vitamin C and vitamin E in liver. Oral administration of naringenin (50 mg/kg b.w.t.) with oxytetracycline significantly decreased the activities of serum aspartate transaminase, alanine transaminase, alkaline phosphatase, lactate dehydrogenase and the levels of bilirubin along with significant decrease in the levels of lipid peroxidation markers in the liver. In addition, naringenin significantly increased the activities of superoxide dismutase, catalase and GSH peroxidase as well as the level of GSH, vitamin C and vitamin E in liver of the oxytetracycline-treated rats. Our results demonstrate that naringenin exhibited antioxidant property and decrease the lipid peroxidation against oxytetracycline-induced oxidative stress in liver.  相似文献   

2.
The protective efficacy of diallyl tetrasulfide (DTS) from garlic on liver injury induced by cadmium (Cd) was investigated. In this study, Cd (3 mg/kg body weight) was administered subcutaneously for 3 weeks to induce toxicity. DTS was administered orally (10, 20 and 40 mg/kg body weight) for 3 weeks with subcutaneous (sc) injection of Cd. Cd-induced liver damage was evidenced from increased activities of serum hepatic enzymes, namely aspartate transaminase, alanine transaminase, alkaline phosphatase and lactate dehydrogenase, with significant elevation of lipid peroxidation indices (thiobarbituric acid reactive substances and hydroperoxides) and protein carbonyl groups in the liver. Rats subjected to Cd toxicity also showed a decline in the levels of total thiols, reduced glutathione (GSH), vitamin C and vitamin E, accompanied by an increased accumulation of Cd, and significantly decreased activities of superoxide dismutase, catalase (CAT), glutathione peroxidase, glutathione-S-transferase (GST), glutathione reductase, and glucose-6-phosphate dehydrogenase in the liver. Administration of DTS at 40 mg/kg body weight significantly normalised the activities of hepatic marker enzymes, compared to other doses of DTS (10 and 20 mg/kg body weight). In addition, DTS (40 mg/kg body weight) significantly reduced the accumulation of Cd and the level of lipid peroxidation, and restored the level of antioxidant defense in the liver. Histological studies also showed that administration of DTS to Cd-treated rats resulted in a marked improvement of hepatocytes morphology with mild portal inflammation. Our results suggest that DTS might play a vital role in protecting Cd-induced oxidative damage in the liver.  相似文献   

3.
S-Allylcysteine (SAC), an organosulfur compound of aged garlic extract (AGE) regulates the thiol status of the cell and scavenges free radicals. Depletion of thiols along with free radical generation has been implicated in cyclophosphamide (CP)-induced urotoxicity. We studied modulatory effect of SAC on CP-induced urotoxicity in mice focusing on hemorrhagic cystitis (HC). SAC (150 and 300 mg kg−1) was administered in CP treated animals (200 mg kg−1) and bladder was observed for histological and biochemical changes. CP treatment caused a marked increase in the lumen exudates, edema, vasodilation and HC in lamina propia in the bladder. These changes were accompanied by increase in lipid peroxidation (LPO), and decrease in reduced glutathione (GSH) and activities of antioxidant enzymes. SAC not only showed protection in tissue histology but also improved the decreased activities of antioxidant enzymes. SAC treatment also reduced LPO and increased GSH levels. Although SAC treatment did not ensure full recovery, the marked improvement in histology and antioxidants of bladder suggests that it has a significant modulatory effect on CP-induced urotoxicity. Since decrease in antioxidant level is the major cause of CP urotoxicity, the protective effect of SAC deserves its further exploration involving laboratory and clinical investigations.  相似文献   

4.
5.
Oxidative stress has been implicated in the pathogenesis and progression of various hepatic disorders and hence screening for a good hepatoprotective and antioxidant agent is the need of the hour. The present study was aimed to investigate the hepatoprotective and antioxidant property of N-acetylcysteine (NAC) against dimethylnitrosamine (DMN) induced oxidative stress and hepatocellular damage in male Wistar albino rats. Administration of single dose of DMN (5 mg/kg b.w.; i.p.) resulted in significant elevation in the levels of serum aspartate transaminase and alanine transaminase, indicating hepatocellular damage. Oxidative stress induced by DMN treatment was confirmed by an elevation in the status of lipid peroxidation (LPO) and reduction in the activities of enzymic antioxidants such as superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glutathione-S-transferase and in the levels of non-enzymic antioxidants, reduced glutathione, vitamin-C and vitamin-E in the liver tissue. DMN induced oxidative stress and hepatocellular membrane instability was further substantiated by a decline in the status of the membrane bound ATPases in the liver tissue. Post-treatment with NAC (50 mg/kg b.w.; p.o.) for 7 days effectively protected against the DMN induced insult to liver by preventing the elevation in the status of the serum marker enzymes and LPO, and restoring the activities of both the enzymic and non-enzymic antioxidants and membrane bound ATPases towards normalcy. These results demonstrate that NAC acts as a good hepatoprotective and antioxidant agent in attenuating DMN induced oxidative stress and hepatocellular damage.  相似文献   

6.
Bindhumol V  Chitra KC  Mathur PP 《Toxicology》2003,188(2-3):117-124
Bisphenol A, an environmental contaminant, widely used as a monomer in polycarbonate plastics, has been shown to cause abnormalities in liver of rats and mice. The nature and mechanism of action of bisphenol A on liver is not clear. The aim of the present study was to investigate if bisphenol A induces oxidative stress in the liver of rats and if co-administration of vitamin C, an antioxidant, can prevent oxidative stress. Bisphenol A (0.2, 2.0 and 20 micro g/kg body weight per day) and bisphenol A+vitamin C (0.2, 2.0, 20 micro g+40 mg/kg body weight per day) was orally administered to rats for 30 days. After 24 h of the last treatment, rats were killed using overdose of anesthetic ether. Body weights of the animals and the weights of liver showed no significant changes. The activities of antioxidant enzymes, superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase were decreased in mitochondrial and microsome-rich fractions of liver. The levels of hydrogen peroxide and lipid peroxidation increased in the treated rats when compared with the corresponding group of control animals. Activity of alanine transaminase, a marker enzyme of hepatic injury remained unchanged in the treated rats as compared with the corresponding control rats. Co-administration of bisphenol A and vitamin C showed no changes in the activities of superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase and in the levels of hydrogen peroxide and lipid peroxidation as compared with the corresponding control groups. The results indicated that bisphenol A induces oxidative stress in the liver of rats by decreasing the antioxidant enzymes. Co-administration of vitamin C reversed the effects of bisphenol A-induced oxidative stress in the liver of rats.  相似文献   

7.
BACKGROUND: Arsenic is ubiquitous in the environment, and chronic or acute exposure through food and water as well as occupational sources can contribute to a well-defined spectrum of disease. Despite arsenic being a health hazard and a well-documented human carcinogen, a safe, effective and specific preventive or therapeutic measure for treating arsenic induced toxicity still eludes us. OBJECTIVE: This study was undertaken to evaluate the therapeutic efficacy of aqueous garlic (Allium sativum L.) extract (AGE) in terms of normalization of altered biochemical parameters particularly indicative of oxidative stress following sodium arsenite (NaAsO(2)) exposure and depletion of inorganic arsenic burden, in vitro and in vivo. RESULTS: AGE (2mg/ml) co-administered with 10 microM NaAsO(2) attenuated arsenite induced cytotoxicity, reduced intracellular reactive oxygen species (ROS) level in human malignant melanoma cells (A375), human keratinocyte cells (HaCaT) and in cultured human normal dermal fibroblast cells. Moreover, AGE application in NaAsO(2) intoxicated Sprague-Dawley rats resulted in a marked inhibition of tissue lipid peroxide generation; enhanced level of total tissue sulfhydryl groups and glutathione; and also increased the activities of antioxidant enzymes, superoxide dismutase and catalase to near normal. An increase in blood ROS level and myeloperoxidase activity in arsenic-intoxicated rats was effectively prevented by AGE administration. AGE was also able to counter arsenic mediated incongruity in blood hematological variables and glucose level. CONCLUSIONS: The restorative property of AGE was attributed to its antioxidant activity, chelating efficacy, and/or oxidizing capability of trivalent arsenic to its less toxic pentavalent form. Taken together, evidences indicate that AGE can be a potential protective regimen for arsenic mediated toxicity.  相似文献   

8.
Lu Y  Gong P  Cederbaum AI 《Toxicology》2008,252(1-3):9-16
Pyrazole can induce CYP2E1 and 2A5, which produce reactive oxygen species (ROS). Nuclear factor erythroid 2-related factor 2 (Nrf2) regulates important antioxidant enzymes to remove ROS. In this study, we applied Nrf2 knockout mice to test the hypothesis that pyrazole will cause hepatotoxicity and elevate oxidative stress to a greater extent in Nrf2 knockout mice compared to wild type mice. Pyrazole induced severe oxidative liver damage in Nrf2 knockout mice but not in wild type mice. Activities and levels of CYP2E1 and 2A5 were elevated by pyrazole in the wild type mice but not in the Nrf2 knockout mice. However, expression or activity of Nrf2-regulated antioxidant enzymes, such as gamma-glutamylcysteine synthetase (GCS), heme oxygenase-1 (HO-1) and glutathione-S-transferase (GST), were upregulated in the pyrazole-treated wild type mice, but to a lesser extent or not at all in the pyrazole-treated Nrf2 knockout mice. Treatment with antioxidants such as vitamin C or S-adenosyl-l-methionine (SAM) or an inhibitor of iNOS prevented the pyrazole-induced oxidative liver damage, thus validating the role of oxidative/nitrosative stress in the pyrazole induced liver injury to the Nrf2 knockout mice. In summary, even though ROS-producing CYP2E1/2A5 were not elevated by pyrazole, impaired antioxidant capacity resulting from Nrf2 deficiency appear to be sufficient to promote pyrazole-induced oxidative liver injury.  相似文献   

9.
In this study, prooxidant and antioxidant status in liver homogenates and their mitochondrial fractions were investigated in both chronic and chronic plus acute ethanol-treated rats. Increases in serum transaminase activities, as well as increases in total lipid, triglyceride, malondialdehyde (MDA) and diene conjugate (DC) levels and decreases in glutathione (GSH), vitamin E and vitamin C levels, have been observed in liver homogenates following chronic ethanol treatment (20% ethanol, v/v as drinking water for 3 months), but CuZn-superoxide dismutase (CuZnSOD), glutathione peroxidase (GSH-Px) and glutathione transferase (GST) activities remained unchanged in postmitochondrial fractions. When an acute dose of ethanol (5 g/kg, i.p.) was given rats which had received ethanol chronically, serum transaminase activities and hepatic lipid and MDA and DC levels increased further, but GSH levels and antioxidant enzymes decreased more compared to the chronic ethanol-treated rats. There were no significant differences in the levels of MDA, DC and protein carbonyl and the activities of GSH-Px and GST in the hepatic mitochondrial fraction of rats following both chronic and chronic plus acute treatments. Mn-superoxide dismutase (MnSOD) activities increased in both groups, but mitochondrial GSH levels decreased only after chronic plus acute treatment. Therefore, we suggest that the increase in MnSOD activity may play an important role in the regulation of mitochondrial susceptibility against ethanol-induced oxidative stress.  相似文献   

10.
The objective of the present study was to evaluate hepatoprotective activity of methanolic extract of Hiptage bengalensis (L.) kurz (MEHB) in rats. Hepatic damage was induced by administration of carbontetrachloride(1 ml/kg, b.w, p.o.) in combination with liquid paraffin (1:1) as a single dose on 7th day. The extent of liver damage was studied by estimating biochemical parameters. Administration of MEHB (200 mg & 400 mg/kg) for 6 days before carbontetrachloride administration showed a significant reduction (p < 0.01) of serum liver damage enzymes markers-aspartate transaminase, alanine transaminase, total bilirubin and alkaline phosphatase (ALP). Histopathological changes of hepatic tissue were also evaluated in control and MEHB treated groups. Results also indicated that MEHB possessed potential antioxidant effect by increasing the levels of glutathione and also possessed free radical scavenging activities. The hepatoprotective effect of Hiptage bengalensis (L.) kurz was comparable to standard drug silymarin (50 mg/kg).  相似文献   

11.
Previous studies have shown that ethanol exposure causes apoptosis in cranial neural crest cells (NCCs), an ethanol-sensitive cell population implicated in Fetal Alcohol Spectrum Disorders (FASD). Additionally, induction of endogenous antioxidants through activation of nuclear factor-erythroid 2-related factor 2 (Nrf2) has been shown to prevent oxidative stress and apoptosis in ethanol-exposed mouse embryos. The objective of this study was to test whether tert-butylhydroquinone (tBHQ), an Nrf2 inducer, can protect NCCs against ethanol-induced apoptosis. Ethanol exposure was shown to cause a moderate increase in the protein expression of Nrf2 and its downstream antioxidants in the NCCs. Treatment of NCCs with tBHQ alone significantly increased the protein expression of Nrf2 and its downstream antioxidants and also significantly increased the activities of the antioxidant enzymes. In NCCs exposed to ethanol, the tBHQ-mediated antioxidant response prevented oxidative stress and apoptosis. These results clearly demonstrate that the activation of Nrf2 signaling confers protection against ethanol-induced apoptosis in NCCs.  相似文献   

12.
Reactive oxygen species are important mediators that exert a toxic effect during ischemia-reperfusion injury of various organs. Sulforaphane, which is a naturally occurring isothiocyanate that is present in cruciferous vegetables such as broccoli, is known to be an indirect antioxidant that acts by inducing Nrf2-dependent phase 2 enzymes. Phase 2 enzymes such as heme oxygenase-1, NAD(P)H: quinone oxidoreductase 1, glutathione reductase, and glutathione peroxidase participate in adaptive and protective responses to oxidative stress and various inflammatory stimuli. Therefore, we evaluated the preactivation of Nrf2 by sulforaphane to determine if it could inhibit ischemia-reperfusion-induced kidney damage. Treatment of HK2 renal tubular epithelial cells with sulforaphane effectively protected cells against cytotoxicity induced by hypoxia-reoxygenation, and sulforaphane dramatically induced phase 2 enzymes by decreasing the Keap1 protein levels and increasing Nrf2 nuclear translocation. Additionally, a second set of experiments using a renal ischemia-reperfusion model produced results that were essentially the same as those observed when HK2 cells were used; namely, that sulforaphane induced Nrf2-dependent phase 2 enzymes and thereby improved ischemia-reperfusion-induced changes in the lipid hydroperoxides, glutathione, creatinine clearance, kidney weight, and histologic abnormalities. Collectively, these results suggest that sulforaphane can be used as an effective adjunct for the prevention of renal oxidative insults during ischemia-reperfusion injury.  相似文献   

13.
The objective of the present study was to evaluate hepatoprotective activity of methanolic extract of Hiptage bengalensis (L.) kurz (MEHB) in rats. Hepatic damage was induced by administration of carbontetrachloride(1 ml/kg, b.w, p.o.) in combination with liquid paraffin (1:1) as a single dose on 7th day. The extent of liver damage was studied by estimating biochemical parameters. Administration of MEHB (200 mg & 400 mg/kg) for 6 days before carbontetrachloride administration showed a significant reduction (p < 0.01) of serum liver damage enzymes markers-aspartate transaminase, alanine transaminase, total bilirubin and alkaline phosphatase (ALP). Histopathological changes of hepatic tissue were also evaluated in control and MEHB treated groups. Results also indicated that MEHB possessed potential antioxidant effect by increasing the levels of glutathione and also possessed free radical scavenging activities. The hepatoprotective effect of Hiptage bengalensis (L.) kurz was comparable to standard drug silymarin (50 mg/kg).  相似文献   

14.
Anthocyanins have been shown to exert anti-proliferative, anti-inflammatory effects and anti-carcinogenic activity. In the present work, we investigated the protective effects of anthocyanin fraction (AF) from purple sweet potato on tert-butyl hydroperoxide (t-BHP)-induced hepatotoxicity in HepG2 cell line and in rat liver. The result showed that the oral pretreatment of AF before t-BHP treatment significantly lowered the serum levels of the hepatic enzyme markers (ALT and AST) and reduced oxidative stress of the liver by evaluation of malondialdehyde and glutathione. Histopathological evaluation of the livers also revealed that AF reduced the incidence of liver lesions. The in vitro result showed that AF significantly reduced t-BHP-induced oxidative injury, as determined by cell cytotoxicity, intracellular glutathione content, lipid peroxidation, reactive oxygen species (ROS) levels, and caspases activation. Also, AF up-regulated antioxidant enzymes including heme oxygenase-1 (HO-1), NAD(P)H:quinone reductase, and glutathione S-transferase. Moreover, AF induced Nrf2 nuclear translocation and Akt and ERK1/2 activation, pathways that are involved in inducing Nrf2 nuclear translocation. Taken together, these results suggest that the protective effects of AF against t-BHP-induced hepatotoxicity may, at least in part, be due to its ability to scavenge ROS and to regulate the antioxidant enzyme HO-1 via the Akt and ERK1/2/Nrf2 signaling pathways.  相似文献   

15.
The aim of this study was to investigate the possible protective effects of aqueous garlic extract (AGE) against naphthalene-induced oxidative changes in liver, kidney, lung and brain of mice. Balb/c mice (25-30 g) of either sex were divided into five groups each comprising 10 animals. Mice received for 30 days: 0.9% NaCl, i.p. (control); corn oil, i.p; AGE in a dose of 125 mg kg-1, i.p.; naphthalene in a dose of 100 mg kg-1, i.p. (dissolved in corn oil); and AGE (in a dose of 125 mg kg-1, i.p.) plus naphthalene (in a dose of 100 mg kg-1, i.p.). After decapitation, liver, kidney, lung and brain tissues were excised. Malondialdehyde (MDA) and glutathione (GSH) levels and myeloperoxidase activity (MPO) were determined in the tissues, while oxidant-induced tissue fibrosis was determined by collagen content. Tissues were also examined microscopically. Serum aspartate aminotransferase, alanine aminotransferase levels and blood urea nitrogen and creatinine concentrations were measured for the evaluation of hepatic and renal function, respectively. MDA and GSH levels were also assayed in serum samples. In the naphthalene-treated group, GSH levels decreased significantly, while MDA levels, MPO activity and collagen content increased in the tissues (P<0.01-0.001), suggesting oxidative organ damage, which was also verified histologically. In the AGE-treated naphthalene group, all of these oxidant responses were reversed significantly (P<0.05-0.01). Hepatic and renal function test parameters, which increased significantly (P<0.001) following naphthalene administration, decreased (P<0.05-0.001) after AGE treatment. The results demonstrate the role of oxidative mechanisms in naphthalene-induced tissue damage. The antioxidant properties of AGE ameliorated oxidative organ injury due to naphthalene toxicity.  相似文献   

16.
The present study was designed to test the hypothesis that oxidative stress mediates chromium-induced reproductive toxicity. Monthly semen samples were collected from adult monkeys (Macaca radiata), which were exposed to varying doses (50, 100, 200 and 400 ppm) of chromium (as potassium dichromate) for 6 months through drinking water. Chromium treatment decreased sperm count, sperm forward motility and the specific activities of antioxidant enzymes, superoxide dismutase and catalase, and the concentration of reduced glutathione in both seminal plasma and sperm in a dose- and duration-dependent manner. On the other hand, the quantum of hydrogen peroxide in the seminal plasma/sperm from monkeys exposed to chromium increased with increasing dose and duration of chromium exposure. All these changes were reversed after 6 months of chromium-free exposure period. Simultaneous supplementation of vitamin C (0.5 g/L; 1.0 g/L; 2.0 g/L) prevented the development of chromium-induced oxidative stress. Data support the hypothesis and show that chronic chromium exposure induces a reversible oxidative stress in the seminal plasma and sperm by creating an imbalance between reactive oxygen species and antioxidant system, leading to sperm death and reduced motility of live sperm.  相似文献   

17.
18.
In the present study, we isolated a polyacetylene, gymnasterkoreayne B (GKB), from Gymnaster koraiensis and investigated the effect of GKB on the protection from oxidative stress-induced cytotoxicity through induction of the expression of cellular defense enzymes. GKB induced mRNA expression and enzyme activity of NAD(P)H:quinone oxidoreductase (NQO1) in vitro and in vivo, and potently increased expression of many cellular defense genes including glutathione-S-transferases, UDP-glucuronosyltransferase, and glutathione reductase (GSR) in normal rat liver. The nuclear factor erythroid 2-related factor 2 (Nrf2) which is known to induce various antioxidant and cytoprotective genes, and the genes containing the antioxidant response element (ARE), including NQO1, hemeoxygenease-1, GSR were induced by GKB in HepG2 human hepatocarcinoma cells. Pre-treatment of the cells with GKB accelerated the production of glutathione and mitigated menadione-induced cytotoxicity in HepG2 cells. Taken together, we found that GKB was a novel inducer of phase II detoxification enzymes and cellular defense enzymes, resulting in protection of the cells from oxidative stress and hepatotoxicity through regulation of detoxifying and antioxidant systems.  相似文献   

19.
Oxidative stress and lipid accumulation play important roles in alcohol-induced liver injury. Previous reports showed that, in livers of nuclear factor erythroid 2-related factor 2 (Nrf2)-activated mice, genes involved in antioxidant defense are induced, whereas genes involved in lipid biosynthesis are suppressed. To investigate the role of Nrf2 in ethanol-induced hepatic alterations, Nrf2-null mice, wild-type mice, kelch-like ECH-associated protein 1-knockdown (Keap1-KD) mice with enhanced Nrf2, and Keap1-hepatocyte knockout (Keap1-HKO) mice with maximum Nrf2 activation, were treated with ethanol (5 g/kg, po). Blood and liver samples were collected 6 h thereafter. Ethanol increased alanine aminotransferase and lactate dehydrogenase activities as well as thiobarbituric acid reactive substances in serum of Nrf2-null and wild-type mice, but not in Nrf2-enhanced mice. After ethanol administration, mitochondrial glutathione concentrations decreased markedly in Nrf2-null mice but not in Nrf2-enhanced mice. H2DCFDA staining of primary hepatocytes isolated from the four genotypes of mice indicates that oxidative stress was higher in Nrf2-null cells, and lower in Nrf2-enhanced cells than in wild-type cells. Ethanol increased serum triglycerides and hepatic free fatty acids in Nrf2-null mice, and these increases were blunted in Nrf2-enhanced mice. In addition, the basal mRNA and nuclear protein levels of sterol regulatory element-binding protein 1(Srebp-1) were decreased with graded Nrf2 activation. Ethanol further induced Srebp-1 mRNA in Nrf2-null mice but not in Nrf2-enhanced mice. In conclusion, Nrf2 activation prevented alcohol-induced oxidative stress and accumulation of free fatty acids in liver by increasing genes involved in antioxidant defense and decreasing genes involved in lipogenesis.  相似文献   

20.
Hyperglycemia is associated with advanced glycation end products (AGEs). Recently, AGEs were found to cause pancreatic damage, oxidative stress, and hyperglycemia through the AGE receptor. Carboxymethyllysine (CML) is an AGE but whether it induces pancreatic dysfunction remains unclear. Graptopetalum paraguayense, a vegetable consumed in Taiwan, has been used in folk medicine and is an antioxidant that protects against liver damage. We investigated the protective properties of G. paraguayense 95% ethanol extracts (GPEs) against CML-induced pancreatic damage. The results indicated that resveratrol, GPE, and gallic acid (the active compound of GPE) increased insulin synthesis via upregulation of pancreatic peroxisome proliferator activated-receptor-γ (PPARγ) and pancreatic-duodenal homeobox-1 (PDX-1) but inhibited the expression of CML-mediated CCAAT/enhancer binding protein-β (C/EBPβ), a negative regulator of insulin production. Moreover, resveratrol and GPE also strongly activated nuclear factor-erythroid 2-related factor 2 (Nrf2) to attenuate oxidative stress and improve insulin sensitivity in the liver and muscle of CML-injected C57BL/6 mice and resulted in reduced blood glucose levels. Taken together, these findings suggested that GPE and gallic acid could potentially be used as a food supplement to protect against pancreatic damage and the development of diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号