首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Functional single nucleotide polymorphism (SNP) C3435T in exon 26 of the MDR1 ( ABCB1 ) gene encoding the xenobiotic transporter P-glycoprotein (P-gp, MDR1, ABCB1) may influence susceptibility to several diseases as well as clinical outcome of treatment with P-gp substrates. Exposure to environmental chemicals is thought to be involved in the pathogenesis of B-cell chronic lymphocytic leukemia (B-CLL) and P-gp-transported drugs are used in its treatment; however, little is known about the impact of the C3435T MDR1 SNP in B-CLL. In this study, 110 Caucasian B-CLL patients and 201 healthy controls were genotyped for the MDR1 C3435T SNP. Additionally, P-gp activity was assessed in malignant lymphocytes of 22 untreated B-CLL patients. We observed a higher frequency of carriers of at least one 3435T allele (3435CT and 3435TT genotypes) among B-CLL patients as compared to normal individuals (76% vs . 63%, p=0.027). The genotypes 3435CT and 3435TT were associated with B-CLL, (odds ratio=1.8, 95% confidence interval = 1.1-3.0). Moreover, P-gp activity in B-CLL cells depended on MDR1 genotype, with the highest P-gp activity in 3435CC homozygotes, intermediate in 3435CT heterozygotes and the lowest in 3435TT homozygotes (p=0.042). P-gp activity was also significantly lower in carriers of the T-allele (3435CT/TT genotype) as compared to the non-carriers (3435CC genotype), (p=0.029). Taken together, these data indicate that the MDR1 C3435T SNP may carry an increased risk of developing B-CLL, possibly by virtue of decreased protection against P-gp-substrate carcinogens. The differences in P-gp activity in B-CLL tumor cells related to MDR1 genotype may have implications to the response to chemotherapy with P-gp transported anticancer agents.  相似文献   

2.
The MDR1 gene product P-glycoprotein in the human placenta is important for protecting the fetus from unintended, harmful drug exposure, but also for limiting the access of therapeutic drugs to the fetus after maternal drug intake. A polymorphism in exon 26 of the MDR1 gene (C3435T) has previously been shown to be associated with reduced P-glycoprotein expression in the small intestine, kidney and lymphocytes. In the present study, we examined systematically whether MDR1 polymorphisms also have an impact on P-glycoprotein expression in the human placenta. MDR1 mRNA and P-glycoprotein were analysed in 73 full-term human placentas of Caucasians, as well as respective MDR1 genotypes/haplotypes, for the C3435T and G2677T/A polymorphisms of mothers and infants. MDR1 mRNA levels were not different between these genotype groups. However, P-glycoprotein expression was significantly lower when both mother and infant were homozygous for the 3435T allele (TT/tt) compared to maternal and fetal homozygotes for the C-allele (0.40 +/- 0.18 a.u. for TT/tt versus 0.66 +/- 0.30 a.u. for CC/cc, P = 0.01). Moreover, placentas from mothers carrying both polymorphisms (3435T and 2677T; TT/TT) also had a significantly lower P-glycoprotein expression (0.31 +/- 0.12 a.u.) compared to placentas of wild-type individuals (CC/GG, 0.71 +/- 0.31 a.u., P = 0.02). Taken together, the MDR1 polymorphisms C3435T and G2677T are associated with altered P-glycoprotein expression in the human placenta, and may have clinical consequences due to genetically determined, variable drug exposure of the fetus.  相似文献   

3.
OBJECTIVE: Rheumatoid arthritis (RA) is a multifactorial disease, the pathogenesis of which involves immunological, genetic and environmental factors. P-glycoprotein (P-gp) encoded by the MDR1 gene, is an important transporter for many drugs, xenobiotics and cytokines and may be associated with many immunological processes and apoptosis. The activity of P-gp is genetically determined. Naturally occurring MDR1 polymorphisms have been described and correlated with potential clinical effects. Several mutations in the MDR1 gene have been recognized, but only some of them are associated with P-gp expression. The C3435T polymorphism was found to correlate with the activity of P-glycoprotein. The aim of the study was to evaluate the C3435T MDR1 polymorphism in patients with rheumatoid arthritis and to investigate a possible correlation with disease susceptibility, activity and severity. METHODS: The study was carried out in 92 patients with rheumatoid arthritis and 97 healthy subjects as a control group. The C3435T polymorphism was determined using the PCR-RFLP method. RESULTS: The distribution of C3435TT MDR1 genotypes in RA patients did not differ significantly from that in a control group and was as follows: 3435CC in 25 (26.9%) subjects, 3435CT in 50 (53.8%) and 3435TT in 17 (18.3%). The probability of remission of RA symptoms after therapy with methotrexate and glucocorticosteroids however, was 2.89-fold greater in patients with the 3435TT genotype compared to patients with the genotypes 3435CC and 3435CT. The risk of having an active form of rheumatoid arthritis resistant to therapy with disease-modifying antirheumatic drugs in patients with 3435CC and 3435CT genotypes was 2.89 times greater than in homozygous 3435TT subjects. CONCLUSION: We suggest that the C3435T MDR1 polymorphism is not an important genetic risk factor for RA susceptibility, but that this polymorphism may have an influence on the activity of the disease and its response to therapy with disease-modifying antirheumatic drugs.  相似文献   

4.
OBJECTIVES: Variable expression of the ABC-type multidrug resistance membrane protein P-glycoprotein (P-gp, MDR1, ABCB1) in human heart is a potential modulator of drug effects or drug-induced cardiotoxicity. Expression of P-gp is known to be affected by single nucleotide polymorphisms in the MDR1 gene. Therefore, genotype-dependent expression of P-gp could be an important modulator of action of cardiac drugs. METHODS: Heart tissue (auriculum) from 51 patients undergoing coronary artery bypass graft surgery was screened for genotype-dependent P-gp expression. P-gp was identified by immunoblotting and localized using immunohistochemistry. MDR1 mRNA was quantified by real-time PCR and immunohistochemistry and related to the MDR1 genotypes G2677T/A (Ala893Ser/Thr) and C3435T. RESULTS: MDR1/18S rRNA mRNA copy numbers in heart auriculum were 3.48 +/- 2.25 x 10(-6) compared to 4.56 +/- 0.58 x 10(-6) in non-failing ventricular samples studied before. While the exon 26 C3435T genotype did not influence MDR1 mRNA expression, we found significantly elevated MDR1 mRNA expression in 10 patients carrying the exon 21 2677 AT or TT genotype as compared to 12 patients carrying the GG-variant with intermediate MDR1 mRNA expression in 29 heterozygous samples. P-gp was detected in the endothelial wall. Quantitative immunohistochemistry of protein expression, however, did not reveal significant influence of the studied SNPs. CONCLUSION: The present study based on auricular samples suggests that genetic factors play a rather limited role in modulating P-gp expression in human heart. Therefore, the substantial interindividual variability in cardiac P-gp expression is likely related to environmental or disease related factors.  相似文献   

5.
Variability in CYP3A (CYP3A4/5) and P-glycoprotein (human MDR1 gene product) activity underlies interindividual differences in oral cyclosporine (CsA) bioavailability. Racial differences in polymorphic expression of CYP3A5 and MDR1 may explain observed interracial variability in oral bioavailability. Our objective was to evaluate the effect of CYP3A5 and MDR1 polymorphic expression on CsA oral disposition. Steady-state plasma concentration profiles (n = 19) were sampled in renal transplant recipients receiving concentration-adjusted CsA maintenance therapy. CsA plasma concentrations were measured by fluorescence polarization immunoassay. CYP3A5 and MDR1 genotypes were determined by real-time polymerase chain reaction. Noncompartmental pharmacokinetic analysis and nonlinear mixed-effects modeling (NONMEM) were performed to assess the effect of genotype on CsA pharmacokinetics. MDR1 C3435T genotype was identified as the best predictor of CsA systemic exposure. CsA oral clearance was significantly higher in subjects who carried at least one 3435T allele compared to homozygous wild-type individuals (40.0 +/- 2.2 vs. 26.4 +/- 3.1 L/h, p = 0.007). MDR1 C3435T genotype accounted for 43% of the interindividual variability of CsA oral clearance in the study population after accounting for interoccasion variability. The authors were unable to independently assess whether CYP3A5 correlated with any CsA pharmacokinetic parameter since all CYP3A5 nonexpressors were also 3435T allele carriers. MDR1 3435T allele carriers have enhanced oral clearance compared to individuals with the CC genotype. The frequency of the 3435T allele is lower in African Americans compared to Caucasians. Thus, the MDR1 C3435T genotype offers a potential mechanistic basis to explain interracial differences in CsA oral bioavailability. Further studies are needed to explore the relationship between CYP3A5 and MDR1 genotype and phenotype.  相似文献   

6.
AIMS: To investigate the frequency of the single nucleotide polymorphism C3435T in exon 26 of the MDR1 gene in Asians and to determine the functional significance of this SNP with the clinical pharmacokinetics of oral cyclosporin (Neoral) in 10 stable heart transplant patients. METHODS: The MDR1 C3435T polymorphism was investigated in 290 healthy Asian subjects (98 Chinese, 99 Malays and 93 Indians). We also compared the MDR1 polymorphism between the Asian population studied here and the published data on Africans and Caucasians. The clinical relevance of this SNP on oral bioavailability of a known P-gp substrate, cyclosporin, was assessed in 10 stable Chinese heart transplant patients. RESULTS: The homozygous TT genotype was observed in 32%, 28% and 43% of Chinese, Malays and Indians. The homozygous CC genotype was found in 25% of Chinese and Malays compared with 18% of Indians. The Indians had a lower frequency of the C allele [0.38 (0.31-0.45)] compared with the Chinese [0.46 (0.39-0.53)] and Malays [0.48 (0.42-0.55)]. Chi-squared test showed that the distribution of allele frequencies between the Malays and Indians differed significantly (P = 0.04). In this Asian population, the overall distribution of genotypes (CC, CT and TT) and allele frequencies were significantly different from those in Africans (P < 0.001). The results were also significant when the Chinese, Malays and Indians were compared separately with the African group (P < 0.001). Compared with the Caucasian data, the overall distribution of genotype and allele frequencies in the Asian population were also significantly different (P < or = 0.05). However, when each Asian ethnic group was compared separately with the Caucasians, only the Indians were found to be significantly different (P < or = 0.004). Genotypic-phenotypic correlations of this SNP were assessed in 10 stable Chinese heart transplant patients. The median AUC(0,4 h) was 11% lower in patients with CC genotype compared with subjects with TT genotype. However, the interpatient variability in AUC(0,4 h) was high in patients, especially in those with CC genotype. CONCLUSIONS: The distribution of the SNP C3435T in exon 26 in the Chinese and Malay population was found to be similar to the Caucasians whereas the Indians were different. The Asian population also differed significantly from the African and Caucasian population in the distribution of the C3435T SNP. The low frequency of the T allele in the Indian population implies lower expression of P-gp and may have important therapeutic and prognostic implications for use of P-gp dependent drugs in individuals of Indian origin.  相似文献   

7.
AIMS: The protease inhibitor indinavir is characterized by an important interindividual pharmacokinetic variability, which results from the actions of the metabolizing enzymes cytochrome P450 (CYP) 3A and the multidrug efflux pump P-glycoprotein (P-gp), encoded by MDR1. Using a population pharmacokinetic approach, we investigated the effect of several MDR1 and CYP3A5 polymorphisms on the pharmacokinetic parameters of indinavir in HIV-infected patients. METHODS: Twenty-eight patients receiving indinavir alone or together with ritonavir were included. Indinavir pharmacokinetics were studied over a 12 h interval. Genetic polymorphisms were assessed by real-time PCR assays and direct sequencing for MDR1 and by PCR-SSCP analysis for CYP3A5. RESULTS: The pharmacokinetics of indinavir were best described by a one-compartment model with first-order absorption. In the final model, the MDR1 C3435T genotype and ritonavir were identified as statistically significant covariates (P 相似文献   

8.
Advances in transplantation technology have brought about great benefits to patients suffering from organ failure, but the problem still remains of complications induced by steroids used for post-transplant immunosuppression. Among the side-effects caused by steroids, non-traumatic osteonecrosis of the femoral head (ONF) constitutes a serious problem. The same protocol for steroid administration induces ONF in some patients, but not in others, indicating the presence of individual difference in steroid sensitivity. We hypothesized that this difference might be mediated by the drug-transport protein, P-glycoprotein (P-gp), and investigated the relationship between single nucleotide polymorphisms in the multidrug resistance gene 1 (ABCB1, MDR1) encoding P-gp and ONF. Subjects comprised 136 patients receiving kidney transplantation. Thirty patients developed post-transplant ONF. Genomic DNA was extracted from peripheral blood, and genotypes of ABCB1 C3435T (exon 26) and G2677T/A (exon 21) were determined by direct sequencing. Multivariate analyses based on clinical information were performed to determine the relationship between ABCB1 genotypes and ONF. The dose/concentration (D/C) ratios of tacrolimus were also determined to estimate the activity of P-gp in patients with different genotypes of ABCB1 C3435T (CC, CT, TT), and in those who did and did not develop ONF. The ABCB1 3435TT genotype showed a significantly lower incidence of ONF (adjusted odds ratio = 0.10, P = 0.034). The D/C ratio in the 3435TT genotype was significantly higher than that in the 3435CC genotype. The D/C ratio in patients developing ONF was significantly higher than in those patients who did not develop ONF. The results suggest increased activity of P-gp in patients with the 3435TT genotype and in those who did not develop ONF. The ABCB1 2677 homozygous variant type also showed a lower incidence of ONF (adjusted odds ratio = 0.26, P = 0.056). The 3435T and 3435C alleles were in linkage disequilibrium with the 2677T and the 2677G alleles, respectively, in the study population. An assessment of C3435T and G2677T/A polymorphisms preceding steroid treatment could be useful for predicting the resistance to ONF development.  相似文献   

9.
P-glycoprotein (P-gp), the protein product of MDR1 gene, is an important factor regulating the bioavailability of many therapeutics. Recently, the C3435T polymorphism of MDR1 was correlated to altered expression and function of P-gp in normal tissues. In this study, polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay was applied to assess C3435T MDR1 polymorphism in 122 healthy individuals of Slavic origin from the population of central Poland (Lód? and surrounding areas). The detected genotype variant frequencies were as follows: CC in 42%, CT in 41%, and TT in 17% of the tested subjects (C-allele frequency was 0.62). The frequency of the C-allele is similar to Japanese population and significantly higher than in Caucasians from Western Europe. The results of this study give basis for large-scale C3435T MDR1 genotype-phenotype correlation investigations in Polish population that may be useful to individualize therapy of cancer, HIV-1 infection and some other diseases.  相似文献   

10.
目的了解中国佤族、白族和藏族人群中多药抗药基因1(MDR1)C3435T位点突变频率,并与其他种族比较,了解种族差异。方法使用聚合酶链反应-限制性片段长度多态性方法并用直接测序法对中国143名佤族、138名白族和257名藏族健康个体进行MDR1 C3435T基因分型。结果野生CC型在佤族、白族和藏族的频率分别为31.5%,29.7%和25.7%,突变杂合子CT型频率分别为44.7%,50.7%和56.8%,而突变纯合子TT型频率则分别为23.8%,19.6%和17.5%,分布符合Hardy-Weinberg平衡。MDR1 C3435T等位基因T在佤族、白族和藏族的频率分别为46.2%,44.9%和45.9%,与非洲裔美国人的比较有明显差异。佤族和藏族与汉族的比较有差异。结论中国佤族、白族和藏族人群MDR1C3435T位点的突变发生情况有自己的特点,在临床应用相关药物时,进行该位点基因型检测,将有助于指导临床个体化用药。  相似文献   

11.
P-glycoprotein (P-gp), the product of MDR1 gene, is a protein which mediates transmembrane transport of a great number of xenobiotics including cyclosporin A used as an immunosuppressive drug in patients with allogenic kidney grafts. The P-gp activity and expression is dependent on the MDR1 gene polymorphism in position C3435T of exon 26. In this study, C3435T polymorphism was analyzed in 116 patients with allogenic kidney graft treated with cyclosporin Aand 144 randomly selected healthy individuals. The prevalence of MDR1 gene genotypes 3435CC, 3435CT, 3435TT were also compared in patients after allogenic kidney graft with both acute and chronic graft rejection (48 patients with acute and 76 with chronic graft rejection) and control groups (respectively 139 and 112). The results of the study demonstrated that the allelic frequency and MDR1 genotype distribution were similar in all evaluated groups. It was revealed that MDR1 gene polymorphism was not a predisposing factor for terminal kidney failure leading to renal transplantation. Moreover, evaluation of C3435T polymorphism of MDR1 gene will probably not be useful for characterization of groups of patients at increased risk of acute and chronic kidney graft rejection.  相似文献   

12.
AIMS: The C3435T polymorphism in the human MDR1 gene is associated with lower intestinal P-glycoprotein expression, reduced protein function in peripheral blood cells and higher plasma concentrations of the P-glycoprotein substrate digoxin. Using fexofenadine, a known P-glycoprotein substrate, the hypothesis was tested whether this polymorphism also affects the disposition of other drugs in humans. METHODS: Ten Caucasian subjects homozygous for the wild-type allele at position 3435 (CC) and 10 individuals homozygous for T at position 3435 participated in this study. A single oral dose of 180 mg fexofenadine HCl was administered. Plasma and urine concentrations of fexofenadine were measured up to 72 h using a sensitive LC/MS method. In addition, P-glycoprotein function was assessed using efflux of the P-glycoprotein substrate rhodamine 123 from CD56+ cells. Results Fexofenadine plasma concentrations varied considerably among the study population. However, fexofenadine disposition was not significantly different between the CC and TT groups (e.g. AUC(0,infinity) CC vs TT: 3567.1+/-1535.5 vs 3910.1+/-1894.8 ng ml-1 h, NS; 95% CI on the difference -1364.9, 2050.9). In contrast, P-glycoprotein function was significantly decreased in CD56+ cells of the TT compared with the CC group (rhodamine fluorescence CC vs TT: 45.6+/-7.2% vs 61.1+/-12.3%, P<0.05; 95% CI on the difference 5.6, 25.5). Conclusions In spite of MDR1 genotype-dependent differences in P-glycoprotein function in peripheral blood cells, there was no association of the C3435T polymorphism with the disposition of the P-glycoprotein substrate fexofenadine in this German Caucasian study population. These data indicate that other mechanisms including uptake transporter function are likely to play a role in fexofenadine disposition.  相似文献   

13.
Recent advances in pharmacogenomics have suggested the association of clinical outcome of glucocorticoid-based anti-inflammatory therapy with a single nucleotide polymorphism at position 3435 in exon 26 (C3435T) of the MDR1 gene. In the present study, the effects of the MDR1 C3435T genotype on the time-dependent profiles of gene expression and function of MDR1/P-glycoprotein were evaluated in peripheral blood mononuclear cells (PBMCs) under lipopolysaccharide (LPS)-induced experimental acute inflammation. LPS treatment resulted in the rapid elevation of IL-1beta and TNF-alpha mRNA levels relative to beta-actin mRNA at 1 h, with a subsequent slight decrease at 3 h after the treatment, while the down-regulation of the relative concentration of MDR1 mRNA was found at 3 h, not at 1 h, after LPS treatment. Here, the C3435T genotype-dependent down-regulations of MDR1 mRNA level were found for CC(3435) and CT(3435), but not for TT(3435), and were 64.1+/-10.1%, 71.4+/-5.9% and 100.0+/-22.5% (+/-S.D.), respectively, of their respective baseline levels, which were independent of C3435T (0.010+/-0.005, 0.011+/-0.013 and 0.009+/-0.006 (+/-S.D.), respectively). The C3435T genotype-dependent down-regulation was supported by the increase of the intracellular accumulation of calcein in PBMCs treated with LPS for 72 h, and the increase was more predominant for CC(3435) than TT(3435). These data suggested that glucocorticoid-based anti-inflammatory therapy might be more effective for C(3435)-allele carriers than non-carriers.  相似文献   

14.
The multi-drug resistance 1 (MDR1) gene encodes for a P-glycoprotein (PGP), which acts as a gate-keeper against various kinds of xenobiotics. Several single nucleotide polymorphisms (SNPs) in the MDR1 gene that may influence PGP level and function have been identified. The aim of this study was to simultaneously analyze the three most important MDR1 SNPs, C3435T, G2677T/A and C1236T, in the Serbian population and to compare the results with those published for other ethnic groups. A group of 158 unrelated, healthy subjects was included in the present study. For determination of MDR1 SNPs, a multiplexed mutagenically separated PCR was performed. The genotype frequency of the analyzed MDR1 SNPs was as follows: 3435 nt - 0.19 (CC), 0.54 (CT) and 0.27 (TT); 2677 nt - 0.26 (GG), 0.52 (GT), 0.15 (TT), 0.03 (GA) and 0.064 (TA), and 1236 nt - 0.23 (CC), 0.61 (CT) and 0.16 (TT). Our results for the Serbian population could be relevant for further investigation of drugs that are substrates of PGPand for studies of interethnic diversity in MDR1 polymorphism frequency.  相似文献   

15.
P-glycoprotein is a membrane protein encoded by the MDR1 gene, which demonstrates functional polymorphism. It is present in endothelial cells of the blood-brain barrier, thus limiting accumulation of its substrates in the central nervous system. Many epidemiological studies suggest an association between pesticides, which are substrates for P-glycoprotein, and Parkinson's disease. It was hypothesized that polymorphism of the MDR1 gene could modulate interindividual susceptibility for the disease in subjects exposed to pesticides. In a pilot case-control study involving 107 Parkinson's disease patients (30 early onset and 77 late onset patients; 59 exposed to pesticides and 48 non-exposed) and 103 controls, C3435T polymorphism of the gene was analysed. No statistically significant correlation between MDR1 gene polymorphism and Parkinson's disease was found. The 3435TT genotype was noted more frequently, but not significantly, in patients with early onset compared to late onset disease (23.3% versus 10.4%, respectively). A significant association between patients with parkinsonism exposed to pesticides and C3435T polymorphism of the MDR1 gene was found. Comparing the exposed and non-exposed patients, a statistically higher frequency of heterozygous subjects was observed (72.9% versus 47.9%, respectively). This genotype was associated with a significant, almost three-fold increased risk of disease. Similarly, a higher frequency of 3435TT subjects was revealed in exposed subjects (15.5%) compared to non-exposed patients (12.5%). In exposed versus non-exposed subjects, patients carrying at least one 3435T allele (i.e. homozygous and heterozygous) had a significant, five-fold higher risk of Parkinson's disease. Thus, it appears that mutation of the MDR1 gene predisposes to damaging effects of pesticides, and possibly other toxic xenobiotics transported by P-glycoprotein, leading to Parkinson's disease.  相似文献   

16.
P-glycoprotein (P-gp), an ATP-dependent efflux pump, is a membrane protein encoded by MDR1 gene, which demonstrates functional polymorphism. It is present in endothelial cells of the blood-brain barrier. P-gp pays a role in transmembrane transport of various xenobiotics, thus limiting their accumulation in the central nervous system. Cyclosporine A which is used as an immunosuppressive drug in patients with allogenic kidney grafts is a substrate for P-gp. Cyclosporine A may cause neurotoxic adverse effects, among them tremor. It was assumed that polymorphism of MDR1 gene which is associated with change in P-gp activity plays a role in induction of tremor in some patients with allogenic kidney graft treated with cyclosporine A. A total of 118 unrelated postransplant kidney patients were enrolled into the study. The tremor group included 23 cases and 95 randomly selected posttransplant individuals with no signs of tremor served as controls. No statistically significant correlation between MDR1 gene polymorphism C3435T and tremor was found. The tremor group and the control group were characterized by similar distribution of MDR1 genotypes, i.e. 3435CC, 3435CT, 3435TT.  相似文献   

17.
The allele and genotype frequencies of MDR1 C3435T polymorphism were determined in 185 unrelated healthy Tamilians. The genomic DNA was extracted from peripheral leucocytes using phenol chloroform method and genotyped by PCR-RFLP method. The frequencies of MDR1 C3435 and T3435 alleles in Tamilian population were 0.46 and 0.54 respectively. The distribution of T3435 in this population was found to be greater than Africans and almost similar to Caucasians and Orientals. The distribution of CC, CT and TT genotypes was 0.18, 0.56 and 0.26 respectively. The frequency distribution of the CC genotype was lower in them when compared with Chinese and Africans whereas CT genotype was higher in comparison with all the major ethnic groups.  相似文献   

18.
Tacrolimus is a potent immunosuppressive agent used in lung transplantation and is a substrate for both P-glycoprotein (P-gp, encoded by the gene MDR1) and cytochrome (CYP) P4503A. A previous study by the authors identified a correlation between the tacrolimus blood level per dose with CYP3A5 and MDR1 gene polymorphisms in pediatric heart transplant patients. The objective of this study was to confirm the influence of these polymorphisms on tacrolimus dosing in adult lung transplant patients. Adult lung transplant patients who had been followed for at least 1 year after lung transplantation were studied. Tacrolimus blood level (ng/mL) per dose (mg/day) at 1, 3, 6, 9, and 12 months after transplantation was calculated as [L/D]. DNA was extracted from blood. MDR1 3435 CC, CT, and TT; MDR1 2677 GG, GT, and TT; and CYP3A5*1 (expressor) and *3 (nonexpressor) genotypes were determined by PCR amplification, direct sequencing, and sequence evaluation. Eighty-three patients were studied. At 1, 3, 6, 9, and 12 months after the transplant, a significant difference in [L/D] was found between the CYP3A5 expressor versus nonexpressor genotypes (mean +/- SD of 1.49 +/- 0.88 vs. 3.11 +/- 4.27, p = 0.01; 1.23 +/- 0.82 vs. 3.44 +/- 8.97, p = 0.05; 1.32 +/- 0.96 vs. 3.81 +/- 6.66, p = 0.005; 0.95 +/- 1.19 vs. 3.74 +/- 5.98, p = 0.0015; and 0.45 +/- 0.2 vs. 3.76 +/- 6.75, p = 0.0001, respectively). MDR1 G2677T and C3435T genotypes had only minimal effects on [L/D] at 1 and 3 months after transplantation. This study confirms the relationship of CYP3A5 polymorphisms to tacrolimus dosing in organ transplant patients. CYP3A5 expressor genotypes required a larger tacrolimus dose to achieve the same blood levels than the CYP3A5 nonexpressors at all time points during the first posttransplant year. This was not uniformly true for MDR1. The authors therefore conclude that tacrolimus dosing in adult lung transplant patients is associated with CYP3A5 gene polymorphisms.  相似文献   

19.
AIM: We aimed to investigate the effect of the ABCB1 gene on the pharmacokinetics of amlodipine. METHODS: Based on polymorphisms of the ABCB1 gene at positions 2677 and 3435, 26 healthy male participants were divided into three groups: subjects with 2677GG/3435CC (n = 9), 2677GT/3435CT (n = 9) and 2677TT/3435TT (n = 8). After a single-dose administration of 5 mg amlodipine, plasma concentrations of amlodipine were measured and its pharmacokinetic characteristics were compared according to ABCB1 genotype. RESULTS: The area under the plasma concentration-time curve was significantly lower in subjects with 2677TT/3435TT (140.8 +/- 35.6 ng h(-1) ml(-1)) and 2677GT/3435CT (149.8 +/- 40.1 ng h(-1) ml(-1)) than in those with 2677GG/3435CC (208.6 +/- 39.2 ng h(-1) ml(-1)) [95% confidence interval (CI) on the difference, 2677GG/3435CC vs. 2677GT/3435CT 12.0, 105.6, P < 0.01; 2677GG/3435CC vs. 2677TT/3435TT 19.6, 116.0, P < 0.01; 2677GT/3435CT vs. 2677TT/3435TT - 39.2, 57.2, P > 0.05]. The peak plasma concentrations were highest in subjects with 2677GG/3435CC (3.8 +/- 0.5 ng ml(-1)), lower in subjects with 2677GT/3435CT (3.2 +/- 0.5 ng ml(-1)) and 2677TT/3435TT (2.7 +/- 0.5 ng ml(-1)) in rank and showed a significant difference between those with 2677GG/3435CC and with 2677TT/3435TT (95% CI on the difference 0.4, 2.0, P < 0.01). However, the oral clearance was higher in subjects with 2677TT/3435TT (37.7 +/- 10.2 l h(-1)) than in those with 2677GT/3435CT (35.7 +/- 9.9 l h(-1)) and with 2677GG/3435CC (24.8 +/- 5.4 l h(-1)) and exhibited a significant difference between ABCB1 genotype groups (95% CI on the difference, 2677GG/3435CC vs. 2677GT/3435CT - 21.5, - 0.3, P < 0.05; 2677GG/3435CC vs. 2677TT/3435TT - 23.8, - 2.0, P < 0.05). CONCLUSION: Amlodipine pharmacokinetics was affected by the genetic polymorphisms of the ABCB1 gene in humans. These findings may provide a plausible explanation for interindividual variation in the disposition of amlodipine, although our study could not explain the exact mechanism(s) by which the polymorphic ABCB1 gene paradoxically reduces the plasma levels of amlodipine. Further evaluation is thus warranted.  相似文献   

20.
P-glycoprotein (PGP) is a membrane protein which determines drug disposition in humans (e.g. digoxin). It is also expressed in various leukocyte lineages with highest expression in CD56+ natural killer cells. Recently, a polymorphism in exon 26 (C3435T) of this gene was shown to correlate with intestinal PGP expression and function in humans. Carriers homozygous for this polymorphism (TT) showed more than two-fold lower PGP expression and higher digoxin plasma concentrations compared to the CC group. However, it is not known whether this mutation in the MDR1 gene is also associated with altered PGP function in peripheral blood cells. We therefore assessed efflux of the PGP-substrate rhodamine 123 from CD56+ natural killer cells. Leukocytes were isolated from whole blood of 10 CC, 10 CT and 11 TT healthy Caucasian individuals. Using flow cytometry, rhodamine fluorescence was determined in CD56+ cells. Moreover, MDRI mRNA was quantified in leukocytes by real-time polymerase chain reaction. Subjects with CC genotype revealed a significantly lower rhodamine fluorescence (i.e. higher PGP function) compared to individuals with TT genotype (51.1 +/- 11.4% versus 67.5 +/- 9.5%, p < 0.01). Heterozygous individuals had an intermediate rhodamine fluorescence (61.4 +/- 6.3%). MDR1 mRNA normalized for cyclophilin was lowest in the TT population (1.29 +/- 1.01), intermediate in heterozygous subjects (1.60 +/- 0.76) and highest in the CC group (1.91 +/- 0.94; not significant). In summary, subjects being homozygous for C in position 3435 of the MDR1 gene have a more pronounced efflux of rhodamine from CD56+ natural killer cells and a higher MDR1 mRNA expression in leukocytes than subjects with the TT genotype. Measurement of rhodamine efflux using flow-cytometry from peripheral blood cells allows assessment of genetically determined differences in P-glycoprotein function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号