首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Polysulfone (PSf) membranes that covalently conjugated with aspartic acid (ASP-PSf) were prepared and analyzed for hemocompatability. Compared to PSf or other types of surface-modified PSf membranes, the ASP-PSf membranes had a reduced ability to adsorb protein from either a plasma solution or a mixed solution of albumin, globulin and fibrinogen. This appears to be due to the creation of a hydrophilic surface by the aspartic acid zwitterion immobilized on the ASP-PSf membranes. Furthermore, the analyses of membrane protein adsorption showed that a mixed protein solution recapitulates the cooperative adsorption of proteins that occurs in plasma. We also found that the number of adhering platelets was the lowest on the ASP-PSf membranes and, in general, that platelet adhesion decreased in parallel with fibrinogen adsorption. In summary, aspartic acid immobilized on the ASP-PSf membranes, which have zwitterions with a net zero charge, effectively contributes to the hydrophilic and hemocompatible sites on the surface of the hydrophobic PSf membranes.  相似文献   

2.
We examined plasma protein adsorption and platelet adhesion to polysulfone (PSf) flat membranes coated with Pluronic with varying polyethylene oxide (PEO) block length. Adsorption of albumin, globulin and fibrinogen to Pluronic-coated PSf membranes was independent of plasma dilution when concentrations of human blood plasma above 20% were applied. Increasing coating concentrations of aqueous Pluronic solution resulted in decreased protein adsorption by the PSf membranes. Pluronic F68, which was more hydrophilic than Pluronic L62 or L64 and had 80% of PEO content, was the most effective at suppressing the adsorption of plasma proteins and platelet adhesion to PSf membranes. We developed a mixed protein solution containing human albumin, gamma-globulin and fibrinogen to attempt to mimic the competitive and cooperative binding effects found in plasma. Fibrinogen adsorption from plasma could be recapitulated by the mixed protein solution. The number of platelets adhering to the PSf membranes decreased as the coating concentration of Pluronic solution was increased, and platelet adhesion decreased in parallel with fibrinogen adsorption. These results suggest that the bioinert property of PEO segments in the Pluronic, which is ascribed to their high flexibility in aqueous media, suppresses the adsorption of plasma proteins and platelets to the Pluronic-coated PSf membranes.  相似文献   

3.
Polysulfone (PSf) membranes that covalently conjugated with aspartic acid (ASP-PSf) were prepared and analyzed for hemocompatability. Compared to PSf or other types of surface-modified PSf membranes, the ASP-PSf membranes had a reduced ability to adsorb protein from either a plasma solution or a mixed solution of albumin, globulin and fibrinogen. This appears to be due to the creation of a hydrophilic surface by the aspartic acid zwitterion immobilized on the ASP-PSf membranes. Furthermore, the analyses of membrane protein adsorption showed that a mixed protein solution recapitulates the cooperative adsorption of proteins that occurs in plasma. We also found that the number of adhering platelets was the lowest on the ASP-PSf membranes and, in general, that platelet adhesion decreased in parallel with fibrinogen adsorption. In summary, aspartic acid immobilized on the ASP-PSf membranes, which have zwitterions with a net zero charge, effectively contributes to the hydrophilic and hemocompatible sites on the surface of the hydrophobic PSf membranes.  相似文献   

4.
Platelet adhesion and spreading is suppressed when a poly(2-methoxyethylacrylate) (PMEA) surface is used, compared with other polymer surfaces. To clarify the reason for this suppression, the relationship among the amount of the plasma protein adsorbed onto PMEA, its secondary structure and platelet adhesion was investigated. Poly(2-hydroxyethylmethacrylate) (PHEMA) and polyacrylate analogous were used as references. The amount of protein adsorbed onto PMEA was very low and similar to that absorbed onto PHEMA. Circular dichroism (CD) spectroscopy was applied to examine changes in the secondary structure of the proteins after adsorption onto the polymer surface. The conformation of the proteins adsorbed onto PHEMA changed considerably, but that of proteins adsorbed onto PMEA differed only a little from the native one. These results suggest that low platelet adhesion and spreading are closely related to the low degree of the denaturation of the protein adsorbed onto PMEA. PMEA could be developed as a promising material to produce a useful blood-contacting surface for medical devices.  相似文献   

5.
Protein adsorption and platelet adhesion properties of polyurethane biomaterials are important considerations for blood-contacting applications. Although the presence of ionic groups on the surface of biomaterials is believed to influence their blood response, their exact role is not known. The objective of this work was to study the protein adsorption and platelet adhesion properties of ion-containing polyurethane biomaterials. Thus, we prepared polyurethanes that contained ions either on the soft segment or hard segment and investigated their in vitro protein adsorption and platelet adhesion. The presence of ions increased the amount of adsorbed proteins and adhered platelets on the synthesized polyurethanes. Whereas albumin and lysozyme adsorption were independent of the location of the ions (soft vs. hard segments), fibrinogen adsorption was strongly dependent on the location of the ions. Platelet adhesion, on the other hand, was found to be less dependent on the location of the ions within the polyurethane structure. This is the first evidence to unequivocally demonstrate the exact role of ions on protein adsorption and platelet adhesion. Taken together, our study suggests that in the absence of known biocompatible chains such as polyethyleneoxide, ion-containing polyurethanes do not demonstrate improved blood compatibility. Therefore, we conclude that ion incorporation into polyurethanes may not be a viable approach to design polyurethane biomaterials for blood-contacting applications.  相似文献   

6.
Protein adsorption and platelet adhesion properties of polyurethane biomaterials are important considerations for blood-contacting applications. Although the presence of ionic groups on the surface of biomaterials is believed to influence their blood response, their exact role is not known. The objective of this work was to study the protein adsorption and platelet adhesion properties of ion-containing polyurethane biomaterials. Thus, we prepared polyurethanes that contained ions either on the soft segment or hard segment and investigated their in vitro protein adsorption and platelet adhesion. The presence of ions increased the amount of adsorbed proteins and adhered platelets on the synthesized polyurethanes. Whereas albumin and lysozyme adsorption were independent of the location of the ions (soft vs. hard segments), fibrinogen adsorption was strongly dependent on the location of the ions. Platelet adhesion, on the other hand, was found to be less dependent on the location of the ions within the polyurethane structure. This is the first evidence to unequivocally demonstrate the exact role of ions on protein adsorption and platelet adhesion. Taken together, our study suggests that in the absence of known biocompatible chains such as polyethyleneoxide, ion-containing polyurethanes do not demonstrate improved blood compatibility. Therefore, we conclude that ion incorporation into polyurethanes may not be a viable approach to design polyurethane biomaterials for blood-contacting applications.  相似文献   

7.
8.
Protein adsorption and platelet adhesion from human plasma on polysulfone (PSf) membranes modified with 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer were studied. The modification was carried out by blending of the MPC polymer in the PSf. The amount of protein adsorbed on the PSf/MPC polymer blend membrane was significantly decreased with an increase in the composition of the blended MPC polymer. The distribution of the specific proteins adsorbed on the membrane surface was also determined by a gold-colloid immunoassay. Albumin, gamma-globulin and fibrinogen were observed on every membrane surface after contact with plasma. However, in the case of the blended membrane, the density of the adsorbed proteins decreased compared with that of original PSf membrane. That is, the MPC polymer blended in the membrane could function as a protein-adsorption-resistant additive. The number of platelets adhered on the PSf membrane was reduced, and change in the morphology of adherent platelets was also suppressed by the modification with the MPC polymer. Therefore, the PSf/MPC polymer blend membrane had improved blood compatibility compared with the PSf membrane.  相似文献   

9.
Human plasma fibrinogen adsorption and platelet adhesion to polystyrene.   总被引:5,自引:0,他引:5  
The purpose of this study was to further investigate the role of fibrinogen adsorbed from plasma in mediating platelet adhesion to polymeric biomaterials. Polystyrene was used as a model hydrophobic polymer; i.e., we expected that the role of fibrinogen in platelet adhesion to polystyrene would be representative of other hydrophobic polymers. Platelet adhesion was compared to both the amount and conformation of adsorbed fibrinogen. The strategy was to compare platelet adhesion to surfaces preadsorbed with normal, afibrinogenemic, and fibrinogen-replenished afibrinogenemic plasmas. Platelet adhesion was determined by the lactate dehydrogenase (LDH) method, which was found to be closely correlated with adhesion of 111In-labeled platelets. Fibrinogen adsorption from afibrinogenemic plasma to polystyrene (Immulon I(R)) was low and <10 ng/cm2. Platelet adhesion was absent on surfaces preadsorbed with afibrinogenemic plasma when the residual fibrinogen was low enough (<60 microg/mL). Platelet adhesion was restored on polystyrene preadsorbed with fibrinogen-replenished afibrinogenemic plasma. Addition of even small, subnormal concentrations of fibrinogen to afibrinogenemic plasma greatly increased platelet adhesion. In addition, surface-bound fibrinogen's ability to mediate platelet adhesion was different, depending on the plasma concentration from which fibrinogen was adsorbed. These differences correlated with changes in the binding of a monoclonal antibody that binds to the Aalpha chain RGDS (572-575), suggesting alteration in the conformation or orientation of the adsorbed fibrinogen. Platelet adhesion to polystyrene preadsorbed with blood plasma thus appears to be a strongly bivariate function of adsorbed fibrinogen, responsive to both low amounts and altered states of the adsorbed molecule.  相似文献   

10.
A series of oligomaltose surfactant polymers were prepared by the simultaneous coupling of hydrophilic maltolactone [of 2(M2), 7(M7), or 15(M15) glucose units] and hydrophobic N-(hexanoyloxy)succinimide (Hex) groups to the amino groups of a poly(vinyl amine) backbone. The surfactants were characterized by FTIR and 1H-NMR spectroscopies for purity and composition. Contact-angle and AFM measurements confirmed full monolayer adsorption for all surfactants on a model surface, highly oriented pyrolitic graphite, while full coverage was observed on polyethylene only for PVAm (M7:Hex) due to the optimal M7:Hex ratio and Hex chain density. On graphite, protein resistance increased with increasing coating thickness from 81.4 to 85.8 to 95.8% for the M2, M7, and M15 surfactants, respectively. Additionally, static platelet adhesion on all three surfactants dropped substantially to 15% (M2), 17% (M7), and 16% (M15)compared to glass (adhesion normalized to 100%) and a polyurethane (24%) surface. Protein- and platelet-resistant properties of the controlled oligomaltose layers are discussed by analysis of molecular modeling, oligomaltose and hexanoyl chain densities, and surfactant stability.  相似文献   

11.
We prepared polymers having a phospholipid polar group, poly[ω-methacryloyloxyalkyl phosphorylcholine (MAPC)-co-n-butyl methacrylate(BMA)], as new biomedical materials and evaluated their blood compatibility with attention to protein adsorption and platelet adhesion. The total amount of proteins adsorbed on the polymer surface from human plasma was determined, and the distribution of adsorbed proteins on the plasma-contacting surface was analyzed. The amount of proteins adsorbed on every poly(MAPC-co-BMA) was small compared with that observed on polymers without the phospholipid polar group. However, there was no significant difference in the amount of adsorbed proteins on the poly(MAPC-co-BMA) even when the methylene chain length between the phospholipid polar group and the backbone in the MAPC moiety was altered. Platelet adhesion on the polymer surface from a platelet suspension in a buffered solution was evaluated with and without plasma treatment on the surface. When a rabbit platelet suspension was brought into contact with the poly(BMA) surface after treatment with plasma, many platelets adhered and aggregated. However, a reduced amount of platelet adhered on the poly(BMA) was found in the case of direct contact with the platelet suspension. On the other hand, the poly(MAPC-co-BMA)s could inhibit platelet adhesion under both conditions. Based on these results, it can be concluded that the proteins adsorbed on the surface play an important role in determining the platelet adhesion and suppression of the protein adsorption on the surface, which is one of the most significant ways of inhibiting platelet adhesion.  相似文献   

12.
The effect of surface wettability on fibrinogen adsorption, platelet adhesion and platelet activation was investigated using self-assembled monolayers (SAMs) containing different ratios of longer chain methyl- and shorter chain hydroxyl-terminated alkanethiols (C15CH3 vs. C11OH) on gold. Protein adsorption studies were performed using radiolabeled human fibrinogen (HFG). Platelet adhesion and activation studies with and without pre-adsorbed fibrinogen, albumin and plasma were assessed using scanning electron microscopy (SEM) and a glutaraldehyde-induced fluorescence technique (GIFT). Results demonstrated a linear decrease of HFG adsorption with the increase of OH groups on the monolayer (increase of the hydrophilicity). Platelet adhesion and activation also decrease with increase of hydrophilicity of surface. Concerning SAMs pre-immersed in proteins, fibrinogen adsorption was related with high platelet adhesion and activation. The passivant effect of albumin on platelet adhesion and activation was only demonstrated on SAMs contained C11OH. When all the blood proteins are present (plasma) platelet adhesion was almost absent on SAMs with 65% and 100% C11OH. This could be explained by the higher albumin affinity of the SAMs with 65% C11OH and the lower total protein adsorption associated with SAMs with 100% C11OH.  相似文献   

13.
The protein film adsorbed at an artificial surface ultimately affects platelet adhesion and activation. This study examines the role of fibrinogen in platelet adhesion at the surface of crosslinked polypropylene glycol (PPG)/polyglycidoxy propyl methyl siloxane (PGPMS) networks which contain polyethylene glycol monomethyl ether (PEGME) chains. These crosslinked networks were produced by reacting the epoxy groups of PGPMS with the hydroxyl groups of the polyethers. PEGME chains were attached covalently to the network at only one end while PPG chains were attached at both ends. The incorporation of PEGME resulted in a substantial reduction in fibrinogen adsorption as compared to the model network (PPG + PGPMS only), but the expected concomitant decrease in platelet adhesion was not observed.  相似文献   

14.
Use of platelet aggregometry in selection of compatible platelet donors.   总被引:2,自引:0,他引:2  
To determine if platelet aggregometry was useful in selecting compatible platelet donors, six patients who had become refractory to random platelets were studied. Serum from the patient was added to citrated platelet-rich plasma from the prospective donor in a standard aggregometry system. Serial aggregometry studies revealed no platelet aggregation unless the refractory state had been reached. At that time positive aggregation occurred only between the poorly matched pairs. A correlation between platelet aggregation and HL-A histocompatibility was noted. Family members with negative aggregation were selected as donors, and their platelets were able to provide consistently satisfactory increments in the platelet count of the recipient who was refractory to random donors. In contrast, platelets from family members who exhibited positive aggregation failed to do so. These findings suggest that platelet aggregometry can be used to select compatible platelet donors.  相似文献   

15.
Ten specially synthesized polyurethanes (PUs) were used to investigate the effects of surface properties on platelet adhesion. Surface composition and hydrophilicity, fibrinogen (Fg) and von Willebrand's factor (vWf) adsorption, monoclonal anti-Fg binding, and platelet adhesion were measured. PUs preadsorbed with afibrinogenemic plasma or serum exhibited very low platelet adhesion, while adhesion after preadsorption with vWf deficient plasma was not reduced, showing that Fg is the key plasma protein mediating platelet adhesion under static conditions. Platelet adhesion to the ten PUs after plasma preadsorption varied greatly, but was only partially consistent with Fg adsorption. Thus, while very hydrophilic PU copolymers containing PEG that had ultralow Fg adsorption also had very low platelet adhesion, some of the more hydrophobic PUs had relatively high Fg adsorption but still exhibited lower platelet adhesion. To examine why some PUs with high Fg adsorption had lower platelet adhesion, three monoclonal antibodies (mAbs) that bind to sites in Fg thought to mediate platelet adhesion were used. The antibodies were: M1, specific to gamma-chain C-terminal; and R1 and R2, specific to RGD containing regions in the alpha-chain N- and C-terminal, respectively. Platelet adhesion was well correlated with M1 binding, but not with R1 or R2 binding. When these mAbs were incubated with plasma preadsorbed surfaces, they blocked adhesion to variable degrees. The ability of the R1 and R2 mAbs to partially block adhesion to adsorbed Fg suggests that RGD sites in the alpha chain may also be involved in mediating platelet adhesion and act synergistically with the C-terminal of the gamma-chain.  相似文献   

16.
Thrombus formation on a foreign surface is a complicated process, involving many factors. However, there is little doubt that a foreign surface adsorbs plasma proteins upon blood contact and that the nature of this adsorbed layer may determine the mechanism of platelet adhesion and aggregation. The adhesion and aggregation of platelets play an important role in the initial events of thrombus formation on a foreign surface. In this work, adsorption studies using human blood plasma were done on several polymer surfaces. Some drugs which prevent platelet adhesion were utilized to verify the proposed mechanism for platelet adhesion which includes glycosyl transferase reaction. Also, adsorption and release of fatty acid salts, including fatty acid-bonded albumin, were investigated at different polymer interfaces. It is postulated that adsorbed fatty acid salts are released from the surface upon contact with plasma to form a high local concentration of fatty acid, and that this fatty acid suspension would cause platelet aggregation at the interface.  相似文献   

17.
A major complication of coronary stenting is in-stent restenosis (ISR) due to thrombus formation. We hypothesized that locally released curcumin from coronary stent surface would inhibit ISR due to thrombus formation because of antithrombosis of curcumin. In the present work, curcumin-eluting polylactic acid-co-glycolic acid (PLGA) films were fabricated and their properties in vitro were investigated. The in vitro platelet adhesion and activation, as well as protein adsorption on curcumin-loading PLGA films were investigated to evaluate the blood compatibility of curcumin-eluting films. The structure of curcumin-eluting PLGA film and control was examined by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy indicating that the peaks of curcumin did not shift in curcumin-eluting films. The results of contact angle and surface free energy indicated that loading curcumin in PLGA would make PLGA become more hydrophilic, which contributed to the increase of polar fraction of surface free energy. With the increase of curcumin in films, platelets adhering to the curcumin-eluting films decreased significantly. The number of activation platelets decreased after incorporating curcumin in PLGA films. Loading curcumin in PLGA film can markedly reduce the fibrinogen adsorption. All results indicated that incorporating curcumin in PLGA film can improve the blood compatibility of PLGA films. It can be used to fabricate drug-eluting stent to prevent thrombosis formation.  相似文献   

18.
Previous studies have showed that radio-frequency plasma deposited tetraglyme coatings greatly reduced fibrinogen adsorption (Gamma(Fg)) from highly diluted plasmas (0.1 and 1%) and subsequent platelet adhesion under static conditions. In this study, the protein resistant properties of tetraglyme were re-examined with high-concentration plasma, and subsequent platelet adhesion was measured under both static and flow conditions. The resistance of tetraglyme to vWf adsorption (Gamma(vWf)) and the role of vWf in platelet adhesion under flow were also investigated. Gamma(Fg) and Gamma(vWf) were measured with (125)I radiolabeled proteins. Flow studies were done at shear rates of 50 or 500 s(-1) by passing a platelet/red cell suspension through a GlycoTech flow chamber. When adsorbed from a series of increasing plasma concentrations, the adsorption of both proteins to tetraglyme increased steadily, and did not show a peak at intermediate dilutions, i.e., there was no Vroman effect. When plasma concentration was less than 10%, the tetraglyme surface was highly nonfouling, exhibiting ultralow Gamma(Fg) (less than 5 ng/cm(2)) and extremely low platelet adhesion under both static and flow conditions. However, when the adsorption was done from 100% plasma, Gamma(Fg) was much higher ( approximately 85 ng/cm(2)), indicating that tetraglyme surface may not be sufficiently protein-resistant in the physiological environment. To correlate platelet adhesion under flow with Gamma(Fg) and Gamma(vWf), a series of tetraglyme surfaces varying in ether content and protein adsorption was created by varying deposition power. On these surfaces, platelet adhesion at low shear rate depended only on the amount of Gamma(Fg), but under high shear, both Gamma(Fg) and Gamma(vWf) affected platelet adhesion. In particular, it was found that Gamma(vWf) must be reduced to less than 0.4 ng/cm(2) to achieve ultra low platelet adhesion under high shear.  相似文献   

19.
20.
M Amiji  K Park 《Biomaterials》1992,13(10):682-692
Fibrinogen adsorption and platelet adhesion on to dimethyldichlorosilane-treated glass and low-density polyethylene were examined. The surfaces were treated with poly(ethylene glycol) and poly(ethylene oxide)/poly(propylene oxide)/poly(ethylene oxide) triblock copolymers (Pluronics). Poly(ethylene glycol) could not prevent platelet adhesion and activation, even when the bulk concentration for adsorption was increased to 10 mg/ml. Pluronics containing 30 propylene oxide residues could not prevent platelet adhesion and activation, although the number of ethylene oxide residues varied up to 76. However, Pluronics containing 56 propylene oxide residues inhibited platelet adhesion and activation, even though the number of ethylene oxide residues was as small as 19. Fibrinogen adsorption on the Pluronic-coated surfaces was reduced by more than 95% compared to the adsorption on control surfaces. The ability of Pluronics to prevent platelet adhesion and activation was mainly dependent on the number of propylene oxide residues, rather than the number of ethylene oxide residues. The large number of propylene oxide residues was expected to result in tight interaction with hydrophobic dimethyldichlorosilane-treated glass and low-density polyethylene surfaces and thus the tight anchoring of Pluronics to the surfaces. The presence of 19 ethylene oxide residues in the hydrophilic poly(ethylene oxide) chains was sufficient to repel fibrinogen and platelets by the mechanism of steric repulsion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号