首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In MRI, the suppression of fat signal is very important for many applications. Multipoint Dixon based water–fat separation methods are commonly used due to its robustness to B0 homogeneity compared with other fat suppression methods, such as spectral fat saturation. The traditional Cartesian k‐space trajectory based multipoint Dixon technique is sensitive to motion, such as pulsatile blood flow, resulting in artifacts that compromise image quality. This work presents a three‐point Dixon water–fat separation method using undersampled BLADE (aka PROPELLER) for motion robustness and speed. A regularized iterative reconstruction method is then proposed for reducing the streaking artifacts coming from undersampling. In this study, the performance of the regularized iterative reconstruction method is first tested by simulations and on MR phantoms. The performance of the proposed technique is then evaluated in vivo by comparing it with conventional fat suppression methods on the human brain and knee. Experiments show that the presented method delivers reliable water–fat separation results. The reconstruction method suppresses streaking artifacts typical for undersampled BLADE acquisition schemes without missing fine structures in the image. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

2.
The concentric rings two‐dimensional (2D) k‐space trajectory enables flexible trade‐offs between image contrast, signal‐to‐noise ratio (SNR), spatial resolution, and scan time. However, to realize these benefits for in vivo imaging applications, a robust method is desired to deal with fat signal in the acquired data. Multipoint Dixon techniques have been shown to achieve uniform fat suppression with high SNR‐efficiency for Cartesian imaging, but application of these methods for non‐Cartesian imaging is complicated by the fact that fat off‐resonance creates significant blurring artifacts in the reconstruction. In this work, two fat–water separation algorithms are developed for the concentric rings. A retracing design is used to sample rings near the center of k‐space through multiple revolutions to characterize the fat–water phase evolution difference at multiple time points. This acquisition design is first used for multipoint Dixon reconstruction, and then extended to a spectroscopic approach to account for the trajectory's full evolution through 3D kt space. As the trajectory is resolved in time, off‐resonance effects cause shifts in frequency instead of spatial blurring in 2D k‐space. The spectral information can be used to assess field variation and perform robust fat–water separation. In vivo experimental results demonstrate the effectiveness of both algorithms. Magn Reson Med, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

3.
Multi echo chemical shift‐based water–fat separation methods allow for uniform fat suppression in the presence of main field inhomogeneities. However, these methods require additional scan time for chemical shift encoding. This work presents a method for water–fat separation from undersampled data (CS‐WF), which combines compressed sensing and chemical shift‐based water–fat separation. Undersampling was applied in the k‐space and in the chemical shift encoding dimension to reduce the total scanning time. The method can reconstruct high quality water and fat images in 2D and 3D applications from undersampled data. As an extension, multipeak fat spectral models were incorporated into the CS‐WF reconstruction to improve the water–fat separation quality. In 3D MRI, reduction factors of above three can be achieved, thus fully compensating the additional time needed in three‐echo water–fat imaging. The method is demonstrated on knee and abdominal in vivo data. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
A wide variety of fat suppression and water–fat separation methods are used to suppress fat signal and improve visualization of abnormalities. This article reviews the most commonly used techniques for fat suppression and fat–water imaging including 1) chemically selective fat suppression pulses “FAT‐SAT”; 2) spatial‐spectral pulses (water excitation); 3) short inversion time (TI) inversion recovery (STIR) imaging; 4) chemical shift based water–fat separation methods; and finally 5) fat suppression and balanced steady‐state free precession (SSFP) sequences. The basic physical background of these techniques including their specific advantages and disadvantages is given and related to clinical applications. This enables the reader to understand the reasons why some fat suppression methods work better than others in specific clinical settings. J. Magn. Reson. Imaging 2010;31:4–18. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
The chemical shift of water and fat resonances in proton MRI allows separation of water and fat signal from chemical shift encoded data. This work describes an automatic method that produces separate water and fat images as well as quantitative maps of fat signal fraction and T2* from complex multiecho gradient-recalled datasets. Accurate water and fat separation is challenging due to signal ambiguity at the voxel level. Whole-image optimization can resolve this ambiguity, but might be computationally demanding, especially for three-dimensional data. In this work, periodicity of the model fit residual as a function of the off-resonance was used to modify a previously proposed formulation of the problem. This gives a smaller solution space and allows rapid optimization. Feasibility and accurate separation of water and fat signal were demonstrated in breathhold three-dimensional liver imaging of 10 volunteer subjects, with both acquisition and reconstruction times below 20 s.  相似文献   

6.
Tissues containing both water and lipids, e.g., breast, confound standard MR proton reference frequency‐shift methods for mapping temperatures due to the lack of temperature‐induced frequency shift in lipid protons. Generalized Dixon chemical shift–based water‐fat separation methods, such as GE's iterative decomposition of water and fat with echo asymmetry and least‐squares estimation method, can result in complex water and fat images. Once separated, the phase change over time of the water signal can be used to map temperature. Phase change of the lipid signal can be used to correct for non‐temperature‐dependent phase changes, such as amplitude of static field drift. In this work, an image acquisition and postprocessing method, called water and fat thermal MRI, is demonstrated in phantoms containing 30:70, 50:50, and 70:30 water‐to‐fat by volume. Noninvasive heating was applied in an Off1‐On‐Off2 pattern over 50 min, using a miniannular phased radiofrequency array. Temperature changes were referenced to the first image acquisition. Four fiber optic temperature probes were placed inside the phantoms for temperature comparison. Region of interest (ROI) temperature values colocated with the probes showed excellent agreement (global mean ± standard deviation: ?0.09 ± 0.34°C) despite significant amplitude of static field drift during the experiments. Magn Reson Med 63:1238–1246, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
The two‐point Dixon method is a proton chemical shift imaging technique that produces separated water‐only and fat‐only images from a dual‐echo acquisition. It is shown how this can be achieved without the usual constraints on the echo times. A signal model considering spectral broadening of the fat peak is proposed for improved water/fat separation. Phase errors, mostly due to static field inhomogeneity, must be removed prior to least‐squares estimation of water and fat. To resolve ambiguity of the phase errors, a corresponding global optimization problem is formulated and solved using a message‐passing algorithm. It is shown that the noise in the water and fat estimates matches the Cramér‐Rao bounds, and feasibility is demonstrated for in vivo abdominal breath‐hold imaging. The water‐only images were found to offer superior fat suppression compared with conventional spectrally fat suppressed images. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.

Purpose

To integrate water‐fat–resolved spiral gradient‐echo imaging with off‐resonance correction into a clinical MR scanner and to evaluate its basic feasibility and performance.

Materials and Methods

Three‐point chemical shift imaging was implemented with forward and strongly T2*‐weighted reverse spiral sampling and with off‐resonance correction after water–fat separation. It was applied in a volunteer study on single breathhold abdominal imaging, which included a brief comparison with Cartesian sampling.

Results

Water‐fat–resolved, off‐resonance–corrected forward and reverse three‐dimensional interleaved spiral imaging was found to be feasible on a clinical MR scanner with only minor changes to the existing data acquisition and reconstruction, and to provide good image quality. Three‐point chemical shift encoded data thus support both, water–fat separation and off‐resonance correction with high accuracy.

Conclusion

The combination of chemical shift encoding and appropriate postprocessing could pave the way for water‐fat–resolved spiral imaging in clinical applications. J. Magn. Reson. Imaging 2010;32:1262–1267. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
Fat deposition associated with myocardial infarction (MI) has been reported as a commonly occurring phenomenon. Magnetic resonance imaging (MRI) has the ability to efficiently detect MI using T1‐sensitive contrast‐enhanced sequences and fat via its resonant frequency shift. In this work, the feasibility of fat‐water separation applied to the conventional delayed hyperenhanced (DHE) MI imaging technique is demonstrated. A three‐point Dixon acquisition and reconstruction was combined with an inversion recovery gradient‐echo pulse sequence. This allowed fat‐water separation along with T1 sensitive imaging after injection of a gadolinium contrast agent. The technique is demonstrated in phantom experiments and three subjects with chronic MI. Areas of infarction were well defined as conventional hyperenhancement in water images. In two cases, fatty deposition was detected in fat images and confirmed by precontrast opposed‐phase imaging. Magn Reson Med 60:503–509, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

10.
Dixon imaging techniques derive chemical shift‐separated water and fat images, enabling the quantification of fat content and forming an alternative to fat suppression. Whole‐body Dixon imaging is of interest in studies of obesity and the metabolic syndrome, and possibly in oncology. A three‐point Dixon method is proposed where two solutions are found analytically in each voxel. The true solution is identified by a multiseed three‐dimensional region‐growing scheme with a dynamic path, allowing confident regions to be solved before unconfident regions, such as background noise. 2π‐Phase unwrapping is not required. Whole‐body datasets (256 × 184 × 252 voxels) were collected from 39 subjects (body mass index 19.8‐45.4 kg/m2), in a mean scan time of 5 min 15 sec. Water and fat images were reconstructed offline, using the proposed method and two reference methods. The resulting images were subjectively graded on a four‐grade scale by two radiologists, blinded to the method used. The proposed method was found superior to the reference methods. It exclusively received the two highest grades, implying that only mild reconstruction failures were found. The computation time for a whole‐body dataset was 1 min 51.5 sec ± 3.0 sec. It was concluded that whole‐body water and fat imaging is feasible even for obese subjects, using the proposed method. Magn Reson Med 63:1659–1668, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Spiral imaging has recently gained acceptance in MR applications requiring rapid data acquisition. One of the main disadvantages of spiral imaging, however, is blurring artifacts that result from off-resonance effects. Spatial-spectral (SPSP) pulses are commonly used to suppress those spins that are chemically shifted from water and lead to off-resonance artifacts. However, SPSP pulses may produce nonuniform fat signal suppression or unwanted water signal suppression when applied in the presence of B(0) field inhomogeneities. Dixon techniques have been developed as methods for water-fat signal decomposition in rectilinear sampling schemes since they can produce unequivocal water-fat signal decomposition even in the presence of B(0) inhomogeneities. This article demonstrates that three-point and two-point Dixon techniques can be extended to conventional spiral and variable-density spiral data acquisitions for unambiguous water-fat decomposition with off-resonance blurring correction. In the spiral three-point Dixon technique, water-fat signal decomposition and image deblurring are performed based on the frequency maps that are directly derived from the acquired images. In the spiral two-point Dixon technique, several predetermined frequencies are tested to create a frequency map. The newly proposed techniques can achieve more effective and more uniform fat signal suppression when compared to the conventional spiral acquisition method with SPSP pulses.  相似文献   

12.

Purpose:

To demonstrate the feasibility of combining a chemical shift‐based water‐fat separation method (IDEAL) with a 2D ultrashort echo time (UTE) sequence for imaging and quantification of the short T2 tissues with robust fat suppression.

Materials and Methods:

A 2D multislice UTE data acquisition scheme was combined with IDEAL processing, including T2* estimation, chemical shift artifacts correction, and multifrequency modeling of the fat spectrum to image short T2 tissues such as the Achilles tendon and meniscus both in vitro and in vivo. The integration of an advanced field map estimation technique into this combined method, such as region growing (RG), is also investigated.

Results:

The combination of IDEAL with UTE imaging is feasible and excellent water‐fat separation can be achieved for the Achilles tendon and meniscus with simultaneous T2* estimation and chemical shift artifact correction. Multifrequency modeling of the fat spectrum yields more complete water‐fat separation with more accurate correction for chemical shift artifacts. The RG scheme helps to avoid water‐fat swapping.

Conclusion:

The combination of UTE data acquisition with IDEAL has potential applications in imaging and quantifying short T2 tissues, eliminating the necessity for fat suppression pulses that may directly suppress the short T2 signals. J. Magn. Reson. Imaging 2010;31:1027–1034. ©2010 Wiley‐Liss, Inc.  相似文献   

13.
Radial trajectories facilitate high‐resolution balanced steady state free precession (bSSFP) because the efficient gradients provide more time to extend the trajectory in k‐space. A number of radial bSSFP methods that support fat–water separation have been developed; however, most of these methods require an environment with limited B0 inhomogeneity. In this work, high‐resolution bSSFP with fat–water separation is achieved in more challenging B0 environments by combining a 3D radial trajectory with the IDEAL chemical species separation method. A method to maintain very high resolution within the timing constraints of bSSFP and IDEAL is described using a dual‐pass pulse sequence. The sampling of a unique set of radial lines at each echo time is investigated as a means to circumvent the longer scan time that IDEAL incurs as a multiecho acquisition. The manifestation of undersampling artifacts in this trajectory and their effect on chemical species separation are investigated in comparison to the case in which each echo samples the same set of radial lines. This new bSSFP method achieves 0.63 mm isotropic resolution in a 5‐min scan and is demonstrated in difficult in vivo imaging environments, including the breast and a knee with ACL reconstruction hardware at 1.5 T. Magn Reson Med 71:95–104, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
Conventional approaches for fat and water discrimination based on chemical‐shift fat suppression have reduced ability to characterize fatty infiltration due to poor contrast of microscopic fat. The multiecho Dixon approach to water and fat separation has advantages over chemical‐shift fat suppression: 1) water and fat images can be acquired in a single breathhold, avoiding misregistration; 2) fat has positive contrast; 3) the method is compatible with precontrast and late‐enhancement imaging, 4) less susceptible to partial‐volume effects, and 5) robust in the presence of background field variation; and 6) for the bandwidth implemented, chemical‐shift artifact is decreased. The proposed technique was applied successfully in all 28 patients studied. This included 10 studies with indication of coronary artery disease (CAD), of which four cases with chronic myocardial infarction (MI) exhibited fatty infiltration; 13 studies to rule out arrhythmogenic right ventricular cardiomyopathy (ARVC), of which there were three cases with fibrofatty infiltration and two confirmed with ARVC; and five cases of cardiac masses (two lipomas). The precontrast contrast‐to‐noise ratio (CNR) of intramyocardial fat was greatly improved, by 240% relative to conventional fat suppression. For the parameters implemented, the signal‐to‐noise ratio (SNR) was decreased by 30% relative to conventional late enhancement. The multiecho Dixon method for fat and water separation provides a sensitive means of detecting intramyocardial fat with positive signal contrast. Magn Reson Med 61:215–221, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

15.
Multipoint water–fat separation techniques rely on different water–fat phase shifts generated at multiple echo times to decompose water and fat. Therefore, these methods require complex source images and allow unambiguous separation of water and fat signals. However, complex‐based water–fat separation methods are sensitive to phase errors in the source images, which may lead to clinically important errors. An alternative approach to quantify fat is through “magnitude‐based” methods that acquire multiecho magnitude images. Magnitude‐based methods are insensitive to phase errors, but cannot estimate fat‐fraction greater than 50%. In this work, we introduce a water–fat separation approach that combines the strengths of both complex and magnitude reconstruction algorithms. A magnitude‐based reconstruction is applied after complex‐based water–fat separation to removes the effect of phase errors. The results from the two reconstructions are then combined. We demonstrate that using this hybrid method, 0–100% fat‐fraction can be estimated with improved accuracy at low fat‐fractions. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

16.
Suppression of the fat signal in MRI is very important for many clinical applications. Multi‐point water–fat separation methods, such as IDEAL (Iterative Decomposition of water and fat with Echo Asymmetry and Least‐squares estimation), can robustly separate water and fat signal, but inevitably increase scan time, making separated images more easily affected by patient motions. PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction) and Turboprop techniques offer an effective approach to correct for motion artifacts. By combining these techniques together, we demonstrate that the new TP‐IDEAL method can provide reliable water–fat separation with robust motion correction. The Turboprop sequence was modified to acquire source images, and motion correction algorithms were adjusted to assure the registration between different echo images. Theoretical calculations were performed to predict the optimal shift and spacing of the gradient echoes. Phantom images were acquired, and results were compared with regular FSE‐IDEAL. Both T1‐ and T2‐weighted images of the human brain were used to demonstrate the effectiveness of motion correction. TP‐IDEAL images were also acquired for pelvis, knee, and foot, showing great potential of this technique for general clinical applications. Magn Reson Med 61:188–195, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

17.
Previously published fast spin-echo (FSE) implementations of a Dixon method for water and fat separation all require multiple scans and thus a relatively long scan time. Further, the minimum echo spacing (esp), a time critical for FSE image quality and scan efficiency, often needs to be increased in order to bring about the required phase shift between the water and fat signals. This work proposes and implements a novel FSE triple-echo Dixon (fTED) technique that can address these limitations. In the new technique, three raw images are acquired in a single FSE scan by replacing each frequency-encoding gradient in a conventional FSE with three consecutive gradients of alternating polarity. The timing of the three gradients is adjusted by selecting an appropriate receiver bandwidth (RBW) so that the water and fat signals for the three corresponding echoes have a relative phase shift of -180 degrees , 0 degrees , and 180 degrees , respectively. A fully automated postprocessing algorithm is then used to generate separate water-only and fat-only images for each slice. The technique was implemented with and without parallel imaging. We demonstrate that the new fTED technique enables both uniform water/fat separation and fast scanning with uncompromised scan parameters, including applications such as T(2)-weighted separate water and fat imaging of the abdomen during breath-holding.  相似文献   

18.
Multipoint water-fat separation methods have received renewed interest because they provide uniform separation of water and fat despite the presence of B0 and B1 field inhomogeneities. Unfortunately, full-resolution reconstruction of partial k-space acquisitions has been incompatible with these methods. Conventional homodyne reconstruction and related algorithms are commonly used to reconstruct partial k-space data sets by exploiting the Hermitian symmetry of k-space in order to maximize the spatial resolution of the image. In doing so, however, all phase information of the image is lost. The phase information of complex source images used in a water-fat separation acquisition is necessary to decompose water from fat. In this work, homodyne imaging is combined with the IDEAL (iterative decomposition of water and fat with echo asymmetry and least squares estimation) method to reconstruct full resolution water and fat images free of blurring. This method is extended to multicoil steady-state free precession and fast spin-echo applications and examples are shown.  相似文献   

19.
Chemical-shift artifacts associated with non-Cartesian imaging are more complex to model and less clinically acceptable than the bulk fat shift that occurs with conventional spin-warp Cartesian imaging. A novel k-space based iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) approach is introduced that decomposes multiple species while simultaneously correcting distortion of off-resonant species. The new signal model accounts for the additional phase accumulated by off-resonant spins at each point in the k-space acquisition trajectory. This phase can then be corrected by adjusting the decomposition matrix for each k-space point during the final IDEAL processing step with little increase in reconstruction time. The technique is demonstrated with water-fat decomposition using projection reconstruction (PR)/radial, spiral, and Cartesian spin-warp imaging of phantoms and human subjects, in each case achieving substantial correction of chemical-shift artifacts. Simulations of the point-spread-function (PSF) for off-resonant spins are examined to show the nature of the chemical-shift distortion for each acquisition. Also introduced is an approach to improve the signal model for species which have multiple resonant peaks. Many chemical species, including fat, have multiple resonant peaks, although such species are often approximated as a single peak. The improved multipeak decomposition is demonstrated with water-fat imaging, showing a substantial improvement in water-fat separation.  相似文献   

20.
In 1984, Dixon published a first paper on a simple spectroscopic imaging technique for water and fat separation. The technique acquires two separate images with a modified spin echo pulse sequence. One is a conventional spin echo image with water and fat signals in-phase and the other is acquired with the readout gradient slightly shifted so that the water and fat signals are 180 degrees out-of-phase. Dixon showed that from these two images, a water-only image and a fat-only image can be generated. The water-only image by the Dixon's technique can serve the purpose of fat suppression, an important and widely used imaging option for clinical MRI. Additionally, the availability of both the water-only and fat-only images allows direct image-based water and fat quantitation. These applications, as well as the potential that the technique can be made highly insensitive to magnetic field inhomogeneity, have generated substantial research interests and efforts from many investigators. As a result, significant improvement to the original technique has been made in the last 2 decades. The following article reviews the underlying physical principles and describes some major technical aspects in the development of these Dixon techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号