首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A O Wong  J P Chang  R E Peter 《Endocrinology》1992,130(3):1201-1210
Previously, we have demonstrated that ip injection of apomorphine, a nonselective dopamine (DA) agonist, increases serum GH levels in the goldfish, suggesting a possible role of DA in GH regulation. In the present study, the effects of DA on GH release in the goldfish were further characterized using an in vitro perifusion system for pituitary fragments. DA increased GH release in a dose-dependent manner with an ED50 of 0.26 +/- 0.06 microM. SKF38393, a DA D1 agonist, mimicked the GH-releasing effect of DA with an ED50 of 0.41 +/- 0.12 microM. Stereoselectivity consistent with mammalian DA D1 systems was demonstrated for the GH response to SKF38393; only the (+)- but not (-)-enantiomer of SKF38393 induced a dose-dependent GH release. Two other D1 agonists, SKF77434 and SKF82958, were also found to have GH-releasing activity. In contrast, high doses (up to 1 microM) of the DA D2 agonists, bromocriptine and LY171555, did not affect basal GH levels. The receptor specificity for DA-stimulated GH release was further investigated by using D1 and D2 antagonists; the D1 antagonists SCH23390 and SKF83566 completely abolished the GH response to DA or the D1 agonist SKF38393, whereas the D2-specific antagonists domperidone and (-)-sulpiride were not effective in this respect. Taken together, the present study demonstrates that DA is stimulatory to GH release from the pituitary of goldfish, and its action is mediated through receptors resembling the mammalian DA D1 receptors. The apparent similarities of the DA D1 receptor pharmacology between the goldfish and the mammals also indicate that D1 receptor is highly conserved during vertebrate evolution.  相似文献   

2.
Incubation of cultured goldfish pituitary cells with 10 nM to 1 microM apomorphine (APO), a non-selective dopamine agonist, increased growth hormone (GH) release in a dose-dependent manner. GH release was also stimulated in a dose-dependent manner by 0.1 nM to 1 microM salmon gonadotropin (GTH)-releasing hormone (sGnRH), sGnRH analog, and chicken GnRH-II (cGnRH-II). The magnitude of GH responses to 1 microM GnRHs were less than that to 1 microM APO. GH responses to 10 nM to 1 microM APO were not significantly increased by the addition of GnRHs. Static incubations with 0.1 nM to 1 microM of the dopamine D1 agonist SKF38393 did not alter basal GTH release, or the GTH responses to 10 nM sGnRH and cGnRH-II. In contrast, the D1 agonist SKF38393 significantly increased basal GH secretion with maximal stimulation achieved at 100 nM concentration, and GH responses to 10 nM sGnRH and 10 nM cGnRH-II were enhanced by simultaneous applications of SKF38393. Incubation with 1 microM of the D2 agonist LY171555 decreased basal GTH release. Additions of 0.1 nM to 1 microM LY171555 caused dose-dependent decreases in the GTH secretion induced by 10 nM sGnRH and cGnRH-II. In contrast, basal and GnRH-stimulated GH release were not affected by coincubations with LY171555. The D1 antagonist SKF83566 and the D2 antagonist domperidone, at 1 microM concentrations, specifically blocked the D1 agonist SKF38393-stimulated increase in GH release and the D2 agonist LY171555-induced depression of GTH secretion, respectively. In cell column perifusion studies, the D1 agonist SKF38393 at 0.1 nM to 1 microM had no effects on GTH release, but significantly elevated GH secretion rates when applied at 0.1-1 microM concentrations. The GH release induced by 1 microM SKF38393 was significantly reduced by simultaneous perifusion with 1 microM of the D1 antagonist SKF83566. Treatments with SKF38393 and/or SKF83566 did not affect net GTH and GH responses to sGnRH challenges. In contrast, perifusion with 0.1 and 1 microM of the D2 agonist LY171555 depressed basal as well as sGnRH-induced GTH responses. These effects of 1 microM LY171555 were completely blocked by simultaneous applications of 1 microM domperidone, a D2 antagonist. Treatments with these D2 selective drugs did not affect basal and sGnRH-stimulated GH release. These results indicate that in cultured goldfish pituitary cells, activation of dopamine D1- and D2-like receptors specifically stimulates GH release and inhibits both basal and stimulated GTH secretion, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
TRH increases cytosolic-free calcium ([Ca2+]i) by activating phospholipase C(PL-C), which induces phosphoinositol hydrolysis, leading to Ca2+ mobilization from inositol trisphosphate (IP3) sensitive stores, and by increasing Ca2+ influx. Increases in [Ca2+]i stimulate PRL secretion. We investigated the effects of U-73122, an aminosteroid inhibitor of PL-C dependent processes, on TRH-stimulated second messenger pathways and on PRL secretion in GH3 rat pituitary cells. [Ca2+]i was monitored by Indo-1 fluorescence, and IP3 and metabolites separated on ion exchange columns. In Ca(2+)-free buffer, [Ca2+]i was 96 +/- 6 nM and increased to 323 +/- 23 nM (P less than 0.001) after TRH (100 nM). U-73122 dose dependently inhibited the TRH effect (IC50 = 967 nM; complete inhibition at 3-5 microM). Subsequent addition of monensin (100 microM) increased [Ca2+]i from 107 +/- 4 to 142 +/- 4 nM (P < 0.001), confirming our previous findings of a non-TRH regulated Ca2+ pool in GH3 cells. Pretreatment (15 sec) with U-73122 partly inhibited the TRH effect on [Ca2+]i; complete suppression occurred with 70 sec of pretreatment. An inactive analog (U-73343) had no inhibitory effect at 5 microM. U-73122 acted noncompetitively, as the mean maximum velocity (expressed as percent increase in [Ca2+]i after TRH) was reduced from 225 to 91 while the Michaelis-Menten constant for TRH was unchanged (15.4 vs. 13.8 nM, n = 3). Of note, U-73122, at 3-5 microM, increased basal [Ca2+]i from 109 +/- 5 to 120 +/- 5 nM (P less than 0.001). In 1.3 mM Ca2+ buffer containing nifedipine (1 microM) and verapamil (50 microM), similar effects of U-73122 (5 microM) were observed on basal and TRH-stimulated [Ca2+]i. IP3, IP2, and IP1 increased to 241 +/- 12%, 148 +/- 23%, and 167 +/- 39% of control, 30 sec after TRH (100 nM); these responses were prevented by 1 microM U-73122. At 5 microM, U-73122 also significantly increased IP3 levels. TRH (100 nM) increased 4-h PRL secretion from 16.3 +/- 1.4 to 27.6 +/- 3.2 ng/well (P less than 0.05). U-73122 (5 microM) increased basal PRL secretion to 35.9 +/- 3.2 ng/well (P less than 0.05), but abolished the TRH effect. In contrast, U-73343 (with Ca2+ channel blockers) did not inhibit the TRH effect on PRL (control: 24.3 +/- 2.1; TRH: 51.0 +/- 6.3 ng/well).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Dopamine (DA) and pituitary adenylate cyclase-activating polypeptide (PACAP) stimulate goldfish growth hormone (GH) release via cAMP- and Ca(2+)-dependent pathways while DA also utilizes NO. In this study, identified goldfish somatotropes responded to sequential applications of PACAP and the DA D1 agonist SKF38393 with increased intracellular Ca(2+) levels ([Ca(2+)](i)), indicating that PACAP and DA D1 receptors were present on the same cell. A native goldfish brain somatostatin (gbSS-28) reduced SKF38393-stimulated cAMP production and PACAP- and NO donor-elicited GH and [Ca(2+)](i) increases, but not PACAP-induced cAMP production nor the GH and [Ca(2+)](i) responses to forskolin, 8-bromo-cAMP and SKF38393. gbSS-28 might inhibit PACAP-induced GH release by interfering with PACAP's ability to increase [Ca(2+)](i) in a non-cAMP-dependent manner. However, DA D1 receptor activation bypassed gbSS-28 inhibitory effects on cAMP production and NO actions via unknown mechanisms to maintain a normal [Ca(2+)](i) response leading to unhampered GH release.  相似文献   

5.
The ability of low concentrations of dopamine (DA) to stimulate the secretion of prolactin (PRL) was examined in perifused or monolayer cultures of anterior pituitary cells. In cultures perifused with media containing 100 nM DA, changing the DA concentration to either 1 or 100 pM caused a significant dose-dependent stimulatory PRL secretory response within 6 min when compared to the PRL secretory response to removal of DA altogether. Picomolar concentrations of DA caused a biphasic PRL secretory response. This response is characterized by an immediate increase in the rate of PRL secretion similar to that seen when the cells were treated with 100 nM thyrotropin-releasing hormone followed by a decrease in the rate of PRL secretion to levels comparable to cells receiving media alone. In a monolayer culture system DA, at concentrations between 10 nM and 1.0 pM, caused significant stimulation of PRL secretion relative to media alone. Maximal stimulation occurred at nanomolar concentrations of DA (approximately 60% greater than control). Although the D2 agonists, bromocriptine and 2-(N-phenethyl-N-propyl)-amino-5-hydroxytetralin hydrochloride (PPHT) caused significant (p less than 0.05) inhibition of PRL secretion at nanomolar concentrations and above, neither had stimulatory activity. The D1 agonists, SKF 38393 and SKF 82958, had no effect on PRL secretion when tested at 0.1 pM to 1 microM. These data suggest that DA not only inhibits PRL secretion in vitro, but also stimulates PRL secretion at relatively low concentrations. Stimulation is mediated by a DA receptor which is neither recognized by D2 nor D1 agonists, suggesting a possible third DA receptor subtype.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
alpha-Adrenergic receptors are present on the plasma membrane of normal anterior pituitary cells and alpha-adrenergic agonists may play a role in the secretion of corticotropin (ACTH) and thyrotropin (TSH). However, alpha-adrenergic involvement in prolactin (PRL) secretion is uncertain. We have therefore examined this question in the PRL-secreting clonal rat pituitary tumor-derived GH4C1 cells. Norepinephrine (NE), an alpha-adrenergic agonist, had no effect on basal PRL secretion but abolished thyrotropin-releasing hormone (TRH)-induced PRL secretion in a dose-dependent manner (EC50 100 nM). NE also significantly suppressed the TRH-stimulated rise in [Ca2+]i. Phentolamine (PA), a non-selective alpha-adrenergic antagonist, reversed the inhibitory effect of NE on both the TRH-stimulated PRL secretion and [Ca2+]i rise. NE did not inhibit the rise in PRL secretion or [Ca2+]i induced by depolarizing 30 mM K+, 30% hyposmolarity or BAY K-8644, a specific L-type Ca2+ channel agonist. The inhibitory effect of NE on TRH-induced PRL and [Ca2+]i changes was also present when Ca2+ influx was prevented by removing medium Ca2+ or by blocking L-type Ca2+ channels with 2 microM nifedipine. The TRH-stimulated first-phase rise in [Ca2+]i in GH4C1 cells is believed to result primarily from release of sequestered Ca2+ from an intracellular pool through the activation of inositol 1,4,5-trisphosphate (IP3) and this [Ca2+]i spike stimulates PRL secretion. Our data thus suggest that GH4C1 cells have alpha-adrenergic receptors and that alpha-adrenergic agonists either suppress IP3 generation or block IP3 release of sequestered intracellular Ca2+.  相似文献   

7.
Dopamine causes natriuresis and diuresis via activation of D1-like receptors located in the renal proximal tubules. It is reported that this response to dopamine results from the inhibition of Na,H-exchanger and Na,K-ATPase. Earlier studies have suggested a role of protein kinase A (PKA) in the inhibition of Na,H-exchanger, however, the effect of dopamine or the dopamine receptor subtype responsible for the stimulation of PKA has not been reported. Present study was designed to examine the effect of dopamine and D1-like receptor agonist, SKF 38393, on the stimulation of PKA activity in rat renal proximal tubules. Dopamine and SKF 38393 (1 nM - 1 microM) caused stimulation of PKA activity, an effect which was antagonized by a D1-like receptor antagonist, SCH 23390 (10 microM). Stimulation of PKA activity was also seen with forskolin and di-butyryl cAMP. We also observed that dopamine and SKF 38393 inhibited Na,H-exchanger activity in the proximal tubules. This response was blocked by SCH 23390 and Rp-cAMPS triethylamine, a selective inhibitor of PKA. Similarly, forskolin and di-butyryl cAMP inhibited Na,H-exchanger activity. The data provide direct evidence showing that dopamine, through the activation of D1-like receptors stimulates PKA activity which in turn inhibits Na,H-exchanger in the proximal tubules.  相似文献   

8.
Although purine nucleosides have been shown to regulate the secretion of several peptide and steroid hormones, effects on pituitary hormone release have not been reported. We show here that in the clonal GH4C1 pituitary cell line maximal concentrations of adenosine (greater than or equal to 50 microM) inhibited PRL and GH secretion by 40%. Adenosine deaminase abolished the inhibitory effect of adenosine but not that of SRIF or (-)N6(R-2-phenylisopropyl)adenosine (PIA), a nonhydrolyzable adenosine analog. Furthermore, this enzyme increased basal secretion by 50%, and analysis of the incubation medium by HPLC demonstrated that the cells secreted biologically effective concentrations of adenosine. These results indicate that adenosine produced in culture tonically inhibits hormone release. In other target cells, adenosine inhibition is mediated by two types of binding sites: an extracellular Ri-site requiring an intact ribose moiety or an intracellular P-site requiring an intact purine ring. Four lines of evidence indicate that in GH4C1 cells, adenosine acts at an Ri-site. PIA, an Ri-site-specific agonist, was a potent inhibitor of hormone release (ED50 = 30 nM). Theophylline, an Ri-site antagonist, competitively inhibited the action of PIA (Ki = 2.4 microM). 3) 2'5'-Dideoxyadenosine, a P-site-specific agonist, did not inhibit PRL release even at a concentration of 1 mM. 4) Dipyridamole, an adenosine uptake inhibitor, did not reduce adenosine inhibition. In addition to its effect on basal secretion, PIA inhibited stimulation of hormone release by vasoactive intestinal peptide and TRH. PIA also reduced vasoactive intestinal peptide-stimulated cAMP accumulation by 75%, consistent with its action to inhibit adenylate cyclase via Ri receptors in other targets. Since PIA inhibition of PRL release and cAMP accumulation was not additive with the effects of SRIF and carbamyl choline, these inhibitors may act via a common rate-limiting step. Our results demonstrate that adenosine activates an Ri-type of adenosine receptor in GH4C1 cells and that the production of adenosine under normal culture conditions causes autocrine inhibition of secretion.  相似文献   

9.
The effect of dopamine on rat gastric motility.   总被引:2,自引:0,他引:2  
The inhibitory mechanism of dopamine (DA) on rat gastric motility was investigated in association with DA receptors. Gastric movement was assessed according to the method of Jacoby et al and was expressed with the system of Ludwick et al. (1968). DA inhibited gastric movement in both the corpus and antrum in a dose-dependent manner. Domperidone, a specific antagonist of DA2 receptor, suppressed DA-induced inhibition of gastric movement in a dose-dependent manner. SCH23390, a specific antagonist of DA1 receptor did not affect DA-induced inhibition of gastric movement. LY171555, a specific agonist of DA2 receptor, inhibited gastric movement in both the corpus and antrum in a dose-dependent manner. SKF38393, a specific agonist of DA1 receptor, did not affect gastric movement. These results indicate that DA plays an important role in the inhibitory regulation of gastric motility, through DA2 receptor but not DA1 receptor.  相似文献   

10.
The transient removal of dopamine (DA) selectively potentiated the prolactin (PRL) releasing action of thyrotropin-releasing hormone (TRH) but not vasoactive intestinal peptide (VIP). Consistent with these findings, the PRL-stimulating actions of agents which activated the Ca2+/protein kinase C second messenger pathway but not the adenylate cyclase system were also potentiated. In the current study we have extended these findings to determine the second messenger system mediating the potentiating action of the removal of DA. Dispersed anterior pituitary cells from E2-treated Sprague-Dawley rats were cultured on plastic coverslips. Cells tonically superfused with DA (500 nM were challenged with TRH (100 nM) 20 min after no additional treatment or a 10-min treatment with 8-Br-cyclic adenosine monophosphate (8-Br-cAMP), the Ca2+ ionophore A23187,12-O-tetradecanoyl-phorbol-13-acetate (TPA), TRH, or VIP. The potentiation of the TRH response was compared to the 4- to 5-fold potentiation observed following the removal of DA for 10 min 8-Br-cAMP at the concentration used (500 microM) was unable to alter the basal rate of PRL release, but, as VIP (500 nM), potentiated 2- to 3-fold the PRL-releasing action of TRH. A prior administration of TRH (100 nM) did not affect the responsiveness of the cells to a second challenge with TRH 20 min later. Both A23187 (20 microM) and TPA (5 or 50 nM) induced a sustained rise in the rate of PRL release. TPA-treated cells showed an increased responsiveness to TRH, whereas A23187-treated cells did not.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
We investigated the type of receptors involved in the mechanism of action of dopamine on corticosteroid secretion from the frog interrenal (adrenal) gland, using the in-vitro perifusion technique. Exposure of dispersed interrenal cells to 50 microM dopamine for 20 min had a biphasic effect on corticosterone and aldosterone secretion, i.e. a transient stimulation followed by an inhibitory phase. Repeated administration of equimolar pulses of dopamine, given at 150-min intervals, resulted in an enhancement of corticosteroid secretion followed by a subsequent blockade of the stimulatory phase of the response. In contrast, the dopamine-evoked inhibition of corticosteroid release did not show any sensitization or desensitization phenomena. Infusion of repeated pulses of the D1 receptor agonist SKF38393 (32 microM) stimulated corticosteroid release and mimicked the sensitization-desensitization phenomenon induced by dopamine. Repeated administration of the D2 receptor agonist LY171555 (50 microM) resulted in a reproducible inhibition of corticosterone and aldosterone secretion. These results suggested the presence of two different receptors for dopamine, i.e. D1 and D2, on frog adrenocortical cells, responsible respectively for the stimulatory and inhibitory effects of dopamine on steroid secretion. However, bromocriptine (50 microM) and CV205-502 (50 microM), two other D2 receptor agonists, had no effect on corticosteroid release. In addition, several classical D2 receptor antagonists failed to block the effect of dopamine on steroidogenesis. It was also observed that (-)sulpiride, a specific D2 antagonist, did not alter dopamine-induced inhibition of inositol phosphate formation. On the other hand, dopamine and the selective D1 and D2 antagonists SKF38393 and LY171555 did not affect the formation of cyclic AMP by interrenal tissue. Taken together, these data indicate that dopamine directly regulates corticosteroid secretion from frog adrenocortical cells. The effect of dopamine is not coupled to adenylate cyclase activity but is probably mediated through the phosphoinositide-turnover pathway. The pharmacological characteristics of the receptors involved in the mechanism of action of dopamine clearly differ from those of the D1 and D2 subtypes previously described in mammals.  相似文献   

12.
We have examined the effect of acetylcholine (ACh) pretreatment on the thyrotropin-releasing hormone (TRH) induced prolactin gene expression in GH3 cells, a rat pituitary tumor cell line. Prolonged exposure (greater than 6 h) to ACh enhanced the TRH-induced prolactin mRNA accumulation in a time- and concentration-dependent manner while ACh by itself did not affect the basal prolactin mRNA levels appreciably. Maximal augmentation of the TRH-induced prolactin mRNA accumulation was obtained when cells were pretreated with 10(-5) M ACh for 24 h. The activation was mimicked by carbachol and oxotremorine and was blocked by the simultaneous presence of atropine. Preincubation of GH3 cells with pertussis toxin abolished the augmenting effect of ACh. These results indicate that prolonged exposure to muscarinic receptor agonists may enhance the TRH-stimulated prolactin mRNA expression and a pertussis toxin sensitive G-protein may be involved.  相似文献   

13.
The perifusion technique was used to investigate the action of diazepam (DZ), a benzodiazepine molecule known to compete for TRH receptor binding in rat pituitary, on TRH-induced TSH and GH release. The release kinetics for the two hormones from quartered pituitaries were measured in response to a 6-min pulse of TRH (10 nM), without or with DZ addition for a period of 30 min before and during the TRH pulse, plus an additional 15-min period. The dynamic patterns of TSH and GH release in response to TRH were characterized by a rapid increase in hormone release, declining slowly over the next 20 min. The rate of release represented 2.98 +/- 0.02 (+/- SE) and 1.75 +/- 0.06 times the corresponding basal level for TSH and GH, respectively, when evaluated over the first 15 min of the response to TRH. Addition of increasing doses of DZ suppressed the stimulatory effect of TRH in a dose-related manner, with an ID50 of 3 nM for both TSH and GH. The maximal effect of DZ was obtained with a concentration of 10 nM for both hormones. Ro 15-1788 (100 nM), a selective antagonist of the central type of benzodiazepine-binding sites (added to the perifusion system 30 min before DZ and then during the whole period of DZ perifusion), completely abolished (P less than 0.01) the inhibitory effect of DZ (10 nM) on the TRH-induced TSH and GH responses. When added alone before the TRH pulse, Ro 15-1788 had no effect on the TSH response to TRH. In contrast, PK 11,195 (100 nM), a selective antagonist of the nonneuronal benzodiazepine-binding sites, was unable to abolish the inhibitory action of DZ on TRH-stimulated TSH release. In addition, the effects of four other types of benzodiazepine (flurazepam, chlordiazepoxide, midazolam, and medazepam), all tested at a 10-nM concentration, corroborated these findings. Furthermore, DZ inhibition of the TSH response was nullified by picrotoxin (1 microM), but not by bicuculline (1 microM), two gamma-aminobutyric acid antagonists that had no effect, by themselves, on this response. For comparison, the effect of DZ (10 nM) was also tested on the release of GH in response to human GH-releasing factor-(1-44)-NH2 (10 nM) and was found to be ineffective.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Incubation, for 30 min, of striatal slices with 10 microM dopamine, 10 microM apomorphine, or 10 microM SKF 38393 decreased dopamine-stimulated adenylate cyclase activity by 50-60%. This loss in dopamine-stimulated enzyme activity appears to be mediated by a persistent occupancy of recognition sites of the D-1 receptor because: (i) at 10 microM, SKF 38393, a selective D-1 receptor agonist, facilitates desensitization and Ly 141865, a selective D-2 receptor agonist, fails to elicit desensitization of dopamine-dependent adenylate cyclase; and (ii) preincubation with dopamine in the presence of 1 microM haloperidol but not 1 microM sulpiride curtails the desensitization of dopamine-dependent adenylate cyclase. In dopamine-desensitized striatal slices of the Kd for N-propylnorapomorphine binding is increased but the content of membrane-bound calmodulin and the activation of adenylate cyclase by NaF and cholera toxin are decreased significantly. In striatal slices incubated with dopamine for prolonged time periods the coupling of the GTP-binding protein with adenylate cyclase and dopamine recognition sites may be impaired and the content of membrane-bound calmodulin is decreased.  相似文献   

15.
The release of GnRH evoked by dopamine (DA) was studied in the GT1 GnRH neuronal cell lines. Superfusion of GT1-1 cells with DA or the D1-dopaminergic agonist SKF 38393, but not with the D2-dopaminergic agonist bromocriptine, increased 2-fold the amplitude of the spontaneous GnRH pulses. Treatment with DA for 30 min also stimulated GnRH release from static cultures of GT1-7 cells. This effect was mimicked by the selective D1-dopaminergic agonist SKF 38393 and blocked by the D1-dopaminergic antagonist SCH 23390. However, the D2-dopaminergic agonist bromocriptine had no effect, and the stimulation of GnRH release by DA was not blocked by the D2-dopaminergic antagonist spiroperidol. In parallel to the stimulation of GnRH release, DA also rapidly increased (first observed at 120 sec) in a dose-dependent fashion, the intracellular concentration of cAMP in isobutylmethylxanthine-pretreated GT1-7 cells. The pharmacological profile of the increase in cAMP was identical to that for GnRH release. The cAMP responses to DA and norepinephrine were lost after long term treatment with SKF 38393, i.e. heterologous desensitization. GT1 cells also express the mRNA for the dopamine- and cAMP-regulated phospho-protein (mol wt, 32,000; DARPP-32) only seen in cells expressing DA D1-receptors. These results demonstrate a direct stimulatory effect of DA on GnRH release via DA D1-receptors positively coupled to adenylate cyclase in GnRH neuronal cell lines.  相似文献   

16.
The present experiments were designed to test whether the previously reported excitatory and inhibitory effects of dopamine (DA) on the secretion of oxytocin (OT) in lactating rats are exerted at different DA receptor subtypes, and to examine whether one or both of these effects might occur at the level of the posterior pituitary. The basal release of OT in nonsuckled, lactating rats was increased after intravenous administration of the D-1 DA agonist SKF 38393, and this effect, as well as the suckling-induced release of OT, was prevented by treatment with the D-1 DA antagonist SCH 23390, suggesting that DA may exert an important stimulatory influence over OT secretion through an action at the D-1 DA receptor subtype. A small stimulation of basal PRL release was also produced by SKF 38393, but blockade of the D-1 DA receptor did not prevent the suckling-induced release of this hormone. Stimulation of the D-2 DA receptor with PPHT had no effect on basal OT release in nonsuckled rats, but this agent, as well as another D-2 DA agonist, bromocriptine, prevented the suckling-induced release of both OT and PRL. The inhibitory effect of D-2 DA receptor stimulation was blocked by the D-2 DA antagonist domperidone, which increased the basal release of both hormones when given alone. These observations confirm previous findings that inhibitory effects of DA on suckling-induced OT release are mediated through activation of the D-2 DA receptor. To test whether either dopaminergic effect occurs at the level of neurosecretory endings in the neurointermediate lobe (NIL), the stalk-NIL was isolated from lactating rats and perifused in vitro. The stalk-NIL junction was electrically stimulated for 4 s, and the effects of selective D-1 DA and D-2 DA agonists and antagonists on the basal and electrically evoked release of OT and vasopressin (VP) was assessed using the two stimulation (S2/S1) paradigm. Electrical stimulation produced marked increases in release of both neural lobe peptides in a Ca(2+)-dependent manner, and the electrically evoked release of OT, but not VP, was enhanced by the opiate antagonist naltrexone (10 microM). Consistent with the in vivo results, SKF-38393 (20 microM) produced a small, but statistically significant, increase in electrically induced OT release, while SCH 23390 (20 microM) was without significant effect. Neither drug affected the basal release of OT or the basal or electrically stimulated release of VP.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Chlordiazepoxide (CDE) has been shown to antagonize the effects of TRH to stimulate the hydrolysis of phosphoinositides and elevate cytoplasmic free calcium in rat pituitary tumor (GH3) cells. Herein, we show that CDE inhibits TRH stimulation of PRL secretion and that the effect of CDE to antagonize TRH action is caused by its ability to compete with TRH for binding to receptors on GH3 cells. We also use CDE to explore whether continued receptor occupancy is required for prolonged stimulation of cellular responses. CDE had no effect on basal PRL secretion, but caused a dose-dependent inhibition of TRH-induced PRL secretion. CDE decreased the affinity of TRH binding to intact GH3 cells without affecting the maximum binding capacity. As shown previously, CDE had no effect on phosphoinositide metabolism, which was monitored because it appears to be a mechanism for signal transduction by TRH, and when added simultaneously with TRH, caused a dose-dependent inhibition of TRH-induced phosphoinositide metabolism. When CDE was added to cells 2.5 or 5 min after TRH, CDE rapidly terminated the stimulation by TRH of phosphoinositide hydrolysis, shown as inhibition of the continued formation of inositol phosphates and inositol, and of the decrease in phosphoinositides. Lastly, when cells were stimulated with 50 nM TRH, then exposed to 100 microM CDE, and finally to 1000 nM TRH, inositol phosphate formation was stimulated, then inhibited, and then restimulated. These data demonstrate that CDE acts as a competitive antagonist of TRH action on GH3 cells by competing with TRH for binding to its receptor and that continued stimulation by TRH of phospholipase C-mediated hydrolysis of phosphoinositides is tightly coupled to receptor occupancy.  相似文献   

18.
The major mechanism underlying the neuroleptic action of the tridecapeptide neurotensin (NT) appears to be an interaction with dopamine receptor mechanisms based on biochemical binding and behavioral experiments. In vivo microdialysis was used in conscious rats to investigate the effects of local perfusion with NT on the sensitivity of striatal dopamine D1 and D2 receptors for their selective agonists by monitoring extracellular dopamine, 3,4-dihydroxyphenylacetic acid, homovanilic acid, and gamma-aminobutyric acid levels in the awake unrestrained male rat. Perfusion with NT (10 nM) counteracted the inhibitory effects of the dopamine D2 agonist pergolide (500 nM) on extracellular levels of dopamine and gamma-aminobutyric acid. In contrast, NT (10 mM) significantly enhanced the reduction of extracellular striatal levels of dopamine after perfusion with the D1 agonist SKF 38393 (5 microM), and this combined treatment also resulted in a significant increase in the extracellular striatal levels of gamma-aminobutyric acid. These results provide in vivo evidence that NT regulates central dopamine transmission by reducing pre-and postsynaptic dopamine D2 and enhancing D1 receptor sensitivity possibly through an antagonistic NT receptor-D2 receptor interaction. This heteroregulation has the potential to substantially increase the plasticity within the dopamine synapse.  相似文献   

19.
The inhibitory mechanism of dopamine (DA) on rat gastric motility was investigated in association with DA receptors. Gastric movement was assessed according to the method of Jacoby et al and was expressed with the system of Ludwick et al. (1968). DA inhibited gastric movement in both the corpus and antrum in a dose-dependent manner. Domperidone, a specific antagonist of DA2 receptor, suppressed DA-induced inhibition of gastric movement in a dose-dependent manner. SCH23390, a specific antagonist of DA1 receptor did not affect DA-induced inhibition of gastric movement. LY171555, a specific agonist of DA2 receptor, inhibited gastric movement in both the corpus and antrum in a dose-dependent manner. SKF38393, a specific agonist of DA1 receptor, did not affect gastric movement. These results indicate that DA plays an important role in the inhibitory regulation of gastric motility, through DA2 receptor but not DA1 receptor.  相似文献   

20.
The effects of gamma-aminobutyric acid (GABA) on the spontaneous and TRH-induced TSH release were investigated in vitro on perifused rat pituitaries. The dynamic pattern of TSH release was measured in response to a 6-min pulse of TRH (10 nM) with or without GABA addition. GABA had no effect on spontaneous TSH release but exhibited a dual effect on TSH-stimulated release according to the dose (as calculated by the induced-basal ratio): a potentiation of the TSH response to TRH at the lowest concentrations tested (less than or equal to 10 nM) and an inhibition for GABA concentrations equal or higher than 100 nM. The GABA potentiation was mimicked by muscimol (10 microM) and isoguvacine (10 nM) but not by baclofen (1 microM). Bicucullin (1 microM) or picrotoxin (1 microM) added 15 min before GABA was unable to reverse the GABA potentiation of the TSH response, although SR 95103 (1 and 10 microM), a specific GABA A antagonist, partially or totally antagonized this response. Diazepam (7 nM) was able to potentiate the TSH response by 216% when GABA was added to the system at a concentration (60 nM) which does not modify by itself the TSH response. The inhibitory effect of GABA (100 nM) was completely abolished by bicucullin (1 microM), by picrotoxin (1 microM), and by SR 95103 (1 microM). Picrotoxin not only blocked the inhibitory action of GABA but significantly (P less than 0.05) potentiated the TSH response to TRH. Our data suggest a dual GABA-ergic control of TRH-stimulated TSH release directly on the pituitary, probably mediated by two different kinds of GABA receptors: a GABA A receptor site mediating the inhibitory effect and a nonclassical GABA A receptor site of higher affinity for its stimulatory action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号