首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The recent emergence of carbapenemase-producing Enterobacteriaceae strains represents a major threat for hospitalized patients. We document the dissemination and control of carbapenemase-producing Klebsiella pneumoniae clones in a Greek hospital. During a 3-year study period (January 2009 to December 2011), carbapenemase-producing K. pneumoniae strains were isolated from clinical samples from 73 individual patients. Phenotyping and molecular testing confirmed that 52 patients were infected with K. pneumoniae carbapenemase 2 (KPC-2) producers, 12 were infected with VIM-1 producers, and the remaining 9 were infected with isolates producing both KPC-2 and VIM-1 enzymes. Twenty-eight of these clinical cases were characterized as imported health care associated, and 23 of these were attributed to KPC producers and 5 were attributed to KPC and VIM producers. The remaining 45 cases were deemed hospital acquired. In the second year of the study, intensified infection control intervention was implemented, followed by active surveillance and carrier isolation in the third year. The incidence of carbapenemase-producing K. pneumoniae patient cases decreased from 0.52/1,000 patient days in 2009 to 0.32/1,000 patient days in 2010 (P = 0.075). Following these additional infection control measures, the incidence fell to 0.21/1,000 patient days in 2011 and differed significantly from that in 2009 (P = 0.0028). Despite the fact that the imported cases of carbapenemase-producing K. pneumoniae were equally distributed over this 3-year period, the incidence of hospital-acquired cases decreased from 0.36/1,000 patient days in 2009 to 0.19/1,000 patient days in 2010 (P = 0.058) and to 0.1/1,000 patient days in 2011 (P = 0.0012). Our findings suggest that rigorous infection control measures and active surveillance can effectively reduce the incidence of secondary transmission due to KPC-producing pathogens.  相似文献   

2.
In June 2010, a bla(KPC)-negative, ertapenem-resistant ST-258 Klebsiella pneumoniae strain was isolated from a patient in the Laniado Medical Center (LMC). Our aims were (i) to describe its molecular characteristics and resistance mechanisms and (ii) to assess whether the bla(KPC)-negative ST-258 K. pneumoniae clone spreads as efficiently as its KPC-producing isogenic strain. In a prospective study, surveillance of all ertapenem-resistant, carbapenemase-negative K. pneumoniae (ERCNKP) isolates was conducted from June 2010 to May 2011 at LMC (314 beds) and from July 2008 to December 2010 at the Tel Aviv Sourasky Medical Center (TASMC) (1,200 beds). Molecular typing was done by arbitrarily primed PCR, pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing (MLST). A total of 8 of 42 (19%) ERCNKP isolates in LMC and 1 of 32 (3.1%) in TASMC belonged to the ST-258 clone. These strains carried the bla(CTX-M-2) or the bla(CTX-M-25) extended-spectrum β-lactamase (ESBL) gene. Sequencing of the ompK genes showed a frameshift mutation in the ompK35 gene. The fate of the bla(KPC)-carrying plasmid, pKpQIL, was determined by S1 analysis and by PCR of the Tn4401 transposon, repA, and the truncated bla(OXA-9). Plasmid analysis of the ERCNKP ST-258 isolates showed variability in plasmid composition and absence of the Tn4401 transposon and the pKpQIL plasmid. In addition, the ST-258 clone was identified in 35/35 (100%) of KPC-producing K. pneumoniae isolates but in none of 62 ertapenem-susceptible K. pneumoniae isolates collected in the two centers. Our results suggest that ERCNKP ST-258 evolved by loss of the bla(KPC)-carrying plasmid pKpQIL. ERCNKP ST-258 appears to have low epidemic potential.  相似文献   

3.
We report the first outbreak caused by colistin-resistant Klebsiella pneumoniae producing KPC-3 carbapenamase in two Italian hospitals. This spread occurred in 1 month, and was caused by eight colistin-resistant and carbapenem-resistant Klebsiella pneumoniae isolates from eight patients. A further three isolates were obtained from the intestinal tract and pharyngeal colonization. All isolates were multidrug-resistant (MDR), including being resistant to colistin, but they were susceptible to gentamicin and tigecycline. PCR detection showed that all isolates harboured the blaKPC-3 gene associated with blaSHV-11, blaTEM-1 and blaOXA-9. All K. pneumoniae isolates, genotyped by pulsed-field gel electrophoresis and multilocus sequence typing, belonged to the same sequence type (ST)258 clone. From our data and a review of the international literature, K. pneumoniae ST258 seems to be the most widespread genetic background for KPC dissemination in Europe.  相似文献   

4.
KPC-2-producing Klebsiella pneumoniae isolates mainly correspond to clonal complex 258 (CC258); however, we describe KPC-2-producing K. pneumoniae isolates belonging to invasive sequence type 23 (ST23). KPC-2 has scarcely been reported to occur in ST23, and this report describes the first isolation of this pathogen in the Americas. Acquisition of resistant markers in virulent clones could mark an evolutionary step toward the establishment of these clones as major nosocomial pathogens.  相似文献   

5.
In Asia, bla(KPC) detection has been limited to East Asia and not yet seen in Southeast Asia. We report four bla(KPC-2)-containing Klebsiella pneumoniae isolates from two different hospitals in Singapore. All isolates belonged to strain type 11 (ST11) and were indistinguishable by pulsed-field gel electrophoresis (PFGE). bla(KPC-2) was located on nonconjugative plasmids and flanked by mobile genetic structures composed of a partial Tn4401 transposon and a Tn3-based transposon which previously have been described only in Chinese isolates.  相似文献   

6.
The aim of this study was to investigate the characteristics of carbapenem-resistant Klebsiella pneumoniae (CRKP) collected during an outbreak in a Chinese teaching hospital and to provide insights into the prevention and control of nosocomial infection. We collected unique CRKP clinical isolates from 2009 to 2013. Antibiotic-resistant genes were identified by polymerase chain reaction (PCR) and sequencing. The isolates were typed using pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Plasmids were classified using a PCR-based incompatibility/replicon typing method and a replicon sequence typing method. Conjugation experiments were performed to evaluate the transferability of carbapenem-resistant genes. Whole genome sequencing (WGS) was conducted to further investigate the genetic background of the isolates. Infection control practices were reviewed throughout the study period. Klebsiella pneumoniae sequence type (ST) 11 emerged in 2010 and acquired the bla KPC-2 gene by 2011. From 2011 to 2013, ST11 KPC-2-producing CRKP (G type) prevailed as the most common CRKP in our hospital, causing a prolonged outbreak. The majority of these CRKP strains possess an IncFII plasmid, with Tn1721-bla KPC-2-ΔTn3-IS26 bearing the genetic structure for bla KPC-2. Infection prevention control measures available at the time contained the initial outbreak, but had no effect on the spread of CRKP later. This study demonstrated the seriousness concerning the spread of KPC-2-producing ST11 CRKP in a Chinese hospital, indicating that current prevention and control strategies for carbapenem-resistant Enterobacteriaceae (CRE) nosocomial infection need to be investigated and adjusted.  相似文献   

7.
Carbapenemase-producing Klebsiella pneumoniae has recently spread rapidly throughout China. In this study, we characterized a carbapenem-resistant K. pneumoniae isolate that produced both KPC-2 and IMP-4 type carbapenemases. A clinical isolate of K. pneumoniae, resistant to both meropenem and imipenem, was recovered from a urine sample. Antibiotic susceptibility was determined using the broth microdilution method and Etest (bioMérieux, France). Pulsed-field gel electrophoresis and multilocus sequence typing (MLST) were used for gene type analysis. bla (KPC) and the encoding genes of ESBLs and plasmid-mediated AmpC enzymes were polymerase chain reaction (PCR) amplified and sequenced. Plasmids were analyzed by transformation, enzyme restriction and Southern blot. PCR analysis revealed that the isolate was simultaneously carrying bla (KPC-2), bla (IMP-4), bla (TEM-1), and bla (OKP-B) genes. MLST assigned the isolate to a novel sequence type, ST476. bla (KPC-2)-harbouring plasmids of the isolate and comparative strains had similar EcoRI and HindIII restriction maps, while IMP-4-harbouring plasmids had variable HindIII restriction maps. Coexistence of bla (KPC-2) and bla (IMP-4) was probably due to bla (IMP-4)-harbouring plasmid transmission into KPC-2-producing K. pneumoniae (ST476). The concomitant presence of these genes is alarming and poses both therapeutic and infection control problems.  相似文献   

8.
Nine Klebsiella pneumoniae isolates showing non-susceptibility to carbapenems were collected from three centres in the north-eastern region of Hungary. The minimum inhibitory concentrations (MICs) of antibiotics were determined by Etest. The putative production of a carbapenemase was tested by the modified Hodge test. The presence of bla KPC genes was verified by polymerase chain reaction (PCR) and sequencing. Furthermore, molecular typing was performed by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). All isolates showed extensively drug-resistant (XDR) phenotype, and of these, eight isolates were highly resistant to colistin. The isolates carried bla KPC-2, bla SHV-12, bla TEM-1 and bla SHV-11. PFGE analysis of the nine KPC-2-producing Hungarian ST258 K. pneumoniae isolates, two KPC-2-producing Norwegian ST258 isolates and 33 CTX-M-15-producing ST11 isolates revealed the existence of one genetic cluster at an 88% similarity level. The overall results of the PFGE clustering, MLST and the presence of SHV-11 in both ST11 and ST258 suggest that this is the first hyperepidemic clonal complex of multidrug-resistant K. pneumoniae, probably CC258/CC340, possibly undergoing worldwide spread.  相似文献   

9.
Klebsiella pneumoniae is a pathogen of increasing concern because of multidrug resistance, especially due to K. pneumoniae carbapenemases (KPCs). K. pneumoniae must acquire iron to replicate, and it utilizes iron-scavenging siderophores, such as enterobactin (Ent). The innate immune protein lipocalin 2 (Lcn2) is able to specifically bind Ent and disrupt iron acquisition. To determine whether K. pneumoniae must produce Lcn2-resistant siderophores to cause disease, we examined siderophore production by clinical isolates (n = 129) from respiratory, urine, blood, and stool samples and by defined siderophore mutants through genotyping and liquid chromatography-mass spectrometry. Three categories of K. pneumoniae isolates were identified: enterobactin positive (Ent(+)) (81%), enterobactin and yersiniabactin positive (Ent(+) Ybt(+)) (17%), and enterobactin and salmochelin (glycosylated Ent) positive (Ent(+) gly-Ent(+)) with or without Ybt (2%). Ent(+) Ybt(+) strains were significantly overrepresented among respiratory tract isolates (P = 0.0068) and β-lactam-resistant isolates (P = 0.0019), including the epidemic KPC-producing clone multilocus sequence type 258 (ST258). In ex vivo growth assays, gly-Ent but not Ybt allowed evasion of Lcn2 in human serum, whereas siderophores were dispensable for growth in human urine. In a murine pneumonia model, an Ent(+) strain was an opportunistic pathogen that was completely inhibited by Lcn2 but caused severe, disseminated disease in Lcn2(-/-) mice. In contrast, an Ent(+) Ybt(+) strain was a frank respiratory pathogen, causing pneumonia despite Lcn2. However, Lcn2 retained partial protection against disseminated disease. In summary, Ybt is a virulence factor that is prevalent among KPC-producing K. pneumoniae isolates and promotes respiratory tract infections through evasion of Lcn2.  相似文献   

10.
目的 调查某三甲医院近5年耐碳青霉烯类肺炎克雷伯菌的检出情况、感染患者的临床特点,为临床诊疗提供依据。方法收集2014年1月~2018年12月该院临床分离的肺炎克雷伯菌菌株,分析耐碳青霉烯类肺炎克雷伯菌检出率、标本来源分布、科室分布、耐药情况及预后因素。结果 共检出耐碳青霉烯类肺炎克雷伯菌690株,检出率为14.29%;2018年耐碳青霉烯类肺炎克雷伯菌检出率高于2014~2016年,差异有统计学意义(P<0.05);标本来源前5位分别为痰、中段尿、血、切口分泌物、导管,标本科室前5位分别是ICU、呼吸科、泌尿外科、烧伤科、神经外科。16种抗生素药敏检测中,CRKP对15种抗生素耐药率超过50%,耐碳青霉烯类肺炎克雷伯菌对复方新明、米诺环素、替加环素、多粘菌素耐药率相对较低,分别为46.91%、31.86%、10.73%、10.10%。治疗无效患者及治疗有效患者在合并基础病≥3种、患有糖尿病、患有恶性肿瘤、入住ICU、机械通气、保留导尿、其他侵袭性操作、混合感染间比较,差异有统计学意义(P<0.05);治疗无效患者及治疗有效患者在性别、吸烟、饮酒、心血管疾病、神经系统疾病、血液病、慢性肺病、慢性肝肾功能不全、近期大手术、既往多次住院或本次就诊前已住院间比较,差异无统计学意义(P>0.05)。结论 耐碳青霉烯类肺炎克雷伯菌感染呈逐年上升趋势,以ICU中耐青霉烯类肺炎克雷伯菌感染患者最多。临床应针对其可能的预后因素,采取有效、可行的诊治和防控措施预防与减少耐碳青霉烯类肺炎克雷伯菌感染发生几率。  相似文献   

11.
Nosocomial outbreaks of extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae are an increasing concern in neonatal intensive care units (NICUs). We describe an outbreak of ESBL-producing K. pneumoniae that lasted 5?months and affected 23 neonates in our NICU. Proton pump inhibitor and extended-spectrum cephalosporin exposure were significantly associated with the risk of ESBL-producing K. pneumoniae colonisation and/or infection. Thirty isolates recovered from clinical, screening and environmental samples in the NICU were studied by means of Raman spectroscopy, pulsed-field gel electrophoresis and repetitive extragenic palindromic polymerase chain reaction (rep-PCR). The Raman clustering was in good agreement with the results of the other two molecular methods. Fourteen isolates belonged to the Raman clone 1 and 16 to the Raman clone 3. Molecular analysis showed that all the strains expressed SHV-1 chromosomal resistance, plasmid-encoded TEM-1 and CTX-M-15 β-lactamases. Incompatibility groups of plasmid content identified by PCR-based replicon typing indicated that resistance dissemination was due to the clonal spread of K. pneumoniae and horizontal CTX-M-15 gene transfer between the two clones.  相似文献   

12.
Despite the growing importance of carbapenem-resistant Klebsiella pneumoniae (CRKP), the clonal relationships between CRKP and antibiotic-susceptible isolates remain unclear. We compared the genetic diversity and clinical features of CRKP, third-generation and/or fourth-generation cephalosporin-resistant (Ceph-R) K. pneumoniae, and susceptible K. pneumoniae isolates causing bloodstream infections at a tertiary care hospital in New York City between January 2012 and July 2013. Drug susceptibilities were determined with the Vitek 2 system. Isolates underwent multilocus sequence typing and PCR sequencing of the wzi and blaKPC genes. Clinical and microbiological data were extracted from patient records and correlated with molecular data. Among 223 patients, we identified 272 isolates. Of these, 194 were susceptible, 30 Ceph-R, and 48 CRKP, belonging to 144 sequence types (STs). Susceptible (127 STs) and Ceph-R (20 STs) isolates were highly diverse. ST258 dominated CRKP strains (12 STs, with 63% ST258). There was minimal overlap in STs between resistance groups. The blaKPC-3 gene (30%) was restricted to ST258/wzi154, whereas blaKPC-2 (70%) was observed for several wzi allele types. CRKP infections occurred more frequently among solid organ transplant (31%) and dialysis (17%) patients. Mortality rates were high overall (28%) and highest among CRKP-infected patients (59%). In multivariable analyses, advanced age, comorbidities, and disease severity were significant predictors of 30-day mortality rates, whereas the K. pneumoniae susceptibility phenotype was not. Among CRKP infections, we observed a borderline significant association of increased mortality rates with ST258 and the wzi154 allele. Although the clonal spread of ST258 continues to contribute substantially to the dissemination of CRKP, non-ST258 strains appear to be evolving. Further investigations into the mechanisms promoting CRKP diversification and the effects of clonal backgrounds on outcomes are warranted.  相似文献   

13.
Newer beta-lactamases such as extended-spectrum beta-lactamases (ESBLs), transferable AmpC beta-lactamases, and carbapenemases are associated with laboratory testing problems of false susceptibility that can lead to inappropriate therapy for infected patients. Because there appears to be a lack of awareness of these enzymes, a study was conducted during 2001 to 2002 in which 6,421 consecutive, nonduplicate clinical isolates of aerobically growing gram-negative bacilli from patients at 42 intensive care unit (ICU) and 21 non-ICU sites across the United States were tested on-site for antibiotic susceptibility. From these isolates, 746 screen-positive isolates (11.6%) were referred to a research facility and investigated to determine the prevalence of ESBLs in all gram-negative isolates, transferable AmpC beta-lactamases in Klebsiella pneumoniae, and carbapenemases in Enterobacteriaceae. The investigations involved phenotypic tests, isoelectric focusing, beta-lactamase inhibitor studies, spectrophotometric assays, induction assays, and molecular analyses. ESBLs were detected only in Enterobacteriaceae (4.9% of all Enterobacteriaceae) and were found in species other than those currently recommended for ESBL testing by the CLSI (formerly NCCLS). These isolates occurred at 74% of the ICU sites and 43% of the non-ICU sites. Transferable AmpC beta-lactamases were detected in 3.3% of K. pneumoniae isolates and at 16 of the 63 sites (25%) with no difference between ICU and non-ICU sites. Three sites submitted isolates that produced class A carbapenemases. No class B or D carbapenemases were detected. In conclusion, organisms producing ESBLs and transferable AmpC beta-lactamases were widespread. Clinical laboratories must be able to detect important beta-lactamases to ensure optimal patient care and infection control.  相似文献   

14.
Carbapenem resistance mediated by plasmid-borne Klebsiella pneumoniae carbapenemases (KPC) is an emerging problem of significant clinical importance in Gram-negative bacteria. Multiple KPC gene variants (bla(KPC)) have been reported, with KPC-2 (bla(KPC-2)) and KPC-3 (bla(KPC-3)) associated with epidemic outbreaks in New York City and various international settings. Here, we describe the development of a multiplex real-time PCR assay using molecular beacons (MB-PCR) for rapid and accurate identification of bla(KPC) variants. The assay consists of six molecular beacons and two oligonucleotide primer pairs, allowing for detection and classification of all currently described bla(KPC) variants (bla(KPC-2) to bla(KPC-11)). The MB-PCR detection limit was 5 to 40 DNA copies per reaction and 4 CFU per reaction using laboratory-prepared samples. The MB-PCR probes were highly specific for each bla(KPC) variant, and cross-reactivity was not observed using DNA isolated from several bacterial species. A total of 457 clinical Gram-negative isolates were successfully characterized by our MB-PCR assay, with bla(KPC-3) and bla(KPC-2) identified as the most common types in the New York/New Jersey metropolitan region. The MB-PCR assay described herein is rapid, sensitive, and specific and should be useful for understanding the ongoing evolution of carbapenem resistance in Gram-negative bacteria. As novel bla(KPC) variants continue to emerge, the MB-PCR assay can be modified in response to epidemiologic developments.  相似文献   

15.
In the United States, the production of the Klebsiella pneumoniae carbapenemase (KPC) is an important mechanism of carbapenem resistance in Gram-negative pathogens. Infections with KPC-producing organisms are associated with increased morbidity and mortality; therefore, the rapid detection of KPC-producing pathogens is critical in patient care and infection control. We developed a real-time PCR assay complemented with traditional high-resolution melting (HRM) analysis, as well as statistically based genotyping, using the Rotor-Gene ScreenClust HRM software to both detect the presence of blaKPC and differentiate between KPC-2-like and KPC-3-like alleles. A total of 166 clinical isolates of Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii with various β-lactamase susceptibility patterns were tested in the validation of this assay; 66 of these organisms were known to produce the KPC β-lactamase. The real-time PCR assay was able to detect the presence of blaKPC in all 66 of these clinical isolates (100% sensitivity and specificity). HRM analysis demonstrated that 26 had KPC-2-like melting peak temperatures, while 40 had KPC-3-like melting peak temperatures. Sequencing of 21 amplified products confirmed the melting peak results, with 9 isolates carrying blaKPC-2 and 12 isolates carrying blaKPC-3. This PCR/HRM assay can identify KPC-producing Gram-negative pathogens in as little as 3 h after isolation of pure colonies and does not require post-PCR sample manipulation for HRM analysis, and ScreenClust analysis easily distinguishes blaKPC-2-like and blaKPC-3-like alleles. Therefore, this assay is a rapid method to identify the presence of blaKPC enzymes in Gram-negative pathogens that can be easily integrated into busy clinical microbiology laboratories.  相似文献   

16.
A plasmid-encoded ClpK protein was recently identified as a predictor of a heat-resistant phenotype in the opportunistic pathogen Klebsiella pneumoniae. This study was undertaken to evaluate the presence of the clpK gene in extended-spectrum β-lactamase (ESBL)-producing K. pneumoniae and to assess the probable co-transfer of multi-resistance with the heat resistance phenotype. A Danish collection of 80 ESBL-producing K. pneumoniae bloodstream infection isolates was screened for clpK by colony hybridization. Nineteen isolates (24%) were positive for clpK; some of them representing major clones identified in Denmark. Among these, nine isolates belonged to a single K. pneumoniae CTX-M-15 clone with sequence type (ST)16 exhibiting a heat-resistant phenotype. This clone has a multi-hospital occurrence and has also been detected outside Denmark. Horizontal co-transfer of multiple antibiotic resistances, including the CTX-M-15 resistance determinant, and the heat resistance phenotype was observed. Thus, the clpK gene is harbored by different ESBL-producing K. pneumoniae isolates including a clone of ST16 internationally spread. The co-localization of clpK on transferable ESBL-encoding plasmids allowing co-dissemination of multiple drug resistance with bacterial heat resistance is a highly interesting phenomenon that may further complicate the prevention of spreading of certain successful clones of multi-resistant K. pneumoniae.  相似文献   

17.
During active surveillance at the Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT, Palermo, Italy) with the CARBA screening medium, five pairs of Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae and Escherichia coli strains were isolated in each of five colonized patients. In each patient, lateral gene transfer was demonstrated by comparing K. pneumoniae and E. coli strains, both possessing KPC-3, Tn4401a and pKpQIL-IT elements. The isolates were found to be multiclonal by multilocus sequence typing (sequence type (ST) 512 related to ST258, and ST307 belonging to a clonal complex different from the habitual sequence clone ST258 isolated in Italy) and pulsed-field gel electrophoresis. The results of our study highlight the easy transfer of KPC among Enterobacteriaceae colonizing the human intestine, and the active and careful surveillance required to identify and prevent the spread of these multidrug-resistant microorganisms.  相似文献   

18.
In China, Klebsiella pneumoniae carbapenemase (KPC) -producing K. pneumoniae isolates have been identified. However, little is known about the spread and outbreak of KPC-producing enterobacterial pathogens. In this study, 48 non-duplicated KPC-producing isolates were analysed for genetic relatedness by pulsed-field gel electrophoresis (PFGE), antimicrobial susceptibility by E-test, and sequence type (ST) by multilocus sequence typing. S1-PFGE and Southern blot were used for plasmid profiling, and PCR and subsequent sequencing were performed to determine the effects of genetic background on the blaKPC gene. From December 2011 to June 2012, an outbreak of the KPC-2-producing K. pneumoniae was observed. The 48 isolates of K. pneumoniae are categorized into eight PFGE types (A1, A2, A3, A4, B, C, D and E). The predominant pathogens of the outbreak were strains with PFGE types A1, A2 and A3, which all belong to ST11. Furthermore, ST37, ST392 and ST395 KPC-2-producing K. pneumoniae isolates have also been sporadically identified. The blaKPC-2-carrying plasmids vary in size from 30 to 220 kb. The genetic environments of the blaKPC-2 gene for most strains were consistent with the genetic structure of blaKPC-2 on the plasmid pKP048. In conclusion, the dissemination and outbreak of KPC-2-producing K. pneumoniae isolates in this study appeared to be clonal, and ST11 K. pneumoniae was the predominant clone attributed to the outbreak. This is the first study to report the emergence and spread of KPC-producing K. pneumoniae ST392 and ST395 worldwide. Our findings suggest that horizontal transfer of Tn3-based transposons might mediate the spread of blaKPC-2 gene between different K. pneumoniae clones in China.  相似文献   

19.
目的 了解华山医院泛耐药肺炎克雷伯菌株及其流行的特点.方法 收集2006年8月-2009年12月对CLSI推荐常规检测药物均耐药的肺炎克雷们菌临床分离株,共57株.所有菌株都进行药物敏感试验、超广谱β-内酰胺酶(ESBLs)初筛及表型确证试验、改良Hodge试验、等电聚焦电泳,聚合酶链反应及其产物测序、接合试验、肠杆菌基因间重复共有序列PCR(ERIC-PCR)和多位点序列分型(MLST).结果 所有菌株都携带blaKPC-2、blaCTX-M-14、blaSHV12和blaTEM-1及qnrB和aac(6')-I b-cr基因.57株细菌中ST423型5株,MIST ST11型52株.ST423型散发,而ST11型呈医院内流行.57株细菌都对替加环素耐药,对多黏菌素、米诺环素和多西环素部分敏感.结论 本次泛耐药肺炎克雷们流行主要为ST11型菌株;不同的肺炎克雷伯菌株,播散能力不同;检出泛耐药肺炎克雷伯菌时应增加检测药物的种类.
Abstract:
Objective To understand the epidemic characteristics of an outbreak of panresistance Klebsiella pneumoniae occurred between 2006 and 2009 in a university hospital of Shanghai, China. Methods A total of 57 panresistance K. pneumoniae isolates were collected from August 2006 to December 2009.Antibiotic susceptibility of the isolates were determined by Kirby-Bauer disc diffusion method and microbroth dilution (MBD). ESBLs-producing initial screen test and phenotypic confirmatory test and carbapenemase-producing modified Hodge test ( MHT) were performed to detect the resistance phenotype of the isolates. Be-ta-lactamases were studied by IEF, PCR and the product sequencing. While conjugation assay were conducted to understand the transferability of these genes. The genetic relationship between isolates was established by ERIC-PCR and multilocus sequence typing (MLST). Except for the antibiotics recommended by CLSI guideline in the routine test, the other antibiotics were added to find out the effective drugs to treat the infection. Results All 57 isolates were highly resistant to all examined antibiotics. All isolates produced ESBLs and carbapenemase. IEF revealed that each isolate produced four beta-lactamases. All isolates carried blaKPC-2,blaCTX-M-14,blaSHV12,blaTEM-1,qnrB and aac(6') - I b-cr. Forty-four of the 57 (77.2% ) isolates were successful to transfer their resistance genes to E. coli recipient J53 by conjugation assay. By RAPD, all 57 isolates were grouped into two genotypes that were further identified as members of MUST types 423 and 11.Sequence types 423(ST423) only occurred before May 2008 and ST11 occurred (52 isolates) after May 2008. Most of isolates of the outbreak were ST11 (91. 2% ). A part of isolates were susceptive to added antibiotics. Conclusion The outbreak of panresistance K.pneumoniae was caused by those isolates which carried multiple resistant genes. There is a different ability of dissemination between different ST types K. pneumoniae isolate. It was necessary to add the antibiotics to find out the effective drugs to treat the infection.  相似文献   

20.
目的 了解华山医院泛耐药肺炎克雷伯菌株及其流行的特点.方法 收集2006年8月-2009年12月对CLSI推荐常规检测药物均耐药的肺炎克雷们菌临床分离株,共57株.所有菌株都进行药物敏感试验、超广谱β-内酰胺酶(ESBLs)初筛及表型确证试验、改良Hodge试验、等电聚焦电泳,聚合酶链反应及其产物测序、接合试验、肠杆菌基因间重复共有序列PCR(ERIC-PCR)和多位点序列分型(MLST).结果 所有菌株都携带blaKPC-2、blaCTX-M-14、blaSHV12和blaTEM-1及qnrB和aac(6')-I b-cr基因.57株细菌中ST423型5株,MIST ST11型52株.ST423型散发,而ST11型呈医院内流行.57株细菌都对替加环素耐药,对多黏菌素、米诺环素和多西环素部分敏感.结论 本次泛耐药肺炎克雷们流行主要为ST11型菌株;不同的肺炎克雷伯菌株,播散能力不同;检出泛耐药肺炎克雷伯菌时应增加检测药物的种类.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号