首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In young rat cerebellar slices, histological methods showed that the neurotoxic potency of N-methyl-D-aspartate (NMDA) towards granule cells and intracerebellar nucleus neurons was increased 2- to 3-fold on removal of Mg ions, which have a blocking effect on NMDA-activated ion channels. The depolarizing potency of NMDA on granule cells, recorded using a gap method, was similarly enhanced whereas that of kainate, a non-NMDA receptor agonist, was unchanged. The neurotoxic potency of kainate (towards Golgi cells) was also unaltered by removal of Mg2+. In Mg2+-containing medium, neuronal depolarization induced either by kainate or by high K+ potentiated NMDA toxicity, apparently by reducing the channel block by Mg2+. The results strongly support the hypothesis that excessive Ca2+ influx through NMDA/Mg2+-gated ion channels mediates NMDA toxicity. They also have clear implications regarding the likely mechanism of toxicity of agonists, such as glutamate, able to activate both NMDA and non-NMDA receptors.  相似文献   

2.
The development of N-methyl-D-aspartate (NMDA)-induced burst discharge in rat trigeminal motoneurons (TMNs) between postnatal days P1 and P10 was examined using whole cell patch-clamp recording methods in brain slices. Bath application of NMDA (50 microM) induced a Mg(2+)-dependent rhythmical bursting activity starting around P8. Prior to the onset of bursting, the membrane potential depolarized and the input resistance increased. Hyperpolarization of the membrane potential with extrinsic current demonstrated a narrow window of membrane potential where maintained rhythmical burst discharge was evident. In P1-P4 neurons, NMDA application produced membrane depolarization and a minimal change in input resistance, but no burst activity at any membrane potential. Voltage-clamp analysis indicated that the bursting activity was related to the presence or absence of a voltage-dependent Mg(2+) block and induction of a negative slope conductance (NSC) region in the I(NMDA)-V relationship. Regardless of age, reduction of extracellular Mg(2+) from 1 mM to 30 microM enhanced I(NMDA) at voltages negative to -60 mV. However, in 1 mM Mg(2+), P1-P4 neurons were devoid of a prominent NSC region compared with P8-P10 neurons, suggesting that the efficacy of depolarization in unblocking the NMDA receptors increased with age. NMDA bursting was not dependent on calcium influx through voltage-gated calcium channels (VGCC) but did require a minimal concentration of Ca(2+) in the bath. Intracellular bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid application suppressed burst discharge completely, suggesting that intracellular Ca(2+) directly, or via second-messenger systems, regulates NMDA receptor activity and bursting. Interestingly, NMDA bursting could be induced in P1-P4 neurons by simultaneous bath application of serotonin (5-HT, 10 microM), which by itself did not produce bursting, suggesting an "enabling" role for 5-HT. Voltage-clamp analysis demonstrated that the NMDA/5-HT bursting resulted from induction of an NSC in the I-V relationship of total membrane current. 5-HT by itself produced no such effect. The mechanisms for this effect were due to an enhancement of the NSC region of the I(NMDA)-V relationship and reduction of a presumed leak current by 5-HT. These data indicate that NMDA bursting in trigeminal motoneurons is developmentally regulated and subject to neuromessenger modulation. Control of the Mg(2+) sensitivity of the NMDA receptor and voltage-dependent block by neuromessengers could be an effective means to control the efficacy of glutamatergic synaptic drive to motoneurons during rhythmical oral-motor activity at early postnatal ages.  相似文献   

3.
When superfused onto rat hippocampal slices, glycine (0.1-0.5 mM) potentiated the depolarization induced by pressure application of NMDA in normal Krebs solution and the synaptic discharge evoked by stimulation of the Schaffer collateral-commissural inputs to the CA1 pyramidal neurons bathed in Mg2+-free media; the effects were not prevented by strychnine. In addition, glycine partially reversed the blocking effect of D-2-amino-5-phosphonovalerate (AP5) on N-methyl-D-aspartate (NMDA)-induced depolarization. These results show that glycine at relatively high concentrations potentiates the NMDA-mediated response in hippocampal slices.  相似文献   

4.
In the hippocampus, glutamatergic inputs to pyramidal neurons and interneurons are modulated by alpha7* and alpha3beta4* nicotinic acetylcholine receptors (nAChRs), respectively, present in glutamatergic neurons. This study examines how nicotinic AMPA, and NMDA receptor nAChR activities are integrated to regulate the excitability of CA1 stratum radiatum (SR) interneurons in rat hippocampal slices. At resting membrane potentials and in the presence of extracellular Mg2+ (1 mM), nicotinic agonists triggered in SR interneurons excitatory postsynaptic currents (EPSCs) that had two components: one mediated by AMPA receptors, and the other by NMDA receptors. As previously shown, nicotinic agonist-triggered EPSCs resulted from glutamate released by activation of alpha3beta4* nAChRs in glutamatergic neurons/fibers synapsing directly onto the neurons under study. The finding that CNQX caused more inhibition of nicotinic agonist-triggered EPSCs than expected from the blockade of postsynaptic AMPA receptors indicated that this nicotinic response also depended on the AMPA receptor activity in the glutamatergic neurons synapsing onto the interneuron under study. Nicotinic agonists always triggered action potentials in CA1 SR interneurons. In most interneurons, these action potentials resulted from activation of somatodendritic AMPA receptors and alpha7* nAChRs. In interneurons expressing somatodendritic alpha4beta2* nAChRs, activation of these receptors caused sufficient membrane depolarization to remove the Mg2+-induced block of somatodendritic NMDA receptors; in these neurons, nicotinic agonist-triggered action potentials were partially dependent on NMDA receptor activation. Removing extracellular Mg2+ or clamping the neuron at positive membrane potentials revealed the existence of a tonic NMDA current in SR interneurons that was unaffected by nAChR activation or inhibition. Thus integration of the activities of nAChRs, NMDA, and AMPA receptors in different compartments of CA1 neurons contributes to the excitability of CA1 SR interneurons.  相似文献   

5.
The interaction between Mg2+ and phencyclidine (PCP) in blocking open N-methyl-D-aspartate (NMDA) channels was investigated in Xenopus oocytes injected with rat brain mRNA. These receptors exhibit the pharmacological and physiological properties of the neuronal receptors, and the oocyte is readily amenable to electrical recording and application of well-controlled chemical stimuli. We found that Mg2+ at physiological concentrations greatly impeded the ability of PCP to block the NMDA channel. The interaction between Mg2+ and PCP was competitive; 0.5 mM Mg2+ caused a four-fold decrease in the potency of PCP in blocking open NMDA channels. Moreover, Mg2+ speeded the recovery from PCP block in the presence of agonist, suggesting that Mg2+ reduced reblock of NMDA channels by PCP that had escaped from open channels. Our observations suggest that the presence of Mg2+ in the channel tends to prevent PCP entry and block. Since depolarization is likely to reduce channel occupancy by Mg2+ more than that by PCP, neural activity may have an important influence on the actions of PCP and related drugs.  相似文献   

6.
Electrophysiological activity was recorded intracellularly from pyramidal neurons in rat hippocampal slices. Topical application of histamine produced a slow depolarization that was not associated with conductance changes. The depolarization was accompanied by an increase in the rate of action potential discharges. These effects were markedly reduced in slices maintained in a low Ca2+, high Mg2+ medium, indicating that histamine may act presynaptically on hippocampal pyramidal neurons.  相似文献   

7.
An in vitro slice preparation was used to assess the effects of N-methyl-D-aspartate (NMDA) receptor activation in the developing cat caudate nucleus. Removal of Mg2+ from the bathing medium, in the presence of 10 microM bicuculline, increased the amplitude and duration of the excitatory postsynaptic potential induced by local extracellular stimulation at all ages tested. In neurons younger than 35 days of age, removal of Mg2+ in the presence of bicuculline produced an increase in excitatory postsynaptic potential amplitude and duration as well as bursts of action potentials when local extracellular stimulation was applied. The effects of Mg2+ removal were reversibly attenuated by the specific NMDA receptor antagonist DL-2-amino-5-phosphonovaleric acid. These findings are important because they demonstrate that NMDA receptor-mediated responses can be induced in developing caudate neurons by local extracellular stimulation and these responses are enhanced in early postnatal periods at ages when motor control is being established.  相似文献   

8.
The effects of glutamate, glutamate receptor agonists and substances that affect glutamate responses were studied, using the whole-cell patch-clamp technique, on neurons isolated from adult rat dorsal root ganglia. In current-clamp, glutamate (100 microM) or the excitatory amino acid receptor agonist N-methyl-D-aspartate (NMDA; 10 or 100 microM) induced membrane depolarization. Under voltage-clamp, these compounds induced an inward current that was voltage-dependent in the presence of Mg2+. The NMDA-induced current was inhibited by the NMDA receptor antagonist D,L-2-amino-5-phosphono-valerate (APV; 100 microM), and potentiated by 100 nM glycine. Few neurons responded to the receptor agonists kainate (100 microM), or quisqualate (1-10 microM). These observations suggest that glutamate-induced depolarization of primary sensory neurons is mediated predominantly by NMDA receptors.  相似文献   

9.
Spontaneous, synchronous epileptiform discharges were recorded in both CA3 and CA1 subfields of rat hippocampal slices perfused with Mg2+-free medium. Surgical separation of the two areas abolished the spontaneous discharges only in the CA1 subfield. However, epileptiform responses in the isolated CA1 subfield could still be evoked by orthodromic stimulation. Intracellularly these stimulus-induced responses were characterized by a depolarization associated with a burst of action potentials. Stimulation of the alveus still evoked a hyperpolarizing potential, presumably a recurrent inhibitory postsynaptic potential (IPSP) in CA1 pyramidal cells. Both spontaneous and stimulus-induced epileptiform discharges were blocked by the selective antagonist of N-methyl-D-aspartate (NMDA) receptors DL-2-amino-phosphonovalerate (APV). APV also reduced the amplitude and duration of the IPSP induced by alveus stimulation. Thus, epileptiform discharges evoked by lowering Mg2+ in the CA1 subfield are associated with a preservation of inhibitory mechanisms. Furthermore the effects exerted by APV upon the IPSP implicate that NMDA receptors might be involved in the neuronal circuit responsible for the hyperpolarizing IPSP generated by CA1 pyramidal neurons.  相似文献   

10.
1. Intracellular recordings were obtained from neurons in layer II/III of rat frontal cortex. Single-electrode current- and voltage-clamp techniques were employed to compare the sensitivity of excitatory postsynaptic potentials (EPSPs) and iontophoretically evoked responses to N-methyl-D-aspartate (NMDA) to the selective NMDA antagonist D-2-amino-5-phosphonovaleric acid (D-2-APV). The voltage dependence of the amplitudes of the EPSPs before and after pharmacologic changes in the neuron's current-voltage relationship was also examined. 2. NMDA depolarized the membrane potential, increased the neuron's apparent input resistance (RN), and evoked bursts of action potentials. The NMDA-induced membrane current (INMDA) gradually increased with depolarization from -80 to -40 mV. The relationship between INMDA and membrane potential displayed a region of negative slope conductance in the potential range between -70 and -40 mV which was sufficient to explain the apparent increase in RN and the burst discharges during the NMDA-induced depolarization. 3. Short-latency EPSPs (eEPSPs) were evoked by low-intensity electrical stimulation of cortical layer IV. Changes in the eEPSP waveform following membrane depolarization and hyperpolarization resembled those of NMDA-mediated responses. However, the eEPSP was insensitive to D-2-APV applied at concentrations (up to 20 microM) that blocked NMDA responses. 4. EPSPs with latencies between 10 and 40 ms [late EPSPs (lEPSPs)] were evoked by electrical stimulation using intensities just subthreshold to the activation of IPSPs. The amplitude of the lEPSP increased with hyperpolarization and decreased with depolarization. 5. The lidocaine derivative QX-314, injected intracellularly, suppressed sodium-dependent action potentials and depolarizing inward rectification. Simultaneously, the amplitude of the eEPSP significantly decreased with depolarization. Neither the amplitude of a long-latency EPSP nor the amplitude of inhibitory postsynaptic potentials (IPSPs) was significantly affected by QX-314. 6. Cesium ions (0.5-2.0 mM) added to the bathing solution reduced or blocked hyperpolarizing inward rectification. Under these conditions, the amplitude of the eEPSP increased with hyperpolarization. The amplitude of the lEPSP was unaltered or enhanced. 7. The lEPSP was reversibly blocked by D-2-APV (5-20 microM), although the voltage-dependence of its amplitude did not resemble the action of NMDA on neocortical neurons.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Premovement activities in neurons in the intermediate gray layer [stratum griseum intermediale (SGI)] of the mammalian superior colliculus (SC) are essential for initiation of orienting behaviors such as saccades. Our previous study demonstrated that burst activities are induced by synchronous activation of SGI neurons communicating within a local excitatory network, which depends on NMDA-receptor-dependent synaptic transmission and release from GABAA inhibition. Furthermore, dual whole cell recordings from adjacent neurons in SGI revealed that application of 10 microM bicuculline (Bic) and reduction of extracellular Mg2+ concentration (to 0.1 mM) induce spontaneous depolarization that is synchronous between neuron pairs, suggesting the recruitment of a large number of neurons communicating through intense excitatory connections. In the present study, we investigated the properties of synchronous depolarization and the fundamental structure of the lateral excitatory network that recruits a neuronal population in SC to synchronous activation, by analyzing the synchronicity of spontaneous depolarization induced in the presence of Bic plus low Mg2+. We found that 1) spontaneous depolarization exhibits bidirectional horizontal propagation among the SGI neuron pairs; 2) induction of spontaneous depolarization is not caused by activation of intrinsic voltage-dependent conductances; 3) neurons exposed to low Mg2+ alone exhibit spontaneous depolarization, although in this case the depolarization is less synchronous; and 4) neurons exposed to Bic alone exhibit synchronous depolarization, but less frequently than those exposed to both Bic and low Mg2+. Analysis of the synchronicity of spontaneous depolarization indicates that the distribution of lateral excitatory connections is markedly different among layers of SC; the SGI neurons form extensive lateral excitatory connections, whereas they are sparse or limited within subsets of neurons in the stratum griseum superficiale (SGS). Wide-field vertical neurons in the stratum opticum have features intermediate between neurons in the SGS and SGI. Such differences in the structure of lateral excitatory connections may reflect the different way signal processing is achieved in each layer of SC.  相似文献   

12.
Postsynaptic currents were studied by whole cell recordings in visually identified large neurons of the deep cerebellar nuclei (DCN) in slices of 4- to 11-day-old mice. Spontaneous postsynaptic currents were abolished by the GABA(A) receptor antagonist bicuculline and had a single-exponential decay with a mean time constant of 13.6 +/- 3.2 (SD) ms. Excitatory postsynaptic currents (EPSCs) were evoked in 48/56 neurons recorded. The addition of AMPA and N-methyl-D-aspartate (NMDA) receptor antagonists together completely abolished all synaptic responses. In 1 mM [Mg(2+)](o) and at a holding potential of -60 mV, the peak amplitude of the NMDA component of the EPSC (NMDA-EPSC) was 83.2 +/- 21.2% of the AMPA component (AMPA-EPSC). This indicates that in DCN neurons, at a physiological [Mg(2+)](o) and at the resting membrane potential, NMDA receptors contribute to the synaptic signal. AMPA-EPSCs had a linear current-voltage relationship with a reversal potential of +2.3 +/- 0.4 mV and a single-exponential decay with a voltage-dependent time constant that at -60 mV was 7.1 +/- 3.3 ms. In 10 microM glycine and 1 mM [Mg(2+)](o), the I-V relationship of NMDA-EPSCs had a reversal potential of -0.5 +/- 3.3 mV and a maximal inward current at -33.4 +/- 5.8 mV. The apparent dissociation constant (K(D)) of Mg(2+) for the NMDA receptor-channel at -60 mV, measured by varying [Mg(2+)](o), was 135.5 +/- 55.3 microM, and when measured by fitting the I-V curves with a theoretical function, it was 169.9 +/- 119.5 microM. Thus in the DCN, NMDA receptors have a sensitivity to Mg(2+) that corresponds to subunits that are weakly blocked by this ion (epsilon 3 and epsilon 4) of which the DCN express epsilon 4. NMDA-EPSCs had a double-exponential decay with voltage-dependent time constants that at -60 mV were 20.2 +/- 8.9 and 136.4 +/- 62.8 ms. At positive voltages, the time constants were slower and their contributions were about equal, while in the negative slope conductance region of the I-V curve, the faster time constant became predominant, conferring faster kinetics to the EPSC. The weak sensitivity to Mg(2+) of NMDA receptors, together with a relatively fast kinetics, provide DCN neurons with strong excitatory inputs in which fast dynamic signals are relatively well preserved.  相似文献   

13.
Summary Properties of excitation induced by various excitatory amino acids were studied in thin slices of the guinea pig hippocampus in the presence of Mn2+, tetrodotoxin and tetraethylammonium chloride. Depolarizations induced by L-glutamate (Glu), quisqualate (Quis) and D-homocysteate (DH) were accompanied consistently by decreases in neuron input resistance. In the current-voltage function, increases in input resistance were never observed at any membrane potential. The amplitude of Glu, Quis and DH responses decreased during tonic outward currents and increased during tonic inward currents. Although neuron input resistance decreased with depolarizations induced by L-aspartate (Asp) as well, the magnitude of the resistance reduction was significantly smaller than that induced by Glu. Asp responses changed in amplitude as did Glu responses during tonic inward and outward currents. Depolarizations induced by N-Methyl-Daspartate (NMDA) were accompanied by apparent increases in input resistance, and their amplitudes increased and decreased during tonic depolarization and hyperpolarization, respectively. Mn2+ was almost without effect at the concentration used (2.7 mM) on responses induced by Glu, DH or Asp. These results suggest that Glu, Quis and DH induce depolarizations in hippocampal neurons by activating only Quis receptors, and that Asp activates Quis receptors preferentially though it activates NMDA receptors as well.Supported by a grant from the Ministry of Education of Japan  相似文献   

14.
Intracellular recordings were performed in a pontine slice preparation of the rat brain containing the locus coeruleus. The enzymatically stable P2-purinoceptor agonist alpha,beta-methylene ATP increased the firing rate without altering the amplitude or shape of action potentials; the afterhyperpolarization following a spike was not changed either. When locus coeruleus neurons were hyperpolarized by current injection in order to prevent spontaneous firing, alpha,beta-methylene ATP produced depolarization and a slight increase in the apparent input resistance. A combined application of kynurenic acid and bicuculline methiodide failed to alter the alpha,beta-methylene ATP-induced depolarization, and tetrodotoxin only slightly depressed it. A gradual shift of the membrane potential by hyperpolarizing current injection led to a corresponding decrease, but no abolition or reversal of the alpha,beta-methylene ATP effect. In the hyperpolarized region, the current-voltage curve of alpha,beta-methylene ATP came into close approximation with, but did not cross, the control curve. Elevation of the external K+ concentration, or the intracellular application of Cs+ by diffusion from the microelectrode, depressed the response to alpha,beta-methylene ATP; external tetraethylammonium was also inhibitory. External Ba2+ and Cs+ had no effect or only slightly decreased the alpha,beta-methylene ATP-induced depolarization. A low Na+, or a low Ca2+ high Mg2+ medium, as well as the presence of Co2+ in the medium, markedly reduced or even abolished the depolarization by alpha,beta-methylene ATP. ATP itself did not produce consistent changes in the membrane potential or input resistance. However, in the presence of the P1-purinoceptor antagonist 8-cyclopentyl-1,3-dipropylxanthine, ATP consistently increased the firing rate and evoked an inward current. In conclusion, P2-purinoceptor activation appears to depolarize locus coeruleus neurons by inhibiting a persistent potassium current, and at the same time opening calcium-sensitive sodium channels or calcium-sensitive non-selective cationic channels.  相似文献   

15.
The cell attached configuration of the patch clamp method has been used to determine the single channel properties of the ion channel coupled to activation of the N-methyl-D-aspartate (NMDA) receptor by the endogenous NMDA agonist quinolinate. Openings of the NMDA channel were recorded from cultured CA1 hippocampal neurons over a hyperpolarizing potential range from cell resting potential. The slope conductance of the channel was 39 pS with 75 microM quinolinate, 1.8 mM Ca2+ and no Mg2+ in the patch pipette. The mean channel open times were decreased with hyperpolarization in an exponential manner with a mean slope of 0.6 ms/20 mV. Addition of Mg2+ to the pipette (at 30 microM) caused the mean open time, at a potential of -100 mV, to be decreased to a value about one-third that of control. The mean open times with quinolinate as the agonist were shorter for all potentials studied compared with activation of the NMDA receptor with NMDA or D-cis-1-amino-1,3-cyclopentanedicarboxylic acid (ACPD). Both the mean open times and the channel amplitudes were significantly altered when the bath temperature was decreased; the Q10 values for both quantities were in excess of 2.8.  相似文献   

16.
The effect of low extracellular Mg2+ concentration ([Mg2+]o) on neuronal activity was studied in rat hippocampal slices. After 20-40 min of perfusion with Mg2+-free medium, when [Mg2+]o declined to approximately 0.1-0.4 mM, spontaneous field potentials developed in the CA1 and CA3 regions, but not in the dentate gyrus. In the CA3 pyramidal cell layer, these potentials consisted of repetitive (0.3-0.5 Hz), 40- to 120-ms-long positive deflections (2-5 mV) with superimposed population spikes. In the stratum (str.) pyramidale of the CA1 region, positive-negative deflections (less than 3 mV) lasting for 30-80 ms were observed, which occurred with a frequency of 0.3-0.5 Hz. In some cases, longer lasting and rapidly recurring events were also observed. In CA3 pyramidal cells, the intracellular correlates of the field potential transients were 20- to 30-mV paroxysmal depolarization shifts (PDS) with superimposed bursts of action potentials, followed by large (greater than 10 mV), 500- to 1,200-ms-long afterhyperpolarizations (AHP). In contrast, pyramidal neurons of the CA1 area did not show PDSs; instead, sequences of excitatory postsynaptic potentials (EPSPs)/inhibitory postsynaptic potentials (IPSPs) accompanied the transient field potential changes. Occasionally, spontaneous EPSPs/IPSPs, occurring with high frequencies, could also be observed in CA1 without any field potential transients. In both hippocampal regions, the epileptiform activity evolved without significant alterations in the resting membrane potential (RMP) and input resistance (RN) of the neurons, although a 2- to 5-mV reduction in action potential threshold was noted. The spontaneous activity in Mg2+-free medium was readily suppressed by raising the extracellular Ca2+ concentration ([Ca2+]o) from 1.6 to 3.6 mM. The perfusion of 10-30 microns DL-2-amino-5-phosphonovaleric acid (2-APV), an antagonist for the glutamate receptors of the N-methyl-D-aspartate (NMDA) type, also attenuated or reversibly blocked the spontaneous activity. Surgical isolation of area CA1 from CA3 ceased the occurrence of the transients in CA1 but not in CA3. The synaptic input/output curves were shifted to the left in the absence of [Mg2+]o. Threshold intensity for eliciting population spikes was 50-75% of that in normal medium. Paired-pulse facilitation was still present near threshold, but was reduced at higher stimulus intensities. Decreases in [Ca2+]o, produced by repetitive stimulation (20-Hz/5-10 s) of the Schaffer collateral/commissural pathway and monitored with ion-selective microelectrodes in the CA1 region, were enhanced in Mg2+-free medium.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Transient cerebral ischemia, which is accompanied by a sustained release of glutamate, strongly depresses protein synthesis. We have previously demonstrated in cortical neurons that a glutamate-induced increase in intracellular Ca(2+) is likely responsible for the blockade of the elongation step of protein synthesis. In this study, we provide evidence indicating that NMDA mobilizes a thapsigargin-sensitive pool of intracellular Ca(2+). Exposure of cortical neurons to NMDA, in the absence of external Ca(2+), produced a transient rise in intracellular Ca(2+) that was suppressed by pretreatment with thapsigargin. This rise in intracellular Ca(2+) did not result from an influx of Na(+) via reversal of the mitochondrial Na(+)/Ca(2+) exchanger since it persisted in a Na(+)-free medium or in the presence of CGP 37157, an inhibitor of the exchanger. Moreover, the NMDA-induced increase in intracellular Ca(2+) required the presence of D-serine, was blocked by D(-)-2-amino-5-phosphonopentanoic acid, but was not reduced in the presence of external Mg(2+). This unexpected non-ionotropic effect of NMDA was associated with an inhibition of protein synthesis that was also insensitive to the absence of external Ca(2+) or Na(+), or presence of Mg(2+). NMDA treatment resulted in an increase in the phosphorylation of eEF-2 in the absence or presence of external Ca(2+). The initiation step of protein synthesis was not blocked by NMDA since the phosphorylation of initiation factor eIF-2alpha subunit was not altered by NMDA treatment. In conclusion, we provide evidence indicating that NMDA can inhibit protein synthesis in cortical neurons through a process that involves the mobilization of intracellular Ca(2+) stores via a mechanism that is not linked to the ionic properties of NMDA receptors.  相似文献   

18.
Alterations in pyramidal neurons from the sensorimotor cortex may be responsible for some of the cognitive and motor symptoms of Huntington's disease (HD). The present experiments used R6/2 transgenic mice that express exon 1 of the human HD gene with an expanded number of CAG repeats. We characterized alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) currents and their modulation by cyclothiazide (CTZ) as well as N-methyl-D-aspartate (NMDA) currents and their Mg2+ sensitivity in acutely dissociated cortical pyramidal neurons in R6/2 transgenic and wild-type (WT) mice at 21 days (before overt symptoms), 40 days (when symptoms begin), and 80 days (fully symptomatic). AMPA currents, alone or in the presence of CTZ, were smaller in 21- and 40-day-old R6/2 groups compared with WT mice. In R6/2 mice, more neurons displayed desensitizing AMPA currents in the presence of CTZ, indicating increased expression of "flop" splice variants, whereas the majority of WT cells expressed the "flip" variants of AMPA receptor subunits. NMDA peak currents also were smaller in R6/2 pyramidal neurons at 21 days. At 40 days, NMDA currents were similar in WT and R6/2 mice but Mg2+ sensitivity was greater in R6/2 mice, resulting in smaller NMDA currents in the presence of Mg2+. Differences in AMPA and NMDA currents between WT and R6/2 cells were no longer detected at 80 days. Our findings indicate that currents induced by glutamate receptor agonists are decreased in isolated cortical pyramidal neurons from R6/2 mice and that this decrease occurs early. Altered glutamate receptor function could contribute to changes in cortical output and may underlie some of the cognitive and motor impairments in this animal model of HD.  相似文献   

19.
G Gerber  M Randi? 《Neuroscience letters》1989,106(1-2):211-219
The participation of N-methyl-D-aspartate (NMDA) and non-NMDA receptors in the responses of deep dorsal horn neurons to single shock stimulation of dorsal roots was investigated using current- and voltage-clamp techniques. In the presence of Mg2+, superfusion of rat spinal slices with 6-cyano-2,3-dihydroxy-7-nitroquinoxaline (CNQX), a potent antagonist of non-NMDA receptors, reversibly blocks fast excitatory synaptic responses elicited by low-frequency stimulation of dorsal roots and to a greater extent the responses to quisqualate than to kainate or NMDA. The synaptic response elicited in a zero-Mg2+ medium is less sensitive to CNQX. The CNQX-resistant component is however abolished by D-APV, a selective antagonist of NMDA receptor. Under voltage-clamp, the excitatory postsynaptic currents also showed an initial fast (CNQX-sensitive) and a late slow (2-amino-5-phosphonovalerate (APV)-sensitive, Mg2+-sensitive) component, both of which had similar thresholds but differed in their latency, time-to-peak and duration. These results support the concept that both non-NMDA and NMDA receptor channels are present in a majority of deep dorsal horn neurons and could be simultaneously activated by transmitter released from stimulated primary afferents.  相似文献   

20.
The responses of neurons in slices of the rat supraoptic nucleus (SON) to afferent stimulation were recorded under current-clamp conditions. In magnesium (Mg2+)-free incubation medium, synaptic responses were prolonged and were partially antagonized by the non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist (+)-5-methyl-10,11-dihydro-5H- dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801). During blockade of non-NMDA excitatory amino acid (EAA) receptors, the synaptic responses in Mg(2+)-free medium were blocked by the competitive NMDA receptor antagonist 2-amino-5-phosphonopentanoic acid (AP5). The results of these experiments provide electrophysiological evidence for the existence of NMDA receptors in the rat SON.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号