首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this functional magnetic resonance imaging (fMRI) study was to identify human brain areas that are sensitive to the direction of auditory motion. Such directional sensitivity was assessed in a hypothesis-free manner by analyzing fMRI response patterns across the entire brain volume using a spherical-searchlight approach. In addition, we assessed directional sensitivity in three predefined brain areas that have been associated with auditory motion perception in previous neuroimaging studies. These were the primary auditory cortex, the planum temporale and the visual motion complex (hMT/V5+). Our whole-brain analysis revealed that the direction of sound-source movement could be decoded from fMRI response patterns in the right auditory cortex and in a high-level visual area located in the right lateral occipital cortex. Our region-of-interest-based analysis showed that the decoding of the direction of auditory motion was most reliable with activation patterns of the left and right planum temporale. Auditory motion direction could not be decoded from activation patterns in hMT/V5+. These findings provide further evidence for the planum temporale playing a central role in supporting auditory motion perception. In addition, our findings suggest a cross-modal transfer of directional information to high-level visual cortex in healthy humans.  相似文献   

2.
Illusory motion can be generated by successively flashing a stationary visual stimulus in two spatial locations separated by several degrees of visual angle. In appropriate conditions, the apparent motion is indistinguishable from real motion: The observer experiences a luminous object traversing a continuous path from one stimulus location to the other through intervening positions where no physical stimuli exist. The phenomenon has been extensively investigated for nearly a century but little is known about its neurophysiological foundation. Here we present images of activations in the primary visual cortex in response to real and apparent motion. The images show that during apparent motion, a path connecting the cortical representations of the stimulus locations is filled in by activation. The activation along the path of apparent motion is similar to the activation found when a stimulus is presented in real motion between the two locations.  相似文献   

3.
Correlations,feature-binding and population coding in primary visual cortex   总被引:1,自引:0,他引:1  
To test the hypothesis that correlated neuronal activity serves as the neuronal code for visual feature binding, we applied information theory techniques to multiunit activity recorded from pairs of V1 recording sites in anaesthetised cats while presenting either single or separate bar stimuli. We quantified the roles of firing rates of individual channels and of cross-correlations between recording sites in encoding of visual information. Between 89 and 96% of the information was carried by firing rates; correlations contributed 4-11% extra information. The distribution across the population of either correlation strength or correlation information did not co-vary systematically with changes in perception predicted by Gestalt psychology. These results suggest that firing rates, rather than correlations, are the main element of the population code for feature binding in primary visual cortex.  相似文献   

4.
Centre-surround interaction in the primary visual cortex (area V1) has been studied extensively using artificial, abstract stimulus patterns, such as bars, gratings and simple texture patterns. In this experiment, we extend the study of centre-surround interaction by using natural scene images. We systematically varied the contrast of natural image surrounds presented outside the classical receptive field (CRF), and recorded neuronal response to a natural image patch presented within the CRF in area V1 of awake, fixating macaques. For the majority of neurons (67 out of 111), the natural image surrounds profoundly modulated, mainly by suppressing, neuronal responses to CRF images. These modulatory effects started at the earliest stage of neuronal responses, and often depended on the contrast and higher-order structures of the surrounds. For 47 out of 67 neurons, randomising the phases of the Fourier spectrum of the natural image surround diminished the centre-surround interaction. Our results suggest that the centre-surround interaction in area V1 can be extended to natural vision, and is sensitive to the higher-order structures of natural scene images, such as image contours.  相似文献   

5.
A number of electrophysiological studies have been conducted in recent years in order to clarify the dynamics of visual motion processing in the human brain. Using a variety of event-related potential (ERP) measures, several parameters such as onset, offset, contrast and velocity have been investigated, while a critical aspect of visual motion, that of direction, has received less attention. Here we used multichannel electroencephalography and distributed source localization to study brain activity for different directions of visual motion using random dot stimuli. Our data reveal differential extrastriate activation at 164–226 ms after motion onset that coded for motion direction with different ERP maps and underlying electrical generators for each tested direction. This activation was paralleled initially (164–186 ms) by a distinct extrastriate activation encoding whether the motion stimulus consisted of directed motion stimuli (as above) or contained undirected incoherent motion (control stimulus). Application of a linear inverse solution localized the brain activity for each tested motion direction to distinct brain regions within the same larger network of extrastriate brain regions. These regions included bilateral temporo-occipital and bilateral parieto-occipital cortex. The present data in healthy subjects are compatible with extrastriate activity that is tuned to different directions of visual motion. This extends previous clinical data and suggests the presence of distributed macroscopic motion direction tuning in primate extrastriate cortex that may complement the classical microscopic motion tuning at the columnar level.  相似文献   

6.
This study assessed the early mechanisms underlying perception of plaid motion. Thus, two superimposed gratings drifting in a rightward direction composed plaid stimuli whose global motion direction was perceived as the vector sum of the two components. The first experiment was aimed at comparing the perception of plaid motion when both components were presented to both eyes (dioptic) or separately to each eye (dichoptic). When components of the patterns had identical spatial frequencies, coherent motion was correctly perceived under dioptic and dichoptic viewing condition. However, the perceived direction deviated from the predicted direction when spatial frequency differences were introduced between components in both conditions. The results suggest that motion integration follows similar rules for dioptic and dichoptic plaids even though performance under dichoptic viewing did not reach dioptic levels. In the second experiment, the role of early cortical areas in the processing of both plaids was examined. As convergence of monocular inputs is needed for dichoptic perception, we tested the hypothesis that primary visual cortex (V1) is required for dichoptic plaid processing by delivering repetitive transcranial magnetic stimulation to this area. Ten minutes of magnetic stimulation disrupted subsequent dichoptic perception for approximately 15 min, whereas no significant changes were observed for dioptic plaid perception. Taken together, these findings suggest that V1 is not crucial for the processing of dioptic plaids but it is necessary for the binocular integration underlying dichoptic plaid motion perception.  相似文献   

7.
Single unit recordings were made from the visual cortex of 5 adult cats. Visual stimuli were used to determine the stimulus orientation and direction of movement preferred by cortical cells. Analysis of the sequence of neurons recorded along each electrode penetration and their direction preferences indicates that neurons preferring similar directions of movement are clustered together in the cortex.  相似文献   

8.
Tata MS  Mason AL  Sutherland RJ 《Neuroreport》2007,18(13):1361-1365
Selective attention modulates brain responses in visual cortex. A common finding, using functional magnetic resonance imaging or event-related potentials, is that responses to attended relative to unattended stimuli are potentiated. We report an exceptional circumstance in a motion-processing paradigm. Participants viewed superimposed stationary and moving dots and were instructed to attend to one or the other subset. Changes in the direction of dot motion triggered an event-related potential over posterior scalp sites, with a prominent negative peak at 200 ms that was larger when attention was directed at the stationary dots. This effect was localized to extrastriate visual cortex and may be due to reflexive effects of attention orienting triggered by unattended peripheral motion.  相似文献   

9.
Peters A  Verderosa A  Sethares C 《Glia》2008,56(11):1151-1161
The effects of age on neuroglial cells have been examined in the primary visual cortices of rhesus monkeys that had been behaviorally tested. The assessment of changes in the neuroglial populations was made on the basis of the frequency of occurrence of profiles of neuroglial cells in semithick sections of osmicated tissue stained with toluidine blue. No changes were found in the numbers of astrocytes and microglial cells with age, but the numbers of oligodendrocytes increased by about 50%. The myelinated nerve bundles at the level of layer 4 were also examined by electron microscopy to assess the effects of age on the nerve fibers. The numbers of nerve fiber profiles showing age-related alterations in their myelin sheaths increase with age. There was also an age-related increase in the frequency of profiles of nerve fibers sectioned through paranodes, indicating that shorter lengths of myelin are being produced by remyelination. These changes in sheaths both correlate significantly with the frequency of oligodendrocyte profiles, suggesting that with age additional oligodendrocytes are required to remyelinate nerve fibers whose sheaths have broken down, probably by death of the original parent oligodendroglial cell. Also the most cognitively impaired monkeys had the greatest numbers of oligodendrocytes, but this is probably a secondary correlation, reflecting the fact that altered myelin slows down the rate of conduction along nerve fibers, which leads to cognitive decline.  相似文献   

10.
The natural environment is dynamic and moving objects become constantly occluded, engaging the brain in a challenging completion process to estimate where and when the object might reappear. Although motion extrapolation is critical in daily life—imagine crossing the street while an approaching car is occluded by a larger standing vehicle—its neural underpinnings are still not well understood. While the engagement of low‐level visual cortex during dynamic occlusion has been postulated, most of the previous group‐level fMRI‐studies failed to find evidence for an involvement of low‐level visual areas during occlusion. In this fMRI‐study, we therefore used individually defined retinotopic maps and multivariate pattern analysis to characterize the neural basis of visible and occluded changes in motion direction in humans. To this end, participants learned velocity‐direction change pairings (slow motion‐upwards; fast motion‐downwards or vice versa) during a training phase without occlusion and judged the change in stimulus direction, based on its velocity, during a following test phase with occlusion. We find that occluded motion direction can be predicted from the activity patterns during visible motion within low‐level visual areas, supporting the notion of a mental representation of motion trajectory in these regions during occlusion.  相似文献   

11.
Information processing in the visual system is shaped by recent stimulus history, such that prolonged viewing of an adapting stimulus can alter the perception of subsequently presented test stimuli. In the tilt‐after‐effect, the perceived orientation of a grating is often repelled away from the orientation of a previously viewed adapting grating. A possible neural correlate for the tilt‐after‐effect has been described in cat and macaque primary visual cortex (V1), where adaptation produces repulsive shifts in the orientation tuning curves of V1 neurons. We investigated adaptation to stimulus orientation in mouse V1 to determine whether known species differences in orientation processing, notably V1 functional architecture and proportion of tightly tuned cells, are important for these repulsive shifts. Unlike the consistent repulsion reported in other species, we found that repulsion was only about twice as common as attraction in our mouse data. Furthermore, adapted responses were attenuated across all orientations. A simple model that captured key physiological findings reported in cats and mice indicated that the greater proportion of broadly tuned neurons in mice may explain the observed species differences in adaptation.  相似文献   

12.
The current study provides strong morphological and physiological evidence for identifying reticular neurons which project to the ipsilateral abducens nucleus. In conjunction with recent work in the alert cat, these neurons are believed to be excitatory and are implicated to play a role in the generation of saccadic and/or vestibular fast phase eye movements.  相似文献   

13.
In the cat primary visual cortex, it is accepted that neurons optimally responding to similar stimulus orientations are clustered in a column extending from the superficial to deep layers. The cerebral cortex is, however, folded inside a skull, which makes gyri and fundi. The primary visual area of cats, area 17, is located on the fold of the cortex called the lateral gyrus. These facts raise the question of how to reconcile the tangential arrangement of the orientation columns with the curvature of the gyrus.In the present study, we show a possible configuration of feature representation in the visual cortex using a three-dimensional (3D) self-organization model. We took into account preferred orientation, preferred direction, ocular dominance and retinotopy, assuming isotropic interaction. We performed computer simulation only in the middle layer at the beginning and expanded the range of simulation gradually to other layers, which was found to be a unique method in the present model for obtaining orientation columns spanning all the layers in the flat cortex. Vertical columns of preferred orientations were found in the flat parts of the model cortex. On the other hand, in the curved parts, preferred orientations were represented in wedge-like columns rather than straight columns, and preferred directions were frequently reversed in the deeper layers. Singularities associated with orientation representation appeared as warped lines in the 3D model cortex. Direction reversal appeared on the sheets that were delimited by orientation-singularity lines. These structures emerged from the balance between periodic arrangements of preferred orientations and vertical alignment of the same orientations. Our theoretical predictions about orientation representation were confirmed by multi-slice, high-resolution functional MRI in the cat visual cortex. We obtained a close agreement between theoretical predictions and experimental observations. The present study throws a doubt about the conventional columnar view of orientation representation, although more experimental data are needed.  相似文献   

14.
To test whether a sufficiently complex visual stimulus causes the consumption of oxygen to rise in the human visual cortex, we used positron emission tomography (PET) to measure the cerebral metabolic rate of oxygen (CMRO2) during visual stimulation in 6 healthy normal volunteers. A yellow-blue checkerboard, reversing its contrast at a frequency of 8 Hz, was presented for a period of 7 min, beginning 4 min before the onset of a 3-min scan. In the baseline condition, subjects fixated a cross-hair from 30 s before until the end of the 3-min scan. The CMRO2 was calculated with the two-compartment weighted integration method (1). The checkerboard minus baseline subtraction yielded statistically significant increases in CMRO2 in the primary (VI) and higher order visual cortices (V4 and V5). The significant CMRO2 increases were detected in these regions in both the group average and in each individual subject.  相似文献   

15.
Effects of normal aging on pre-attentive detection of changes in motion direction were evaluated. Young, middle-aged, and older subjects performed a visual central task while standard and deviant gratings varying in motion direction were presented outside the focus of attention. A greater negativity in the event-related potentials (ERPs) to deviants was observed in all groups at posterior sites within the N2 latency range. Visual mismatch negativity (vMMN) reached its peak between 145 and 165 ms irrespective of age. However, significant age-related changes observed in vMMN mean amplitude may suggest that the pre-attentive visual detection become less efficient in older subjects. This could lead to age-related deficits in switching attention to potentially salient visual changes.  相似文献   

16.
17.
The thalamic input to area 17 in the cat can be divided into at least three parallel pathways, the W, X, and Y. Although the latter two are some of the best studied synaptic connections in the brain, the former remains poorly understood both in structure and in function. By combining light and electron microscopy, we have reconstructed in 3‐D single W axons and described quantitatively the synapses that they form. We have also made a structural comparison of reconstructed synapses from the three visual pathways. Thalamic axons were labeled in vivo by injections of biotinylated dextran amine into the dLGN. W axons originating from C laminae injections arborized in layers 1, 2/3, and 5. Axons that traversed layer 1 supplied a few descending collaterals to layer 2/3, but the most extensive innervation in layer 2/3 was provided by axons ascending from the white matter. Most W boutons formed a single synapse, dendritic spines being the most common target, with dendritic shafts forming the remaining targets. In layer 1, the area of the postsynaptic density of spine synapses (0.16 μm2) was significantly larger than that of layers 2/3 (0.11 μm2) and 5 (0.09 μm2). Synapses from X and Y axons in layer 4 were similar in size to synapses formed by W boutons in layer 1. In layer 1, the main targets of the W axons are likely the apical dendrites of pyramidal cells, so that both proximal and distal regions of pyramidal cell dendritic trees can be excited by the W pathway. J. Comp. Neurol. 516:20–35, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
We are able to judge the direction of movement and orientation of objects because they have contrast-defined edges. However, we are also able to perceive the orientation and direction of movement of stereobars made of random dot stereograms in the absence of contrast-defined edges. We recorded 207 disparity-sensitive cells from visual areas V1 and V2 of two Macaca mulatta monkeys while performing an attentive fixation task. Luminance defined bars and random-dot stereo-defined bars were used to assess direction and orientation selectivity of these cells. Orientation and direction preference for luminance bars and for stereobars showed a statistically significant relationship (r=0.83, P<0.01 for direction; r=0.63, P<0.01 for orientation). However, disparity-sensitive cells from these areas seem to be more sensitive to luminance than to stereobars regarding orientation and direction of movement. Similar results were obtained when the two areas were considered separately. Our results show that cells in areas V1 and V2 of the monkey visual cortex are able to detect the orientation and direction of movement of stereobars in a manner similar to those of luminance-defined bars. This finding is relevant because to detect the direction and orientation of stereobars a comparison between left and right eye inputs is required.  相似文献   

19.
20.
We used functional magnetic resonance imaging to examine the neuroanatomical correlates of visual hallucinations in a patient with a left visual field defect who had suffered bilateral occipital infarction. By cross-correlating the functional magnetic resonance imaging data with the hallucination events, we were able to identify the cerebral activity underlying the hallucinations. Bilateral activation was observed during visual stimulation in the calcarine fissure and the same activation was found medially in the left and right occipital cortex adjacent to the infarcted areas. This pattern of perilesional visual cortex activation is consistent with the suggestion that primary sensory areas may be involved in visual hallucinations after stroke.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号