首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Infection-associated inflammation can alter the expression levels and functions of cytochrome P450s (CYPs). Cyp gene expression is regulated by the activation of several nuclear receptors, including pregnane X receptor (PXR), constitutive androstane receptor (CAR), and aryl hydrocarbon receptor (AhR). These receptors can be activated by xenobiotics, including medicines. Here, to study the xenobiotic-induced fluctuations in CYP during inflammation, we examined the effect of lipopolysaccharide (LPS) treatment on the level of mRNAs encoding hepatic CYPs induced by xenobiotic-activated nuclear receptors, in mice. Both the mRNA induction of Cyp genes and the metabolic activities of CYP proteins were examined. LPS treatment caused a significant decrease in the induced expression of the mRNAs for Cyp3a11, 2c29, 2c55, and 1a2, but not for Cyp2b10. To assess the CYP enzymatic activities, CYP3A-mediated testosterone 6β-hydroxylation and the intrinsic clearance (CL(int)) of nifedipine in liver microsomes were measured in mice treated with the xenobiotic pregnenolone-16alpha-carbonitrile (PCN) with or without LPS administration. Both assays revealed that the CYP3A activity, which was induced by PCN, declined significantly after LPS treatment, and this decline correlated with the Cyp3a11 mRNA level. In addition, we found that the mRNAs for interleukin (IL)-1β and tumor necrosis factor (TNF) α were increased after treatment with LPS plus xenobiotics. Our findings demonstrated that LPS treatment reduces the PXR- and AhR-mediated, and possibly CAR-mediated Cyp gene expression and further suggest that these decreases are dependent on inflammatory cytokines in the liver.  相似文献   

7.
Fipronil is described as a thyroid disruptor in rat. Based on the hypothesis that this results from a perturbation of hepatic thyroid hormone metabolism, our goal was to investigate the pathways involved in fipronil-induced liver gene expression regulations. First, we performed a microarray screening in the liver of rats treated with fipronil or vehicle. Fipronil treatment led to the upregulation of several genes involved in the metabolism of xenobiotics, including the cytochrome P450 Cyp2b1, Cyp2b2 and Cyp3a1, the carboxylesterases Ces2 and Ces6, the phase II enzymes Ugt1a1, Sult1b1 and Gsta2, and the membrane transporters Abcc2, Abcc3, Abcg5, Abcg8, Slco1a1 and Slco1a4. Based on a large overlap with the target genes of constitutive androstane receptor (CAR) and pregnane X receptor (PXR), we postulated that these two nuclear receptors are involved in mediating the effects of fipronil on liver gene expression in rodents. We controlled that liver gene expression changes induced by fipronil were generally reproduced in mice, and then studied the effects of fipronil in wild-type, CAR- and PXR-deficient mice. For most of the genes studied, the gene expression modulations were abolished in the liver of PXR-deficient mice and were reduced in the liver of CAR-deficient mice. However, CAR and PXR activation in mouse liver was not associated with a marked increase of thyroid hormone clearance, as observed in rat. Nevertheless, our data clearly indicate that PXR and CAR are key modulators of the hepatic gene expression profile following fipronil treatment which, in rats, may contribute to increase thyroid hormone clearance.  相似文献   

8.
9.
Nonylphenol (NP), a by-product of alkylphenol ethoxylates, is a pervasive surfactant that activates the xenosensing nuclear receptor, the pregnane X-receptor (PXR) in transactivation assays in vitro. We are interested in determining if NP activates PXR in vivo, determining if hPXR and mPXR act similarly, and investigating the role of PXR in protecting individuals from NP. Wild-type (WT), PXR-null, and humanized PXR (hPXR) mice were treated with NP at 0, 50 or 75 mg/kg/day for one week, and cytochrome P450 (CYP) induction, liver histopathology, and serum NP concentrations were examined. WT mice treated with NP showed induction of Cyp2b, and male-specific induction of Cyp2c and Cyp3a. CYPs were not induced in PXR-null mice, demonstrating that PXR is necessary for NP-mediated CYP induction. CAR-mediated CYP induction was not observed in the PXR-null mice despite previous data demonstrating that NP is also a CAR activator. hPXR mice only showed moderate Cyp induction, suggesting that hPXR is not as sensitive to NP as mPXR in vivo. NP-mediated Cyp3a induction from three human hepatocyte donors was not significant, confirming that hPXR is not very sensitive to NP-mediated CYP induction. Lastly, mice with PXR (mPXR and hPXR) showed lower NP serum concentrations than PXR-null mice treated with NP suggesting that PXR plays a role in decreasing liver toxicity by basally regulating phase I-III detoxification enzymes that promote the metabolism and elimination of NP. In summary, PXR is required for NP-mediated CYP-induction, mPXR mediates greater CYP induction than hPXR in vivo, and the presence of PXR, especially mPXR, is associated with altered histopathology and increased clearance of NP.  相似文献   

10.
Multiple transporter systems are involved in the disposition of xenobiotics and endogenous compounds. The pregnane X receptor (PXR) is a major chemical sensor known to activate the expression of CYP3A/Cyp3a in humans and rodents. The purpose of this study is to systematically determine whether the major xenobiotic transporters in liver, kidney, duodenum, jejunum, and ileum are induced by pregnenolone-16alpha-carbonitrile (PCN), and whether this increase is mediated by the nuclear receptor PXR. In liver, PCN induced the expression of Oatp1a4 and Mrp3 mRNA in wild-type (WT) mouse liver, but not in PXR-null mice. In kidney, PCN did not alter the expression of any drug transporter. In duodenum, PCN increased Abca1 and Mdr1a mRNA expression in WT mice, but not in PXR-null mice. In jejunum and ileum, PCN increased Mdr1a and Mrp2 mRNA, but decreased Cnt2 mRNA in WT mice, but none of these transporters was altered when PCN was administered to PXR-null mice. Therefore, PCN regulates the expression of some transporters, namely, Oatp1a4 and Mrp3 in liver, as well as Abca1, Cnt2, Mdr1a, and Mrp2 in small intestine via a PXR-mediated mechanism.  相似文献   

11.
12.
The CYP3As are broad-spectrum drug-metabolizing enzymes that are collectively responsible for more than 50% of xenobiotic metabolism. Unlike other CYP3As, murine CYP3A44 is expressed predominantly in the female liver, with much lower levels in male livers and no detectable expression in brain or kidney in either gender. In this study, we examined the role of nuclear hormone receptors in the regulation of Cyp3a44 gene expression. Interestingly, we observed differential effects of pregnane X receptor (PXR) and constitutive androstane receptor (CAR) -mediated activation of Cyp3a44 gene expression, which was gender-specific. For example, activation of PXR by pregnenolone-16alpha-carbonitrile (PCN) and dexamethasone (DEX) induced CYP3A44 mRNA levels in a PXR-dependent fashion in male mice, whereas no induction was detected in female mice. In contrast, PCN and DEX down-regulated CYP3A44 expression in female PXR null animals. Similar to PXR, CAR activation also showed a male-specific induction with no effect on CYP3A44 levels in females. When PXR knockout mice were challenged with the CAR activator phenobarbital, a significant up-regulation of male CYP3A44 levels was observed, whereas levels in females remained unchanged. We conclude that gender has a critical impact on PXR- and CAR-mediated effects of CYP3A44 expression.  相似文献   

13.
Technical-grade dichlorodiphenyltrichloroethane (DDT) is an agricultural pesticide and malarial vector control agent that has been designated a potential human hepatocarcinogen. The o,p'-enantiomer exhibits estrogenic activity that has been associated with the carcinogenicity of DDT. The temporal and dose-dependent hepatic estrogenicity of o,p'-DDT was investigated using complementary DNA microarrays in immature ovariectomized Sprague-Dawley rats with complementary histopathology and tissue-level analysis. Animals were gavaged with 300 mg/kg o,p'-DDT either once or once daily for 3 consecutive days. Liver samples were examined 2, 4, 8, 12, 18, or 24 h after a single dose or following three daily doses. For dose-response studies, a single dose of 3, 10, 30, 100, or 300 mg/kg body weight o,p'-DTT was administered for 3 consecutive days. Genes associated with drug metabolism (Cyp2b2 and Cyp3a2), the nuclear receptors constitutive androstane receptor (CAR) and pregnane X receptor (PXR), cell proliferation (Ccnd1, Ccnb1, Ccnb2, and Stmn1), and oxidative stress (Gclm and Hmox1) were significantly induced. Cyp2b2 exhibited dose-dependent regulation and was significantly induced across all time points, while cell proliferation- and oxidative stress-related genes exhibited transient induction. The induction of Cyp2b2 and Cyp3a2 mRNA levels suggest PXR/CAR activation, consistent with expression of genes associated with oxidative stress. Few genes known to be estrogen receptor (ER) regulated were differentially expressed when compared to the hepatic gene expression profile elicited by ethynyl estradiol in immature ovariectomized C57BL/6 mice using the same study design and analysis methods. These data indicate that o,p'-DDT elicits PXR/CAR-, not ER-, mediated gene expression in the rat liver. Based on the species-specific differences in CAR regulation, the extrapolation of rodent DDT hepatocarcinogenicity to humans warrants further investigation.  相似文献   

14.
15.
Toxaphene was shown to increase liver tumor incidence in B6C3F1 mice following chronic dietary exposure. Preliminary evidence supported a role for the constitutive androstane receptor (CAR) in the mode of action of toxaphene‐induced mouse liver tumors. However, these results could not rule out a role for the pregnane X receptor (PXR) in liver tumor formation. To define further the nuclear receptors involved in this study, we utilized CAR, PXR and PXR/CAR knockout mice (CAR−/−, PXR−/− and PXR−/−/CAR−/−) along with the wild‐type C57BL/6. In this study CAR‐responsive genes Cyp3a11 and Cyp2b10 were induced in the liver of C57BL/6 (wild‐type) mice by toxaphene (30–570‐fold) (at the carcinogenic dose 320 ppm) and phenobarbital (positive control) (16–420‐fold) following 14 days' dietary treatment. In contrast, in CAR−/− mice, no induction of these genes was seen following treatment with either chemical. Cyp3a11 and Cyp2b10 were also induced in PXR−/− mice with toxaphene and phenobarbital but were not changed in treated PXR−/−/CAR−/− mice. Similarly, induction of liver pentoxyresorufin‐O‐deethylase (CAR activation) activity by toxaphene and phenobarbital was absent in CAR−/− and PXR−/−/CAR−/− mice treated with phenobarbital or toxaphene. Ethoxyresorufin‐O‐deethylase (EROD, represents aryl hydrocarbon receptor activation) activity in CAR−/− mice treated with toxaphene or phenobarbital was increased compared with untreated control, but lower overall in activity in comparison to the wild‐type mouse. Liver EROD activity was also induced by both phenobarbital and toxaphene in the PXR−/− mice but not in the PXR−/−/CAR−/− mice. Toxaphene treatment increased 7‐benzyloxyquinoline activity (a marker for PXR activation) in a similar pattern to that seen with pentoxyresorufin‐O‐deethylase. These observations indicate that EROD and PXR activation are evidence, as expected, of secondary overlap to primary CAR receptor activation. Together, these results definitively show that activation of the CAR nuclear receptor is the mode of action of toxaphene‐induced mouse liver tumors. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
17.
Xenobiotic nuclear receptors (PXR, CAR, and the Ah receptor) coordinately induce genes involved in all phases of xenobiotic metabolism including oxidative metabolism, conjugation, and transport. The comment--dedicated to honor the memory of Herbert Remmer, mentor of the author K. W. B.--discusses mechanistic, functional, and evolutionary aspects of xenobiotic nuclear receptors which induce UGTs together with CYPs and glucuronide transporters in human and rodent liver and intestine. Recent findings on regulation of CYPs, UGTs, and transporters suggest that while nuclear receptor signaling induces different CYPs, regulation may converge on single UGTs and transporters. Functional consequences of co-regulation are discussed using examples from the metabolism of xeno- and endobiotics (drugs, bilirubin, bile salts, steroid hormones, and carcinogens). Animal-plant interactions may have been a major driving force in the evolutionary divergence of CYPs and UGTs in mammals and insects as well as in their regulation by nuclear receptors. In addition, regulation by nuclear receptors was probably shaped by the need for homeostatic control of endobiotic signals in the evolution of multicellular organisms.  相似文献   

18.
Chronic dietary exposure to Triclosan (TCS) produced increased incidence of liver tumors in mice. The mechanism for liver tumor induction has been attributed to activation of either peroxisome proliferator activated receptor α (PPARα) or constitutive androstane receptor (CAR). To further define the mechanism of TCS induced liver tumors, male CD-1 and C57BL/6 mice were treated with TCS at 0, 10, 100 and 200 mg/kg diet/day for 14 or 28 days. In addition, a recovery group and positive control groups for CAR or PPARα activation with either phenobarbital or diethylhexyl-phthalate were included in the 14-day study. TCS induced a dose-dependent increase in relative liver weight and centrilobular hypertrophy in both strains of mice. Hepatocyte DNA synthesis (BrdU labeling) was also increased in a dose-related pattern. In comparison with previous studies, TCS induced a significant increase in CAR/PXR (Cyp2b10, Cyp3a11) and PPARα (Cyp4a10) responsive genes in both CD-1 and C57BL/6 mice. The corresponding enzyme activity for CAR (7-pentoxyresorufin-O-dealkylase) and PPARα (peroxisomal Acyl-CoA oxidase) were also significantly increased in a similar fashion. Oxidative stress related genes Gpx1 and Aox1 were increased in the C57BL/6 but not in CD-1 mice. The increases in gene expression and enzyme activities returned to control levels after 14-day recovery. The present results demonstrate that both CAR and PPARα activation are involved in the TCS induced mouse liver tumor.  相似文献   

19.
20.
HL-1 cells are currently the only cells that spontaneously contract while maintaining a differentiated cardiac phenotype. Thus, our objective was to examine murine HL-1 cells as a new in vitro model to study drug metabolizing enzymes. We examined the expression of cytochrome P450s (Cyps), phase II enzymes, and nuclear receptors and compared their levels to mice hearts. Our results demonstrated that except for Cyp4a12 and Cyp4a14 all Cyps, phase II enzymes: glutathione-S-transferases (Gsts), heme oxygenase-1 (HO-1), and NAD(P)H: quinone oxidoreductase (Nqo1), nuclear receptors: aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR), pregnane X receptor (PXR), and peroxisome proliferator activated receptor (PPAR-alpha) were all constitutively expressed in HL-1 cells. Cyp2b19, Cyp2c29, Cyp2c38, Cyp2c40, and Cyp4f16 mRNA levels were higher in HL-1 cells compared to mice hearts. Cyp2b9, Cyp2c44, Cyp2j9, Cyp2j11, Cyp2j13, Cyp4f13, Cyp4f15 mRNA levels were expressed to the same extent to that of mice hearts. Cyp1a1, Cyp1a2, Cyp1b1, Cyp2b10, Cyp2d10, Cyp2d22, Cyp2e1, Cyp2j5, Cyp2j6, Cyp3a11, Cyp4a10, and Cyp4f18 mRNA levels were lower in HL-1 cells compared to mice hearts. Moreover, 3-methylcholanthrene induced Cyp1a1 while fenofibrate induced Cyp2j9 and Cyp4f13 mRNA levels in HL-1 cells. Examining the metabolism of arachidonic acid (AA) by HL-1 cells, our results demonstrated that HL-1 cells metabolize AA to epoxyeicosatrienoic acids, dihydroxyeicosatrienoic acids, and 20-hydroxyeicosatetraenoic acids. In conclusion, HL-1 cells provide a valuable in vitro model to study the role of Cyps and their associated AA metabolites in addition to phase II enzymes in cardiovascular disease states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号