首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The rapid development in digital acquisition technology in radiography has not been accompanied by information regarding optimum radiographic technique for use with newly developed systems. Three of the most common technologies for digital radiographic examinations of the chest are flat panel amorphous Silicon Caesium Iodide systems (FPD), amorphous Selenium drums (DSD) and photostimulable storage phosphor computed radiography (CR). Published data on the effect of X-ray beam energy on image quality and patient dose when using these digital image acquisition devices are reviewed. It is important that radiographers are aware of optimum kVp selection for these systems, particularly for the commonly performed chest examination.  相似文献   

2.
The purpose of this work was to examine the effects of relationship functions between diagnostic image quality and radiation dose on the governing equations for image acquisition parameter variations in X-ray imaging. Various equations were derived for the optimal selection of peak kilovoltage (kVp) and exposure parameter (milliAmpere second, mAs) in computed tomography (CT), computed radiography (CR), and direct digital radiography. Logistic, logarithmic, and linear functions were employed to establish the relationship between radiation dose and diagnostic image quality. The radiation dose to the patient, as a function of image acquisition parameters (kVp, mAs) and patient size (d), was used in radiation dose and image quality optimization. Both logistic and logarithmic functions resulted in the same governing equation for optimal selection of image acquisition parameters using a dose efficiency index. For image quality as a linear function of radiation dose, the same governing equation was derived from the linear relationship. The general equations should be used in guiding clinical X-ray imaging through optimal selection of image acquisition parameters. The radiation dose to the patient could be reduced from current levels in medical X-ray imaging.  相似文献   

3.
Digital radiography (DR) has become integral to modern diagnostic radiology. One of the earliest forms of DR, computed radiography (CR) using storage phosphors, has established itself as the mainstay of DR-based diagnostic imaging over the past 20 years. More recently, flat-panel DR systems based on solid state X-ray detectors with integrated, large-area, active-matrix readout electronics are promising further improvements in clinical workflow and image quality. Despite CR's longevity, innovations continue to be made. New developments in CR screen technologies, like structured (needle) screens, and new scanner concepts based on line-at-a-time reading promise major improvements in image quality (comparable to that of flat-panel systems), system through-put and physical size, at a cost comparable to that of today's systems. Thus, despite the advent of flat-panel acquisition systems, there will still be an important role for CR in the foreseeable future. After a brief review of the current state of CR technology, this paper will explore several of these new CR developments and present some examples of their potential clinical impact.  相似文献   

4.
Solid-state, digital radiography (DR) detectors, designed specifically for standard projection radiography, emerged just before the turn of the millennium. This new generation of digital image detector comprises a thin layer of x-ray absorptive material combined with an electronic active matrix array fabricated in a thin film of hydrogenated amorphous silicon (a-Si:H). DR detectors can offer both efficient (low-dose) x-ray image acquisition plus on-line readout of the latent image as electronic data. To date, solid-state, flat-panel, DR detectors have come in two principal designs, the indirect-conversion (x-ray scintillator-based) and the direct-conversion (x-ray photoconductor-based) types. This review describes the underlying principles and enabling technologies exploited by these designs of detector, and evaluates their physical imaging characteristics, comparing performance both against each other and computed radiography (CR). In standard projection radiography indirect conversion DR detectors currently offer superior physical image quality and dose efficiency compared with direct conversion DR and modern point-scan CR. These conclusions have been confirmed in the findings of clinical evaluations of DR detectors. Future trends in solid-state DR detector technologies are also briefly considered. Salient innovations include WiFi-enabled, portable DR detectors, improvements in x-ray absorber layers and developments in alternative electronic media to a-Si:H.  相似文献   

5.
Navigation in diagnosis and therapy   总被引:7,自引:0,他引:7  
Image-guided navigation for surgery and other therapeutic interventions has grown in importance in recent years. During image-guided navigation a target is detected, localized and characterized for diagnosis and therapy. Thus, images are used to select, plan, guide and evaluate therapy, thereby reducing invasiveness and improving outcomes. A shift from traditional open surgery to less-invasive image-guided surgery will continue to impact the surgical marketplace. Increases in the speed and capacity of computers and computer networks have enabled image-guided interventions. Key elements in image navigation systems are pre-operative 3D imaging (or real-time image acquisition), a graphical display and interactive input devices, such as surgical instruments with light emitting diodes (LEDs). CT and MRI, 3D imaging devices, are commonplace today and 3D images are useful in complex interventions such as radiation oncology and surgery. For example, integrated surgical imaging workstations can be used for frameless stereotaxy during neurosurgical interventions. In addition, imaging systems are being expanded to include decision aids in diagnosis and treatment. Electronic atlases, such as Voxel Man or others derived from the Visible Human Project, combine a set of image data with non-image knowledge such as anatomic labels. Robot assistants and magnetic guidance technology are being developed for minimally invasive surgery and other therapeutic interventions. Major progress is expected at the interface between the disciplines of radiology and surgery where imaging, intervention and informatics converge.  相似文献   

6.
STUDY OBJECTIVE: The aim of this study was to determine whether the accuracy of diagnosis of a spectrum of chest pathology was affected by the imaging technique used, and to compare conventional film/screen, hard copy computed (phosphor plate) radiography (CR) and soft copy CR (PACS) images. MATERIALS AND METHODS: For each of 44 patients who had a CT examination of the thorax, PA and lateral chest radiographs were produced using conventional film, hard copy CR and soft copy PACS images. Five radiologists independently scored all images for the presence of abnormalities. The data were analysed in two stages using the result of the CT scan as the reference standard diagnosis: firstly, to investigate differences in abnormality scores between image modalities and observers using ROC analysis; secondly, to investigate the agreement of the diagnoses with the reference standard by the analysis of kappa scores. RESULTS: The ROC analyses and comparison of kappa scores showed no differences between image modalities (P=0.72, P=0.87), but highly significant differences between observers (P<0.001, P=0.003). CONCLUSION: The detection of chest lesions did not vary between conventional film, CR hard copy and PACS soft copy images. For all three image types, there were statistically significant differences between observers.  相似文献   

7.
It has been proposed that the imaging workup of trauma patients be accelerated by omitting the initial chest radiography (CR) and directly performing a computed tomography (CT); however, the baseline CR is then lacking. The purpose of this study was to assess if coronal thick reconstructions generated from chest CT could present an adequate alternative for CR. Sixty trauma patients underwent bedside CR and multidetector row chest CT in the emergency room. The image quality of thoracic anatomical structures, the diagnostic accuracy for chest pathology, and the depiction of indwelling devices were assessed on both modalities. Main pulmonary arteries and perihilar bronchi were equally visualized with both modalities. Central bronchi, retrocardial lung parenchyma, diaphragm, descending aorta, and vertebral pedicles were better visualized on thick CT reconstructions, whereas peripheral lung vessels were better depicted on CR (p<0.05). The accuracy to delineate various pathological findings did not differ between both modalities, except for a higher sensitivity to diagnose bronchial cuffing on CR (p<0.05). The location of indwelling devices was similarly and correctly depicted with both modalities. Coronal thick CT reconstructions provide a similar image quality and diagnostic accuracy compared with CR. These reconstructions may serve as an equivalent baseline image in trauma patients in whom emergency radiological evaluation has to be accelerated.  相似文献   

8.
PURPOSE: To evaluate image quality and dose for abdominal imaging techniques that could be used as part of a computed tomographic (CT) urographic examination: screen-film (S-F) radiography or computed radiography (CR), performed with moving and stationary grids, and CT scanned projection radiography (CT SPR). MATERIALS AND METHODS: An image quality phantom underwent imaging with moving and stationary grids with both a clinical S-F combination and CR plate. CT SPR was performed with six CT scanners at various milliampere second and kilovolt peak settings. Entrance skin exposure (ESE); spatial, contrast, and temporal resolutions; geometric accuracy; and artifacts were assessed. RESULTS: S-F or CR images, with either grid, provided image quality equivalent to that with the clinical standard, S-F with a moving grid. ESE values for both S-F and CR were 435 mR (112.2 microC/kg [1 mR = 0.258 microC/kg]) with a moving grid and 226 mR (58.3 microC/kg) with a stationary grid. All CT SPR images provided inferior spatial resolution compared with S-F or CR images. High-contrast objects generated substantial artifacts on CT SPR images. Compared with S-F, CR and CT SPR provided improved resolution of small low-contrast objects. The contrast between iodine and soft-tissue-mimicking structures on CT SPR images acquired at 80 kVp was twice that at 120 kVp. CT SPR images with acceptable noise levels required a midline ESE value of approximately 300 mR (77.4 microC/kg) at 80 kVp. CONCLUSION: S-F and CR provided better spatial resolution than did CT SPR. However, CT SPR provided improved low-contrast resolution compared with S-F, at exposures comparable to those used for S-F or CR.  相似文献   

9.
The introduction of fusion of functional and anatomical imaging modalities into the field of endocrinology led to a major breakthrough in diagnosis, staging, and follow-up of patients with endocrine tumors. The management of endocrine tumors is based on a wide variety of conventional techniques, including computed tomography, ultrasound, or magnetic resonance imaging, and on scintigraphic functional techniques, associated with unique uptake and transport mechanisms and with the presence of high density of membrane receptors on some of these tumors. Anatomical modalities provide accurate detection and localization of morphological abnormalities, whereas nuclear medicine studies reflect the pathophysiological status of the disease process. Lack of structural delineation and relatively low contrast hamper the precise anatomical localization of the abnormal functional findings in the presence of potential concurrent foci related to the physiological biodistribution of the radiotracer or to processes unrelated to the evaluated disease entity. The notion that anatomical high-resolution and functional imaging data act as complementary methods led to various combination techniques of these modalities. However, coregistration of the functional and anatomical data after the acquisition of the 2 imaging modalities on separate machines, in different sessions, fails to provide accurate alignment of data, and the mathematical modeling is too cumbersome to be used on a routine basis. In contrast, hybrid imaging devices of single-photon emission computed tomography/computed tomography in a single gantry enable the sequential acquisition of the two modalities, with subsequent merging of data into a composite image display. These hybrid studies have led to a revolution in the field of imaging, providing clinically relevant information that is not apparent on separate images. The present review evaluates the contribution of the integrated single-photon emission computed tomography/computed tomography technology to image analysis and management of patients with endocrine tumors.  相似文献   

10.
Computed radiography (CR) is emerging as a digital imaging modality for use in conventional radiography. An advantage of CR over film-screen systems is the separation of image acquisition, processing and display. Selection of many different image display characteristics are possible. The system is also able to alter or enhance image details after the radiographic examination has been completed.  相似文献   

11.
A technique for simultaneously acquiring a conventional film-screen radiographic image and a digital computed radiography (CR) image with a single x-ray exposure is described. Measurements of image contrast, spatial resolution, and signal-to-noise ratios demonstrate that a modified film cassette in which the first intensifier screen has been replaced with a CR imaging plate permits dual-image, single-exposure imaging with only nominal degradation in film and CR image quality relative to the two standard image counterparts. This technique may be used to acquire matched image pairs for research or as a way to provide full-size conventional film images in the clinical environment, while retaining the advantages offered by computed radiography systems.  相似文献   

12.
IntroductionNeonates are a particularly vulnerable patient group with complex medical needs requiring frequent radiographic examinations. This study aims to compare computed radiography (CR) and direct digital radiography (DDR) portable imaging systems used to acquire chest x-rays for neonates within incubators.MethodsAn anthropomorphic neonatal chest phantom was imaged under controlled conditions using one portable machine but captured using both CR and DDR technology. Other variables explored were: image receptor position (direct and incubator tray), tube current and kV. All other parameters were kept consistent. Contrast-to-noise ratio (CNR) was measured using ImageJ software and dose-area-product (DAP) was recorded. Optimisation score was calculated by dividing CNR with the DAP for each image acquisition.ResultsThe images with the highest CNR were those acquired using DDR direct exposures and the images with lowest CNR were those acquired using CR with the image receptor placed within the incubator tray. This is also supported by the optimisation scores which demonstrated DDR direct produced the optimal combination with regards to CNR and radiation dose. The CNR had a mean increase of 50.3% when comparing DDR direct with CR direct respectively. This was also evident when comparing DDR and CR for in-tray acquisitions, with CNR increasing by a mean of 43.5%. A mean increase of 20.4% was seen in CNR when comparing DDR tray exposures to CR direct.ConclusionDDR direct produced images of highest CNR, with incubator tray reducing CNR for both CR and DDR. However, DDR tray still had better image quality compared to CR direct.Implications for practiceWhere possible, DDR should be the imaging system of choice for portable examinations on neonates owing to its superior image quality at lower radiation dose.  相似文献   

13.
This study investigated computed radiography (CR) image processing to determine whether variation exists within and among CR imaging plate readers. Photostimulable imaging plates were exposed using a phantom test tool and processed in 4 CR readers located in diverse settings in an urban academic medical center. Research results indicate daily variation of S-numbers within individual CR readers did not exceed tolerance limits, although over the 3-week study period, evidence of S-number variation within individual CR readers was mixed. In addition, S-number variability among multiple CR readers was found to be statistically significant. Although the cause of the variability remains unknown, evidence of variability among multiple CR readers indicates a need for systematic quality control.  相似文献   

14.
In this work strategies for the robust localization of parallel resonant circuits are investigated. These strategies are based on the subtraction of two images, which ideally differ in signal intensity at the positions of the devices only. To modulate their signal amplification, and thereby generate the local variations, the parallel resonant circuits are alternately detuned and retuned during the acquisition. The integration of photodiodes into the devices permits their fast optical switching. Radial and spiral imaging sequences are modified to provide the data for the two images in addition to those for a conventional image in the same acquisition time. The strategies were evaluated by phantom experiments with stationary and moving catheter-borne devices. In particular, rapid detuning and retuning during the sampling of single profiles is shown to lead to a robust localization. Moreover, this strategy eliminates most of the drawbacks usually associated with image-based tracking, such as low temporal resolution. Image-based tracking may thus become a competitive (if not superior) alternative to projection-based tracking of parallel resonant circuits.  相似文献   

15.
Compared with planar imaging, ventilation/perfusion scintigraphy performed with single-photon emission computed tomography (SPECT) has a greater sensitivity and specificity, greater accuracy, improved reproducibility, and a lower number of inconclusive reports in the detection of pulmonary embolism. Despite these improvements, there are several challenges that must be overcome for the transition from planar imaging to SPECT imaging to be successful, including a lack of familiarity with 3D imaging of the lungs by some reporting specialists, the selection of a ventilation agent appropriate for SPECT acquisitions, and a different approach in the image reporting. The transition to SPECT imaging can be facilitated by generating planar-like images from the SPECT data, with which many reporting specialists are more familiar. SPECT ventilation/perfusion acquisition times are generally equal to or shorter than conventional planar imaging, studies are easier for technologists to acquire, and modern computing provides several new approaches to image processing and display.  相似文献   

16.
PURPOSE: To evaluate the imaging characteristics of an amorphous silicon flat-panel detector (FPD) for digital chest radiography. MATERIALS AND METHODS: The 41 x 41-cm digital FPD is constructed on a single monolithic glass substrate with a structured cesium iodide scintillator layer and an amorphous silicon thin-film transistor array for image readout. Basic imaging characteristics of the FPD and associated image processing system were assessed on acquired images, including linearity, repeatability, uniformity of response, modulation transfer function (MTF), noise power spectrum, detective quantum efficiency (DQE), contrast sensitivity, and scatter content. Results with the FPD system were compared to those with a storage phosphor computed radiography (CR) system. RESULTS: Images obtained with the FPD demonstrated excellent uniformity, repeatability, and linearity, as well as MTF and DQE that were superior to those with the storage phosphor CR system. The contrast and scatter content of images acquired with the FPD were equivalent to those acquired with the storage phosphor system. CONCLUSION: The FPD provides radiographic images with excellent inherent physical image quality.  相似文献   

17.
Trauma patients at risk for, or suspected of, spinal injury are frequently transported to hospital using full spinal immobilisation. At the emergency department, immobilisation is often maintained until radiological work-up is completed. In this study, we examined how these devices influence radiation exposure and noise, as a proxy for objective image quality. Conventional radiographs (CR) and computer tomography (CT) scans were made using a phantom immobilised on two types of spineboard and a vacuum mattress and using two types of headblocks. Images were compared for radiation transmission and quantitative image noise. In CR, up to 23 % and, in CT, up to 11 % of radiation were blocked by the devices. Without compensation for the decreased transmission, noise increased by up to 16 % in CT, depending on the device used. Removing the headblocks led to a statistically significant improvement in transmission with automatic exposure control (AEC) enabled. Physicians should make an informed decision whether the increased radiation exposure outweighs the risk of missing a clinically significant injury by not making a CR or CT scan. Manufacturers of immobilisation devices should take radiological properties of their devices into account in the development and production process.  相似文献   

18.
RATIONALE AND OBJECTIVES: The American College of Radiology Imaging Network is participating in the National Lung Screening Trial, a large, multicenter, randomized controlled trial, comparing multidetector helical computed tomography (MDCT) versus chest radiography (CXR) in screening for lung cancer. Because the threshold for detection of disease is an inherent function of image quality, and consistent image quality is necessary to track changes in suspicious findings, our purpose was to develop an image quality control (QC) program across all clinical sites for both modalities. MATERIALS AND METHODS: The primary goals of the QC program include standardization of imaging protocols, certification of imaging equipment, and ongoing, periodic evaluation of the equipment calibration and image quality. Minimum standards for equipment and standardized cross-platform acquisition protocols are achieved via radiologist and physicist attestation forms and web-distributed technique charts, respectively. Imaging equipment performance standards are implemented through an initial machine certification process that includes equipment calibration. Ongoing assessment of equipment performance and calibration, as well as adherence to established imaging protocols. is accomplished via periodic submission of calibration records and phantom images. Participant-specific image acquisition parameters are entered into a web-based centralized database and variations from established protocols are automatically flagged for review. Participant radiation dose can be estimated from the image acquisition parameters applied to the imaging equipment calibration measurements. A radiologist visual review committee also evaluates participant images for diagnostic quality. Data are collected from 23 independent centers, representing 14 models of MDCT scanners from four manufacturers, and CXR systems that include film-screen, computed radiography, and direct digital radiography systems. RESULTS: Widespread imaging protocol variation in extant clinical practice-as well as variability in equipment technology, image acquisition parameters, manufacturer terminology, and user interface-have required careful standardization as a prerequisite to trial participation and ongoing image QC. Acceptable ranges for image acquisition parameters have been refined to accommodate continuously evolving equipment platforms and the scope of participant size and body habitus. CONCLUSION: Standardization of imaging protocols is a critical component of image-based clinical trials, predicated on ongoing dialogue between sites and a centralized review committee.  相似文献   

19.
《Radiography》2007,13(2):89-94
A range of digital image acquisition devices exists in diagnostic radiology. This study compares contrast performance of two such systems: an amorphous Silicon/caesium iodide (a-Si:CsI) based flat panel (DR) digital chest radiography system and a computed radiography (CR) system. Images of a contrast detail resolution phantom were acquired at a range of radiation doses. Three observers assessed all hardcopy images using a four-alternative forced choice observer perception technique. Contrast detail performance was calculated and low contrast performance quantified.The DR system demonstrated significantly better low contrast performance and potential dose savings of up to 75% compared to the CR system. Threshold levels of contrast detail resolution were defined and levels of under- and over-exposure, compared to the threshold level, were highlighted. Both systems were noise limited at lower exposures and latitude limited at higher exposures. The results demonstrate that the DR system should perform better than the CR system under typical clinical conditions relevant to chest radiography particularly for the detection of low contrast details such as lung metastases or pneumothoraces.  相似文献   

20.
Modern neonatal incubators incorporate an X-ray tray device into the mattress support structure to facilitate patient examination with minimal disturbance and distress. However, the usual method of examination is to place the image plate directly underneath the baby. Users often cite radiological reasons for not using X-ray trays but modern quantitative evidence is lacking. This work looks at the technical and clinical aspects of imaging neonates in incubators and the impact that these may have in determining the imaging protocol. A number of hospitals were surveyed to determine their current method of examination and the reasons for their preference. Experimental measurements of the radiological impact of using (or not using) the X-ray tray were performed for a range of neonatal incubators. The average dose to the image plate was 5.9 microGy (range 5.4-6.4 microGy) for the "plate on mattress" method and 3.0 microGy (2.0-3.8 microGy) when using the tray--a 49% reduction owing to the mattress support materials. However, when using a computed radiography (CR) imaging system, the image quality differences were marginal. Survey results indicated that nurses preferred to use the tray but that radiographers were reluctant. We conclude that incubator manufacturers could do much to improve the radiological performance of their equipment and we offer recommendations. We also conclude that, with appropriate nurse and radiographer training and the advent of CR imaging systems, use of X-ray tray facilities may optimize imaging of the neonate in the incubator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号