首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Acetaminophen (APAP) overdose is the most frequent cause of adult acute liver failure. Susceptibility or resistance to APAP toxicity is most likely accounted for by the interplay of several factors. One factor important in multiple different chronic liver diseases that may play a role in APAP toxicity is elevated hepatic iron. Hereditary hemochromatosis is traditionally associated with hepatic iron overload. However, varying degrees of elevated hepatic iron stores observed in chronic hepatitis C and B, alcoholic liver disease and nonalcoholic fatty liver disease also have clinical relevance. We employed an animal model in which mice are fed a 3,5,5-trimethyl-hexanoyl-ferrocene (TMHF)-supplemented diet to evaluate the effect of elevated hepatic iron on APAP hepatotoxicity. Three hundred milligrams per kilogram APAP was chosen because this dosage induces hepatotoxicity but is not lethal. Since both excess iron and APAP induce oxidative stress and mitochondrial dysfunction, we hypothesized that the TMHF diet would enhance APAP hepatotoxicity. The results were the opposite. Centrilobular vacuolation/necrosis, APAP adducts, nitrotyrosine adducts, and a spike in serum alanine aminotransferase, which were observed in control mice treated with APAP, were not observed in TMHF-fed mice treated with APAP. Further analysis showed that the levels of CYP2E1 and CYP1A2 were not significantly different in TMHF-treated compared with control mice. However, the magnitude of depletion of glutathione following APAP treatment was considerably less in TMHF-treated mice than in mice fed a control diet. We conclude that a TMHF diet protects mice from moderate transient APAP-induced hepatotoxicity prior to the formation of APAP adducts, and one contributing mechanism is reduction in glutathione depletion.  相似文献   

2.
The protective effect of salidroside (SDS) isolated from Rhodiola sachalinensis A. BOR. (Crassulaceae), was investigated in acetaminophen (APAP)-induced hepatic toxicity mouse model in comparison to N-acetylcysteine (NAC). Drug-induced hepatotoxicity was induced by an intraperitoneal (i.p.) injection of 300 mg/kg (sub-lethal dose) of APAP. SDS was given orally to mice at a dose of 50 or 100 mg/kg 2 h before the APAP administration in parallel with NAC. Mice were sacrificed 12 h after the APAP injection to determine aspartate aminotransferase (AST), alanine aminotransferase (ALT), and tumor necrosis factor-alpha (TNF-alpha) levels in serum and glutathione (GSH) depletion, malondialdehyde (MDA) accumulation, and caspase-3 expression in liver tissues. SDS significantly protected APAP-induced hepatotoxicity for SDS improved mouse survival rates better than NAC against a lethal dose of APAP and significantly blocked not only APAP-induced increases of AST, ALT, and TNF-alpha but also APAP-induced GSH depletion and MDA accumulation. Histopathological and immunohistochemical analyses also demonstrated that SDS could reduce the appearance of necrosis regions as well as caspase-3 and hypoxia inducible factor-1alpha (HIF-1alpha) expression in liver tissue. Our results indicated that SDS protected liver tissue from the APAP-induced oxidative damage via preventing or alleviating intracellular GSH depletion and oxidation damage, which suggested that SDS would be a potential antidote against APAP-induced hepatotoxicity.  相似文献   

3.
Acetaminophen (APAP) is a commonly used analgesic and antipyretic agent which, in high doses, causes liver and kidney necrosis in man and animals. Damage in both target organs is greatly dependent upon biotransformation. However, in the CD-1 mouse only males exhibit cytochrome P450-dependent nephrotoxicity and selective protein covalent binding. The lack of renal toxicity in female mice may reflect the androgen dependence of renal CYP2E1. To study this, female mice were pretreated with testosterone propionate and then challenged 6 days later with APAP. Groups of control males and females were similarly challenged with APAP for comparison. All groups exhibited hepatotoxicity after APAP with similar glutathione (GSH) depletion, covalent binding, centrilobular necrosis, and elevation of plasma sorbitol dehydrogenase activity. By contrast, APAP-induced nephrotoxicity occurred only in males and in the females pretreated with testosterone. No nephrotoxicity was evident in APAP-challenged control females. The selective pattern of hepatic and renal protein arylation previously reported for male mice was similarly observed in testosterone-pretreated female mice. Western blot analysis of microsomes showed that testosterone increased renal CYP2E1 levels without altering hepatic CYP2E1. Testosterone pretreatment, in vivo, also resulted in increased activation of APAP in vitro in kidney microsomes with no effect on the in vitro activation of APAP in liver microsomes. These data suggest that APAP-mediated GSH depletion, covalent binding, and toxicity in the kidneys of testosterone-pretreated females results from increased APAP activation by the testosterone-induced renal CYP2E1. This further suggests that renal, rather than hepatic, biotransformation of APAP to a toxic electrophile is central to APAP-induced nephrotoxicity in the mouse.  相似文献   

4.
The Keap1-Nrf2-ARE signalling pathway has emerged as an important regulator of the mammalian defence system to enable detoxification and clearance of foreign chemicals. Recent studies by our group using paracetamol (APAP), diethylmaleate and buthionine sulphoximine have shown that for a given xenobiotic molecule, Nrf2 induction in the murine liver is associated with protein reactivity and glutathione depletion. Here, we have investigated, in vivo, whether the ability of four murine hepatotoxins, paracetamol, bromobenzene (BB), carbon tetrachloride (CCl4) and furosemide (FS) to deplete hepatic glutathione (GSH) is related to induction of hepatic Nrf2 nuclear translocation and Nrf2-dependent gene expression. Additionally, we studied whether hepatic Nrf2 nuclear translocation is a general response during the early stages of acute hepatic chemical stress in vivo. Male CD-1 mice were administered APAP (3.5 mmol/kg), FS (1.21 mmol/kg), BB (4.8 mmol/kg) and CCl4 (1 mmol/kg) for 1, 5 and 24h. Each compound elicited significant serum ALT increases after 24h (ALT U/L: APAP, 3036+/-1462; BB, 5308+/-2210; CCl4, 5089+/-1665; FS, 2301+/-1053), accompanied by centrilobular damage as assessed by histopathology. Treatment with APAP also elicited toxicity at a much earlier time point (5h) than the other hepatotoxins (ALT U/L: APAP, 1780+/-661; BB, 161+/-15; CCl4, 90+/-23; FS, 136+/-27). Significant GSH depletion was seen with APAP (9.6+/-1.7% of control levels) and BB (52.8+/-6.2% of control levels) 1h after administration, but not with FS and CCl4. Western Blot analysis revealed an increase in nuclear Nrf2, 1h after administration of BB (209+/-10% control), CCl4 (146+/-3% control) and FS (254+/-41% control), however this was significantly lower than the levels observed in the APAP-treated mice (462+/-36% control). The levels of Nrf2-dependent gene induction were also analysed by quantitative real-time PCR and Western blotting. Treatment with APAP for 1h caused a significant increase in the levels of haem oxygenase-1 (HO-1; 2.85-fold) and glutamate cysteine ligase (GCLC; 1.62-fold) mRNA. BB and FS did not affect the mRNA levels of either gene after 1h of treatment; however CCl4 significantly increased HO-1 mRNA at this time point. After 24h treatment with the hepatotoxins, there was evidence for the initiation of a late defence response. BB significantly increased both HO-1 and GCLC protein at this time point, CCl4 increased GCLC protein alone, although FS did not alter either of these proteins. In summary, we have demonstrated that the hepatotoxins BB, CCl4 and FS can induce a small but significant increase in Nrf2 accumulation in hepatic nuclei. However, this was associated with modest changes in hepatic GSH, a delayed development of toxicity and was insufficient to activate an early functional adaptive response to these hepatotoxins.  相似文献   

5.
Increased hepatic efflux of glutathione after chronic ethanol feeding   总被引:4,自引:0,他引:4  
Chronic ethanol feeding increases hepatotoxicity of drugs, such as acetaminophen, which form electrophilic metabolites. Availability of glutathione (GSH) is important in preventing liver damage from reactive metabolites. Chronic ethanol feeding has been reported to increase turnover of hepatic GSH in rats. The results of the present study show that the total hepatic efflux of GSH was increased from 5.95 +/- 0.42 nmoles/min/g liver (control) to 9.96 +/- 0.57 nmoles/min/g (P less than 0.001) in isolated perfused livers from rats 24 hr after withdrawal from chronic ethanol feeding. The increase in total efflux of GSH was due to a significant increase in sinusoidal GSH efflux from 4.76 +/- 0.49 nmoles/min/g liver in control rats to 9.07 +/- 0.47 nmoles/min/g (P less than 0.001) in ethanol-fed rats, while biliary efflux decreased slightly, 1.20 +/- 0.11 (control) vs 0.89 +/- 0.31 (ethanol). The increase in cellular efflux of GSH was similar in magnitude to the increase in hepatic GSH turnover that we reported previously. Biliary GSSG was similar in both groups of animals. Hepatic GGT activity was increased slightly, but not significantly, whereas renal GGT activity was similar in ethanol-fed rats. Hepatic GSH and GSSG levels were also similar. The increase in turnover of hepatic GSH in rats withdrawn from chronic ethanol feeding was most likely due to increased cellular efflux of GSH. This finding suggests that chronic ethanol feeding may increase cellular requirements for GSH, although the mechanism remains unknown. This alteration in GSH turnover may have important consequences for detoxification of xenobiotics or their metabolites by the liver.  相似文献   

6.
CYP2E1 is widely accepted as the sole form of cytochrome P450 responsible for alcohol-mediated increases in acetaminophen (APAP) hepatotoxicity. However, we previously found that alcohol [ethanol and isopentanol (EIP)] causes increases in APAP hepatotoxicity in Cyp2e1(-/-) mice, indicating that CYP2E1 is not essential. Here, using wild-type and Cyp2e1(-/-) mice, we investigated the relative roles of CYP2E1 and CYP3A in EIP-mediated increases in APAP hepatotoxicity. We found that EIP-mediated increases in APAP hepatotoxicity occurred at lower APAP doses in wild-type mice (300 mg/kg) than in Cyp2e1(-/-) mice (600 mg/kg). Although this result suggests that CYP2E1 has a role in the different susceptibilities of these mouse lines, our findings that EIP-mediated increases in CYP3A activities were greater in wild-type mice compared with Cyp2e1(-/-) mice raises the possibility that differential increases in CYP3A may also contribute to the greater APAP sensitivity in EIP-pretreated wild-type mice. At the time of APAP administration, which followed an 11 h withdrawal from the alcohols, alcohol-induced levels of CYP3A were sustained in both mouse lines, whereas CYP2E1 was decreased to constitutive levels in wild-type mice. The CYP3A inhibitor triacetyloleandomycin (TAO) decreased APAP hepatotoxicity in EIP-pretreated wild-type and Cyp2e1(-/-) mice. TAO treatment in vivo resulted in inhibition of microsomal CYP3A-catalyzed activity, measured in vitro, with no inhibition of CYP1A2 and CYP2E1 activities. In conclusion, these findings suggest that both CYP3A and CYP2E1 contribute to APAP hepatotoxicity in alcohol-treated mice.  相似文献   

7.
The hepatocarcinogen aflatoxin B1 is converted to reactive metabolites that bind covalently to cellular macromolecules. These metabolites may also react with glutathione, resulting in the formation of glutathione conjugates and detoxication of the reactive metabolite. When rats were pretreated with ethanol by gastric intubation at a dose of 100 mmol/kg, 6 hr (the time of maximal GSH depletion) before the administration of aflatoxin B1, the covalent binding of 8,9-epoxide-aflatoxin B1 to DNA in vivo was increased by 47% and the hepatotoxicity was also potentiated. However, the covalent binding was not increased by pretreatment with ethanol 18 hr (time with approximately normal GSH levels) before administration of the toxin, and no potentiation of hepatotoxicity was observed. Pretreatment with a non-toxic dose of ethanol had no effects on the activity of glutathione S-transferase and glutathione peroxidase. These results suggest that the depletion of GSH and the increased formation of DNA-adduct from the liver constitute an important mechanism for the potentiation of aflatoxin B1-induced hepatotoxicity by ethanol.  相似文献   

8.
Hepatic toxicity is associated with excessive dosages of the over the counter analgesic, acetaminophen (APAP). The aim of this study was to explore protection by the nutritional agent S-adenosylmethionine (SAMe) on APAP hepatotoxicity. Male C57BL/6 mice were injected intraperitoneal (i.p.) with 500 mg/kg (15 ml/kg) APAP or water vehicle (VEH). SAMe was injected i.p. at a dose of either 1000 mg/kg (5 ml/kg) just prior or 500 mg/kg SAMe 15 min prior to administration of VEH or APAP. Comparison of groups showed that SAMe reduced APAP toxicity. Plasma alanine aminotransferase (ALT) levels were increased 2 and 4 h after APAP administration when compared to vehicle (VEH) controls. Liver weight was increased relative to the VEH group within 4 h after APAP treatment. Histological examination by light microscopy confirmed small changes in morphology within 2 h after APAP injection and marked centrilobular necrosis within 4 h in the APAP group. In contrast, when APAP was administered to SAMe pretreated mice, ALT and liver weights were comparable to the VEH and SAMe groups. Histological examination also showed that SAMe produced a marked protection in APAP mediated centrilobular necrosis at 4 h after APAP injection. APAP administration depressed hepatic glutathione levels when monitored at 2 and 4 h. Lipid peroxidation was induced above VEH values 2 and 4 h after APAP injection. Consistent with the SAMe protection of APAP hepatic toxicity, the expected depletion of hepatic glutathione (GSH) levels by APAP was prevented by SAMe pretreatment. SAMe pretreatment also prevented the induction of lipid peroxidation at 2 and 4 h post-APAP administration. In conclusion, SAMe provides protection from APAP hepatic toxicity at 2 and 4 h post-APAP injection. SAMe pretreatment prevented APAP associated depletion in hepatic glutathione and induction of lipid peroxidation as part of its mechanism of protection.  相似文献   

9.
Acetaminophen (APAP) overdose leads to severe hepatotoxicity, increased oxidative stress and mitochondrial dysfunction. S-adenosyl-L-methionine (SAMe) protects against APAP toxicity at a mmol/kg equivalent dose to N-acetylcysteine (NAC). SAMe acts as a principle biological methyl donor and participates in polyamine synthesis which increase cell growth and has a role in mitochondrial protection. The purpose of the current study tested the hypothesis that SAMe protects against APAP toxicity by maintaining critical antioxidant enzymes and markers of oxidative stress. Male C57Bl/6 mice were treated with vehicle (Veh; water 15 ml/kg, ip), SAMe (1.25 mmol/kg, ip), APAP (250 mg/kg, ip), and SAMe+APAP (SAMe given 1 h following APAP). Liver was collected 2 and 4 h following APAP administration; mitochondrial swelling as well as hepatic catalase, glutathione peroxidase (GPx), glutathione reductase, and both Mn- and Cu/Zn-superoxide dismutase (SOD) enzyme activity were evaluated. Mitochondrial protein carbonyl, 3-nitrotyrosine cytochrome c leakage were analyzed by Western blot. SAMe significantly increased SOD, GPx, and glutathione reductase activity at 4 h following APAP overdose. SAMe greatly reduced markers of oxidative stress and cytochrome C leakage following APAP overdose. Our studies also demonstrate that a 1.25 mmol/kg dose of SAMe does not inhibit CYP 2E1 enzyme activity. The current study identifies a plausible mechanism for the decreased oxidative stress observed when SAMe is given following APAP.  相似文献   

10.
The analgesic and antipyretic drug acetaminophen (APAP) is bioactivated to the reactive intermediate N-acetyl-p-benzoquinoneimine, which is scavenged by glutathione (GSH). APAP overdose can deplete GSH leading to the accumulation of APAP-protein adducts and centrilobular necrosis in the liver. N-acetylcysteine (NAC), a cysteine prodrug and GSH precursor, is often given as a treatment for APAP overdose. The rate-limiting step in GSH biosynthesis is catalyzed by glutamate cysteine ligase (GCL) a heterodimer composed of catalytic and modifier (GCLM) subunits. Previous studies have indicated that GCL activity is likely to be an important determinant of APAP toxicity. In this study, we investigated APAP toxicity, and NAC or GSH ethyl ester (GSHee)-mediated rescue in mice with normal or compromised GCLM expression. Gclm wild-type, heterozygous, and null mice were administered APAP (500 mg/kg) alone, or immediately following NAC (800 mg/kg) or GSHee (168 mg/kg), and assessed for hepatotoxicity 6 h later. APAP caused GSH depletion in all mice. Gclm null and heterozygous mice exhibited more extensive hepatic damage compared to wild-type mice as assessed by serum alanine aminotransferase activity and histopathology. Additionally, male Gclm wild-type mice demonstrated greater APAP-induced hepatotoxicity than female wild-type mice. Cotreatment with either NAC or GSHee mitigated the effects of APAP in Gclm wild-type and heterozygous mice, but not in Gclm null mice. Collectively, these data reassert the importance of GSH in protection against APAP-induced hepatotoxicity, and indicate critical roles for GCL activity and gender in APAP-induced liver damage in mice.  相似文献   

11.
Previous studies demonstrated that elevation of hepatic glutathione (GSH) concentrations protect against acetaminophen (APAP) hepatotoxicity in mice. Employing transgenic mice overexpressing glutathione synthetase, this study was conducted to determine if sustained elevation of hepatic GSH concentrations could ameliorate or prevent APAP toxicity. International Cancer Research transgenic mouse males and matched (ie same strain, sex, and age) control nontransgenic mice were pretreated ip with GSH synthetase substrate gamma-glutamylcysteinyl ethyl ester (gamma-GCE) or with saline. After a 16-h fast, mice received a single dose of 500 mg APAP/kg bw in saline ip and were sacrificed 4 h later. Other mice similarly pretreated were killed without APAP challenge. The elevated GSH concentrations in transgenic mice livers did not lessen APAP hepatotoxicity. Instead higher degrees of hepatotoxicity and nephrotoxicity were observed in transgenic mice than in controls as indicated by higher serum alanine aminotransferase activity and more severe histopathological lesions in transgenic mice livers and kidneys. Pretreatment with gamma-GCE did not affect either initial or post-APAP treatment tissue GSH concentrations or observed degrees of toxicity. Detection of a higher level of serum APAP in transgenic mice and the histopathological lesions found in transgenic mice kidneys together with no observable nephrotoxicity in control mice indicated early kidney damage in transgenic mice. Our findings suggest that high levels of GSH-APAP conjugates resulting from increased GSH concentrations in the livers of transgenic mice caused rapid kidney damage. Compromised excretory ability may have caused retention of APAP, which, in effect, elicited higher hepatotoxicity than that observed in nontransgenic mice.  相似文献   

12.
《Toxicology in vitro》2014,28(6):1176-1182
Hepatotoxicity induced by the metabolic activation of drugs is a major concern in drug discovery and development. Three-dimensional (3-D) cultures of hepatocyte spheroids may be superior to monolayer cultures for evaluating drug metabolism and toxicity because hepatocytes in spheroids maintain the expression of various metabolizing enzymes and transporters, such as cytochrome P450 (CYP). In this study, we examined the hepatotoxicity due to metabolic activation of acetaminophen (APAP) using fluorescent indicators of cell viability and intracellular levels of glutathione (GSH) in rat hepatocyte spheroids grown on micro-space cell culture plates. The mRNA expression levels of some drug-metabolizing enzymes were maintained during culture. Additionally, this culture system was compatible with microfluorometric imaging under confocal laser scanning microscopy. APAP induced a decrease in intracellular ATP at 10 mM, which was blocked by the CYP inhibitor 1-aminobenzotriazole (ABT). APAP (10 mM, 24 h) decreased the levels of both intracellular ATP and GSH, and GSH-conjugated APAP (APAP-GSH) were formed. All three effects were blocked by ABT, confirming a contribution of APAP metabolic activation by CYP to spheroid toxicity. Fluorometric imaging of hepatocyte spheroids on micro-space cell culture plates may allow the screening of drug-induced hepatotoxicity during pharmaceutical development.  相似文献   

13.
The metabolism zonation in liver lobules is well known yet its incorporation into the mathematical models of acetaminophen (APAP) metabolism is still primitive – only the oxidation pathway via reaction with the cytochrome P450 (CYP450) has been considered, yet the zonal heterogeneity exhibits in all three pathways including sulphation, glucuronidation and oxidation. In this paper we present a novel computational method where an intracellular APAP metabolism model is integrated into a Finite Element Model (FEM) of sinusoids, and the zonal heterogeneity in three metabolism pathways are all incorporated. We demonstrate that the degradation of APAP, detoxification via glutathione (GSH) and the formation of hepatotoxicity, are all affected profoundly by the zonal difference. Specifically, glucuronidation plays a major role in the degradation of APAP. Generation of GSH, its conjugation with the toxic NAPQI and the spatial distribution of CYP450 combined together determine the toxicity of APAP. We suggest that the current platform be used for further hepatotoxicity study of APAP by incorporating other heterogeneity factors.  相似文献   

14.
In the clinical setting, antidotes are generally administered after the occurrence of a drug overdose. Therefore, the most pertinent evaluation of any new agent should model human exposure. This study tested whether acetaminophen (APAP) hepatotoxicity was reversed when S-adenosyl-L-methionine (SAMe) was administered after APAP exposure, similar to what occurs in clinical situations. Comparisons were made for potency between SAMe and N-acetylcysteine (NAC), the current treatment for APAP toxicity. Male C57BL/6 mice were fasted overnight and divided into groups: control (VEH), SAMe treated (SAMe), APAP treated (APAP), N-acetylcysteine treated (NAC), SAMe or NAC administered 1h after APAP (SAMe+APAP) and (NAC+APAP), respectively. Mice were injected intraperitoneal (i.p.) with water (VEH) or 250 mg/kg APAP (15 ml/kg). One hour later, mice were injected (i.p.) with 1.25 mmol/kg SAMe (SAMe+APAP) or NAC (NAC+APAP). Hepatotoxicity was evaluated 4h after APAP or VEH treatment. APAP induced centrilobular necrosis, increased liver weight and alanine transaminase (ALT) levels, depressed total hepatic glutathione (GSH), increased protein carbonyls and 4-hydroxynonenal (4-HNE) adducted proteins. Treatment with SAMe 1h after APAP overdose (SAMe+APAP) was hepatoprotective and was comparable to NAC+APAP. Treatment with SAMe or NAC 1h after APAP was sufficient to return total hepatic glutathione (GSH) to levels comparable to the VEH group. Western blot showed reversal of APAP mediated effects in the SAMe+APAP and NAC+APAP groups. In summary, SAMe was protective when given 1h after APAP and was comparable to NAC.  相似文献   

15.
The time development of the biodistribution and the hepatotoxicity following peroral administration of 14C-acetaminophen (APAP 400 or 800 mg.kg-1; 1 microCi) was characterized in a trial procedure using male Bom:NMRI mice. APAP (400 mg.kg-1) caused a transitory hepatic glutathione (GSH) depletion while APAP 800 mg.kg-1 maximally depleted hepatic GSH throughout the 12 h trial period. A lag time between the initial GSH depletion and the ensuing hepatic necrosis was seen. From 8 h post dosing a decrease of 14C-APAP or its metabolites coincided with recovery of the hepatic GHS level and the regeneration of the hepatic cells caused by APAP 400 mg.kg-1. Hepatic glycogen depletion preceded centrilobular necrosis, and irrespective of APAP dose definite kidney damage was absent. Irrespective of APAP dose the biodistribution of 14C-APAP or its metabolites was predominantly in organs associated with metabolism and excretion. After APAP (800 mg.kg-1) significant amounts of 14C-APAP or its metabolites were present up to 24 h post dosing. The operative status of the hepatic GSH conjugative system has an important influence on the rate of elimination of toxic APAP doses. Hepatic cell necrosis with a possible effect on the circulation may play an important secondary role in the elimination of toxic APAP doses. Factors which may influence the status of the hepatic GSH conjugative system and toxicokinetics of perorally administered APAP doses are discussed.  相似文献   

16.
It has been reported that fish oil protects the rat liver against acetaminophen (APAP) induced toxicity; however, this finding is controversial. The present study was undertaken to investigate the effects of fish oil-enriched diet on APAP-induced liver injury in Wistar rats. Rats were fed a diet supplemented with either 8% fish oil or 8% corn oil, or standard rat feed for 6 wk. After an overnight fast, rats in each group were given either 2 g/kg APAP or saline orally. Our findings showed that APAP increased serum alanine aminotransferase (ALT) and that this rise was potentiated in the presence of dietary fat. Further fish oil ingestion increased the glutathione (GSH) content in rat liver; however, this was not effective in protecting liver from APAP-induced toxicity. Data suggest that GSH may be necessary to detoxify APAP metabolites, which are known to induce hepatotoxicity but are increased by dietary fat.  相似文献   

17.
Retinoid X receptor alpha (RXRalpha) plays a pivotal role in regulating liver metabolism. RXRalpha-mediated gene expression involved in amino acid metabolism was examined using the NIA Mouse 15K cDNA microarray containing 15,000 different expressed sequence tags. Seven amino acid metabolic genes, three of which encode enzymes involved in phase II detoxification process, were identified as RXRalpha target genes in mouse liver. Glutamate-cysteine ligase catalytic subunit (GCLC), glutathione S-transferasemu, and glutathione peroxidase 1 were down-regulated in the liver of hepatocyte RXRalpha-deficient mice. The down-regulation of GCLC in RXRalpha-deficient mice led to 40% and 45% reductions in the rate of glutathione (GSH) synthesis and level of hepatic GSH, respectively. Primary hepatocytes from RXRalpha-deficient mice were more sensitive to t-butylhydroperoxide-induced oxidative stress. However, GSH diminished RXRalpha-deficient mice were resistant to acetaminophen (APAP)-induced hepatotoxicity. Analysis of phase I detoxification genes revealed that CYP1A2 and CYP3A11 were up-regulated in wild-type mice but down-regulated in RXRalpha-deficient mice after APAP administration. Taken together, the data indicate that RXRalpha centrally regulates both phase I and phase II drug metabolism and detoxification. Regulation of hepatic GSH levels by RXRalpha is essential to protect hepatocytes from oxidative stress, whereas up-regulation of phase I drug metabolism genes by RXRalpha may render the liver more sensitive to APAP-induced toxicity.  相似文献   

18.
Oxidative stress is closely associated with acetaminophen (APAP)-induced toxicity. Heme oxygenase-1 (HO-1), an antioxidant defense enzyme, has been shown to protect against oxidant-induced tissue injury. This study investigated whether sulforaphane (SFN), as a HO-1 inducer, plays a protective role against APAP hepatotoxicity in vitro and in vivo. Pretreatment of primary hepatocyte with SFN induced nuclear factor E2-factor related factor (Nrf2) target gene expression, especially HO-1 mRNA and protein expression, and suppressed APAP-induced glutathione (GSH) depletion and lipid peroxidation, which eventually leads to hepatocyte cell death. A comparable effect was observed in mice treated with APAP. Mice were treated with 300 mg/kg APAP 30 min after SFN (5 mg/kg) administration and were then sacrificed after 6 h. APAP alone caused severe liver injuries as characterized by increased plasma AST and ALT levels, GSH depletion, apoptosis, and 4-hydroxynonenal (4-HNE) formations. This APAP-induced liver damage was significantly attenuated by pretreatment with SFN. Furthermore, while hepatic reactive oxygen species (ROS) levels were increased by APAP exposure, pretreatment with SFN completely blocked ROS formation. These results suggest that SFN plays a protective role against APAP-mediated hepatotoxicity through antioxidant effects mediated by HO-1 induction. SFN has preventive action in oxidative stress-mediated liver injury.  相似文献   

19.
Factors implicated in changes of the hepatic glutathione concentration following acute ethanol administration were examined in rats. Adult female rats were treated with either ethanol (4 g/kg, p.o.) or an isocaloric glucose solution. The hepatic reduced glutathione (GSH) concentration decreased rapidly after ethanol intake with a maximum diminution, approximately 50% of the control value, being observed at t = 6 h. The hepatic GSH concentration gradually increased, and finally rebounded at 24 h after ethanol ingestion. The dose of ethanol induced a transient increase in the oxidized glutathione (GSSG)/GSH ratio, which was associated with a significant reduction in GSH rather than elevation in GSSG [corrected]. The activity of gamma-glutamylcysteine synthetase (GCS), the rate-limiting enzyme for glutathione synthesis, and the cysteine concentration in liver were also measured. The GCS activity was depressed to approximately 80% of the control value at t = 2.5 h followed by rapid recovery, but no difference in the hepatic cysteine concentration between control and ethanol treated rats was observed for 24 h, suggesting that the reduction in glutathione synthesis may not play a major role in the significant depletion of this tripeptide in liver. The total glutathione concentration was measured both in prehepatic and posthepatic inferior vena cava blood. The glutathione concentration in posthepatic blood was approximately twice as high as that of prehepatic blood in control rats. Acute ethanol administration doubled the elevation of glutathione in posthepatic blood measured at t = 2.5 h. The sinusoidal efflux of glutathione estimated from the increase in blood glutathione concentration was greater than the total amount of its depletion in the liver of rats treated with ethanol. The results suggest that in the liver of rats treated acutely with ethanol, glutathione efflux plays the most important role in the reduction of this tripeptide, which would be aggravated by a transient decrease in glutathione synthesis and by increased consumption in association with its metabolism.  相似文献   

20.
Acetaminophen (APAP)-induced hepatocellular necrosis can be prevented by treatment with peroxisome proliferators. This protection is associated with lowered protein arylation and glutathione depletion in mice. Peroxisome proliferators have been shown to activate nuclear receptors. These receptors, termed peroxisome proliferator activated receptors (PPARs), can also be activated by free fatty acids. This study was designed to determine if treatment with the PPAR activator docosahexaenoic acid (DHA) would also lower APAP toxicity. Male CD-1 mice received 250 mg DHA/kg or 500 mg clofibrate (CFB)/kg, i.p., for 5 d. Controls received corn oil vehicle, i.p. After overnight fasting, mice received 800 mg APAP/kg, p.o. At 24 h after APAP, hepatotoxicity was evident in control mice by elevated plasma sorbitol dehydrogenase activity (SDH) and histologic evidence of hepatic degeneration and necrosis. As expected, CFB pretreatment significantly decreased this. Similarly, DHA protected against APAP-induced hepatotoxicity at 24 h after challenge. However, treatment with DHA did not increase hepatic glutathione prior to APAP, as previously shown with CFB. Interestingly, DHA did not increase palmitoyl coenzyme A (CoA) oxidase activity or other biochemical parameters associated with peroxisome proliferation after 5 d of treatment at 250 mg/kg. No significant alterations in microsomal APAP glucuronidation or cytochrome P-450-mediated bioactivation were detected either. Collectively, these results show that DHA also prevents APAP-induced hepatotoxicity at 24 h after challenge. However, the association between resistance against APAP-induced liver injury, PPAR activation, and peroxisome proliferation is not clearly understood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号