首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Few year‐long vitamin D supplementation trials exist that match seasonal changes. The aim of this study was to determine whether daily oral vitamin D3 at 400 IU or 1000 IU compared with placebo affects annual bone mineral density (BMD) change in postmenopausal women in a 1‐year double‐blind placebo controlled trial in Scotland. White women aged 60 to 70 years (n = 305) were randomized to one of two doses of vitamin D or placebo. All participants started simultaneously in January/February 2009, attending visits at bimonthly intervals with 265 (87%) women attending the final visit and an additional visit 1 month after treatment cessation. BMD (Lunar iDXA) and 1,25‐dihydroxyvitamin D[1,25(OH)2D], N‐terminal propeptide of type 1 collagen [P1NP], C‐terminal telopeptide of type I collagen [CTX], and fibroblast growth factor‐23 [FGF23] were measured by immunoassay at the start and end of treatment. Circulating PTH, serum Ca, and total 25‐hydroxyvitamin D [25(OH)D] (latter by tandem mass spectrometry) were measured at each visit. Mean BMD loss at the hip was significantly less for the 1000 IU vitamin D group (0.05% ± 1.46%) compared with the 400 IU vitamin D or placebo groups (0.57% ± 1.33% and 0.60% ± 1.67%, respectively) (p < 0.05). Mean (± SD) baseline 25(OH)D was 33.8 ± 14.6 nmol/L; comparative 25(OH)D change for the placebo, 400 IU, and 1000 IU vitamin D groups was ?4.1 ± 11.5 nmol/L, +31.6 ± 19.8 nmol/L, and +42.6 ± 18.9 nmol/L, respectively. Treatment did not change markers of bone metabolism, except for a small reduction in PTH and an increase in serum calcium (latter with 1000 IU dose only). The discordance between the incremental increase in 25(OH)D between the 400 IU and 1000 IU vitamin D and effect on BMD suggests that 25(OH)D may not accurately reflect clinical outcome, nor how much vitamin D is being stored. © 2013 American Society for Bone and Mineral Research.  相似文献   

2.
Black women have lower serum 25-hydroxyvitamin D (25[OH]D) levels and higher parathyroid hormone (PTH) levels than white peers but lower bone turnover, suggesting skeletal resistance to PTH. Our objective was to determine if vitamin D supplementation (1,000?IU/day) would prevent bone loss and whether vitamin D receptor (VDR) polymorphisms modify the response. We performed a 2-year randomized, controlled, double-blind study of 1,000?IU vitamin D3 vs. placebo in postmenopausal black women with serum 25(OH)D levels <20?ng/mL (n?=?103). Measurements of 25(OH)D, PTH, and bone turnover were evaluated at baseline and 3, 6, 12, 18, and 24?months. DNA was extracted from peripheral blood leukocytes, and genotyping was conducted using standard techniques. Spine and hip bone mineral density (BMD) was measured at baseline and every 6?months. Serum 25(OH)D increased 11?ng/mL with vitamin D supplementation (p?<?0.001), with no change in the placebo group. Vitamin D supplementation produced a significant decline in PTH at 3?months only, with no differences in bone turnover between placebo and vitamin D at any time point. Two-year changes in BMD were not significantly different between placebo- and vitamin D-treated black women at any skeletal site. Despite similar elevations in 25(OH)D, femoral neck BMD was only responsive to vitamin D supplementation in FF subjects (n?=?47), not Ff/ff subjects (n?=?31). Vitamin D supplementation does not appear to influence bone loss in black women. However, in the FF polymorphism of the VDR gene group, vitamin D supplementation may retard the higher rate of bone loss.  相似文献   

3.

OBJECTIVE

To evaluate, in a posthoc analysis of a previous study, whether vitamin D repletion in postmenopausal women with insufficient vitamin D increases urinary calcium excretion, as vitamin D therapy might contribute to hypercalciuria and calcium stones in susceptible individuals, and the effect of vitamin D on the risk of urolithiasis warrants attention.

SUBJECTS AND METHODS

We recruited 18 women at ≥5 years after menopause who had vitamin D insufficiency (serum 25(OH)‐vitamin D, 16–24 mg/dL). We excluded women with a history of urolithiasis and kidney disease. Women had one calcium absorption study when vitamin D‐insufficient, received vitamin D therapy, and completed a second calcium absorption study when vitamin D‐replete. We fed subjects meals that mirrored the nutrient composition from self‐reported 7‐day diet diaries. To measure calcium absorption, we collected urine for 24 h during both visits.

RESULTS

We achieved vitamin D repletion in all women (25(OH)‐vitamin D before and after treatment, 22 and 63 mg/dL, respectively; P < 0.001). The mean calcium intake was 832 mg/day. Residual urine specimens were available for 16 women, allowing a measurement of 24‐h urinary calcium. Calcium excretion did not change after vitamin D therapy (212 before vs 195 mg/day after; P = 0.60). Of four women with hypercalciuria (>247 mg/day), calcium excretion decreased in three (377–312 mg/day, not significant).

CONCLUSION

Vitamin D supplementation did not increase the urinary calcium excretion in healthy postmenopausal women. Many stone formers are at risk of premature bone loss, vitamin D insufficiency, or both. Based on the present results we suggest a study of patients with hypercalciuria and nephrolithiasis to determine the risks of vitamin D therapy.  相似文献   

4.
Vitamin D insufficiency (VDI) is widely reported. In patients with normal PTH, the diagnosis rests on increases in fractional calcium absorption (FCA) when 25(OH)D increases above 30 ng/ml. However, estimates of increased FCA after correction of VDI vary dramatically, depending on study methods. We used a dual stable calcium isotope to clarify the impact of vitamin D repletion on FCA in postmenopausal women with VDI. We hypothesized that FCA would increase with vitamin D repletion. We studied postmenopausal women with VDI [25(OH)D = 16–24 ng/ml] and an estimated calcium intake ≤1100 mg daily. Exclusion criteria included hypercalcemia, hypercalciuria, renal insufficiency, nephrolithiasis, gastrointestinal disorders, osteomalacia, prior adult fragility fracture, baseline T‐score < ?3.0, and use of medications known to interfere with vitamin D or calcium metabolism. Each woman underwent inpatient FCA studies before and after correction of VDI. We used ergocalciferol 50,000 IU/d for 15 days to achieve vitamin D repletion. During each study, women consumed their typical diet. They ingested 44Ca orally with breakfast and received 42Ca intravenously. We collected urine for 24 h and measured its calcium isotope content by mass spectrometry. Eighteen women completed the study; all but two had normal PTH. During the first and second FCA studies, their mean 25(OH)D level was 22 ± 4 and 64 ± 21 ng/ml, respectively (p < 0.001). Subjects' average FCA was 24 ± 7% initially and 27 ± 6% after vitamin D repletion (p = 0.04). Thus, FCA increased by 3 ± 1% with correction of VDI. Postmenopausal women with VDI experience small FCA increments with vitamin D therapy. In existing literature, this small change in FCA does not associate with lower fracture rates or consistently higher bone mass. Future studies should ascertain whether small FCA increments favorably affect the skeleton.  相似文献   

5.
A higher calcium intake is still the primary recommendation for the prevention of osteoporosis, whereas vitamin D deficiency is often not addressed. To study the relative importance of dietary calcium intake and serum 25‐hydroxyvitamin D [25(OH)D] status in regard to hip BMD, 4958 community‐dwelling women and 5003 men ≥20 yr of age from the U.S. NHANES III population‐based survey were studied. Calcium supplement users and individuals with a prior radius or hip fracture were excluded. We calculated standardized means for BMD by quartiles of sex‐specific calcium intake for three 25(OH)D categories (<50, 50–74, and 75+ nM) among men and women, separately controlling for other important predictors of BMD. A higher calcium intake was significantly associated with higher BMD (p value for trend: p = 0.005) only for women with 25(OH)D status <50 nM, whereas calcium intake beyond the upper end of the lowest quartile (>566 mg/d) was not significantly associated with BMD at 25(OH)D concentrations >50 nM. Among men, there was no significant association between a higher calcium intake beyond the upper end of the lowest quartile (626 mg/d) and BMD within all 25(OH)D categories. Among both sexes, BMD increased stepwise and significantly with higher 25(OH)D concentrations (<50, 50–74, 75+ nM; p value for trend: women < 0.0001; men = 0.0001). Among men and women, 25(OH)D status seems to be the dominant predictor of BMD relative to calcium intake. Only women with 25(OH)D concentrations <50 nM seem to benefit from a higher calcium intake.  相似文献   

6.
Patients with primary hyperparathyroidism (PHPT) have higher bone turnover, lower bone mineral density (BMD), and an increased risk of fractures. They also have a high incidence of low vitamin D levels (25‐OH‐vitamin D <50 nmol/L) that could worsen the negative effect on the bone. In this double‐blinded clinical trial, 150 patients with PHPT were randomized, after successful parathyroidectomy (PTX), to 1‐year daily treatment with either cholecalciferol 1600 IU and calcium carbonate 1000 mg (D +) or calcium carbonate alone (D–). BMD was measured in the lumbar spine, femoral neck, total hip, distal and 33% radius using dual‐energy X‐ray absorptiometry (DXA) before surgery and after 1 year of study medication. Median age was 60 (range 30–80) years and there were 119 (79%) women and 31 (21%) men; 76% had 25‐OH‐D <50 nmol/L before PTX and 50% had persistent elevated parathyroid hormone (PTH) 6 weeks after PTX. A similar increase in BMD in the lumbar spine, femoral neck, and total hip was observed in both groups (D + : 3.6%, 3.2%, and 2.7%, p < 0.001, respectively; and D–: 3.0%, 2.3%, and 2.1%, respectively, p < 0.001). Patients with vitamin D supplementation also increased their BMD in distal radius (median 2.0%; interquartile range, ?1.7% to 5.4%; p = 0.013). The changes in BMD, especially in the hips, were correlated to the baseline concentrations of PTH, ionized calcium, and bone markers (p < 0.001). A benefit from vitamin D substitution was observed among patients with a persistent postoperative PTH elevation, who also improved their BMD at 33% radius and radius ultradistal (p < 0.05). In conclusion, except for a minor improvement of radius BMD, our data show no beneficial effect on BMD or bone turnover markers of vitamin D supplementation after PTX. Preoperative PTH seems to have the strongest association with improvement in BMD. © 2014 American Society for Bone and Mineral Research.  相似文献   

7.
In this 2-year randomized controlled study of 167 men >50 years of age, supplementation with calcium-vitamin D3-fortified milk providing an additional 1000 mg of calcium and 800 IU of vitamin D3 per day was effective for suppressing PTH and stopping or slowing bone loss at several clinically important skeletal sites at risk for fracture. INTRODUCTION: Low dietary calcium and inadequate vitamin D stores have long been implicated in age-related bone loss and osteoporosis. The aim of this study was to assess the effects of calcium and vitamin D3 fortified milk on BMD in community living men >50 years of age. MATERIALS AND METHODS: This was a 2-year randomized controlled study in which 167 men (mean age +/- SD, 61.9 +/- 7.7 years) were assigned to receive either 400 ml/day of reduced fat ( approximately 1%) ultra-high temperature (UHT) milk containing 1000 mg of calcium plus 800 IU of vitamin D3 or to a control group receiving no additional milk. Primary endpoints were changes in BMD, serum 25(OH)D, and PTH. RESULTS: One hundred forty-nine men completed the study. Baseline characteristics between the groups were not different; mean dietary calcium and serum 25(OH)D levels were 941 +/- 387 mg/day and 77 +/- 23 nM, respectively. After 2 years, the mean percent change in BMD was 0.9-1.6% less in the milk supplementation compared with control group at the femoral neck, total hip, and ultradistal radius (range, p < 0.08 to p < 0.001 after adjusting for covariates). There was a greater increase in lumbar spine BMD in the milk supplementation group after 12 and 18 months (0.8-1.0%, p < or = 0.05), but the between-group difference was not significant after 2 years (0.7%; 95% CI, -0.3, 1.7). Serum 25(OH)D increased and PTH decreased in the milk supplementation relative to control group after the first year (31% and -18%, respectively; both p < 0.001), and these differences remained after 2 years. Body weight remained unchanged in both groups at the completion of the study. CONCLUSIONS: Supplementing the diet of men >50 years of age with reduced-fat calcium- and vitamin D3-enriched milk may represent a simple, nutritionally sound and cost-effective strategy to reduce age-related bone loss at several skeletal sites at risk for fracture in the elderly.  相似文献   

8.
Menopause and increasing age are associated with a decrease in calcium absorption that can contribute to the pathogenesis of osteoporosis. We hypothesized that alendronate plus vitamin D3 (ALN + D) would increase fractional calcium absorption (FCA). In this randomized, double‐blind, placebo‐controlled multicenter clinical trial, 56 postmenopausal women with 25‐hydroxyvitamin D [25(OH)D] concentrations of 25 ng/mL or less and low bone mineral density (BMD) received 5 weekly doses of placebo or alendronate 70 mg plus vitamin D3 2800 IU (ALN + D). Calcium intake was stabilized to approximately 1200 mg/d prior to randomization. FCA was determined using a dual‐tracer stable‐calcium isotope method. FCA and 25(OH)D were similar between treatment groups at baseline (0.31 ± 0.12 ng/mL and 19.8 ± 4.7 ng/mL, respectively). After 1 month of treatment, subjects randomized to ALN + D experienced a significant least squares (LS) mean [95% confidence interval (CI)] increase in FCA [0.070 (0.042, 0.098)], whereas FCA did not change significantly in the placebo group [?0.016 (?0.044, 0.012)]. After ALN + D treatment, patients had higher 25(OH)D levels (LS mean difference 7.3 ng/mL, p < .001). The rise in serum 1,25‐dihydroxyvitamin D3 (p < .02) and parathyroid hormone (p < .001) were greater in the ALN + D group than in placebo‐treated patients. ALN + D was associated with an increase in FCA of 0.07. To our knowledge, there is no other trial showing such a marked rise in calcium absorption owing to treatment with a bisphosphonate or owing to a small rise in 25(OH)D. This unique response of ALN + D is important for the treatment of osteoporosis, but the exact mechanism requires further study. © 2011 American Society for Bone and Mineral Research  相似文献   

9.
Vitamin D insufficiency is a risk for both skeletal and nonskeletal health. However, some ambiguity remains about threshold serum 25(OH)D for vitamin D insufficiency. To determine the threshold serum 25(OH)D to maintain normal calcium availability without elevation in serum parathyroid hormone (PTH) among Japanese subjects with various calcium intakes, we conducted a multicenter prospective open-labeled study. We recruited 107 ambulatory subjects without disorders affecting vitamin D metabolism to whom oral vitamin D3 800?IU/day for 4?weeks or 1,200?IU/day for 8?weeks was given. Serum 25(OH)D, PTH, calcium, phosphate, and magnesium were measured before and after vitamin D3 supplementation. Calcium intake was assessed by questionnaires. When all the data were combined, serum 25(OH)D was negatively correlated with PTH. The cubic spline curve between serum 25(OH)D and PTH indicated PTH reached its plateau between 35 and 40?pg/ml at 25(OH)D between 25 and 30?ng/ml. Vitamin D3 supplementation increased serum 25(OH)D and decreased PTH. Change in PTH correlated positively with baseline serum 25(OH)D. From the regression analyses, baseline serum 25(OH)D above 28?ng/ml corresponded to the threshold level without reduction in PTH after vitamin D3 supplementation. In multivariate regression analyses, age but not calcium intake was a significant determinant of PTH. We concluded that a serum 25(OH)D level of 28?ng/ml was identified as a threshold for vitamin D insufficiency necessary to stabilize PTH to optimal levels.  相似文献   

10.
The effects of postmenopausal hormone replacement therapy (HRT) and vitamin D3 on vitamin D metabolites (25OHD and 1,25(OH)2D) were studied in a population-based prospective 1-year study. The serum concentrations of intact parathyroid hormone (PTH), calcium, and phosphate were also studied. A total of 72 women were randomized into four treatment groups: HRT group (sequential combination of 2 mg estradiol valerate and 1 mg cyproterone acetate), Vit D3 group (vitamin D3 300 IU/day + calcium lactate 500 mg/day), HRT + Vit D3 group (both above) and placebo group (calcium lactate 500 mg/day). Serum samples were taken in March–April, when vitamin D formation from sunlight in Finland is minimal after the dark winter. Serum concentrations of 25OHD increased in the Vit D3 group (33.5%, P < 0.001) and in the HRT + Vit D3 group (38.2%, P < 0.001) but had not changed significantly in the HRT and placebo groups at the 1-year follow-up examination. Serum concentrations of calcitriol (1,25(OH)2D) increased, however, only in the HRT group (23.7%, P < 0.05), and remained unchanged in other groups. Serum concentrations of PTH decreased by 23.2% (P < 0.05) in the placebo group, but did not change significantly in the other three groups. The concentrations of serum calcium increased in the nonhormone groups (P < 0.001), whereas serum phosphate concentrations decreased in the hormone groups (P < 0.05 and 0.001). Our results confirm the positive effect of 1 year of HRT on serum calcitriol. Vitamin D3 supplementation increased 25OHD concentrations, but did not affect calcitriol concentrations even though the initial levels were low. Interestingly, the combination of HRT and vitamin D3 did not increase serum calcitriol concentrations as much as HRT alone. Received: 14 June 1996 / Accepted: 17 June 1997  相似文献   

11.
Poor vitamin D status is common in the elderly and is associated with bone loss and fractures. The aim was to assess worldwide vitamin D status in postmenopausal women with osteoporosis according to latitude and economic status, in relation to parathyroid function, bone turnover markers, and BMD. The study was performed in 7441 postmenopausal women from 29 countries participating in a clinical trial on bazedoxifene (selective estrogen receptor modulator), with BMD T‐score at the femoral neck or lumbar spine ≤ ?2.5 or one to five mild or moderate vertebral fractures. Serum 25(OH)D, PTH, alkaline phosphatase (ALP), bone turnover markers osteocalcin (OC) and C‐terminal cross‐linked telopeptides of type I collagen (CTX), and BMD of the lumbar spine, total hip, femoral neck, and trochanter were measured. The mean serum 25(OH)D level was 61.2 ± 22.4 nM. The prevalence of 25(OH)D <25, 25–50, 50–75, and >75 nM was 5.9%, 29.4%, 43.5%, and 21.2%, respectively, in winter and 3.0%, 22.2%, 47.2%, and 27.5% in summer. Worldwide, a negative correlation between 25(OH)D and latitude was observed. With increasing 25(OH)D categories of <25, 25–50, 50–75, and >75 nM, mean PTH, OC, and CTX were decreasing (p < 0.001), whereas BMD of all sites was increasing (p < 0.001). A threshold in the positive relationship between 25(OH)D and different BMD parameters was visible at a 25(OH)D level of 50 nM. Our study showed a high prevalence of low 25(OH)D in postmenopausal women with osteoporosis worldwide. Along with latitude, affluence seems to be an important factor for serum 25(OH)D level, especially in Europe, where it is strongly correlated with latitude.  相似文献   

12.
Roux‐en‐Y gastric bypass (RYGB) surgery has negative effects on bone, mediated in part by effects on nutrient absorption. Not only can RYGB result in vitamin D malabsorption, but the bypassed duodenum and proximal jejunum are also the predominant sites of active, transcellular, 1,25(OH)2D‐mediated calcium (Ca) uptake. However, Ca absorption occurs throughout the intestine, and those who undergo RYGB might maintain sufficient Ca absorption, particularly if vitamin D status and Ca intake are robust. We determined the effects of RYGB on intestinal fractional Ca absorption (FCA) while maintaining ample 25OHD levels (goal ≥30 ng/mL) and Ca intake (1200 mg daily) in a prospective cohort of 33 obese adults (BMI 44.7 ± 7.4 kg/m2). FCA was measured preoperatively and 6 months postoperatively with a dual stable isotope method. Other measures included calciotropic hormones, bone turnover markers, and BMD by DXA and QCT. Mean 6‐month weight loss was 32.5 ± 8.4 kg (25.8% ± 5.2% of preoperative weight). FCA decreased from 32.7% ± 14.0% preoperatively to 6.9% ± 3.8% postoperatively (p < 0.0001), despite median (interquartile range) 25OHD levels of 41.0 (33.1 to 48.5) and 36.5 (28.8 to 40.4) ng/mL, respectively. Consistent with the FCA decline, 24‐hour urinary Ca decreased, PTH increased, and 1,25(OH)2D increased (p ≤ 0.02). Bone turnover markers increased markedly, areal BMD decreased at the proximal femur, and volumetric BMD decreased at the spine (p < 0.001). Those with lower postoperative FCA had greater increases in serum CTx (ρ = ?0.43, p = 0.01). Declines in FCA and BMD were not correlated over the 6 months. In conclusion, FCA decreased dramatically after RYGB, even with most 25OHD levels ≥30 ng/mL and with recommended Ca intake. RYGB patients may need high Ca intake to prevent perturbations in Ca homeostasis, although the approach to Ca supplementation needs further study. Decline in FCA could contribute to the decline in BMD after RYGB, and strategies to avoid long‐term skeletal consequences should be investigated. © 2015 American Society for Bone and Mineral Research.  相似文献   

13.
14.
The study was designed to examine the effect of hormone replacement therapy (HRT) and low-dose vitamin D (Vit D) supplementation on the prevention of bone loss in non-osteoporotic early postmenopausal women and to determine whether Vit D supplementation can give additional benefit to an already optimized estrogen regimen. The effects of HRT and Vit D on bone mineral density (BMD) were studied in postmenopausal women in a 2.5-year randomized placebo-controlled study. The study population was a subgroup of the Kuopio Osteoporosis Risk Factor and Prevention Study (OSTPRE) (n=13100). A total of 464 early postmenopausal women were randomized to four groups: (1) HRT (a sequential combination of 2 mg estradiol valerate and 1 mg cyproterone acetate (E2Val/CPA); (2) vitamin D3 (cholecalciferol, 300 IU/day); (3) HRT+Vit D; and (4) placebo (calcium lactate; 93 mg Ca2+/day). Lumbar (L1–4) and femoral neck BMD were determined by dual-energy X-ray absorptiometry before and after 2.5 years of treatment. After 2.5 years, lumbar BMD had increased by 1.8% in the HRT group (p<0.001) and by 1.4% in the HRT+Vit D group (p=0.002), whereas lumbar BMD had decreased by 3.5% (p<0.001) in the Vit D group and by 3.7% (p<0.001) in the placebo group. The loss of femoral neck BMD was lower in the HRT (–0.3%) and the HRT+Vit D (–0.9%) groups compared with the Vit D (–2.4%) and the placebo groups (–3.7%). This study confirms the beneficial effect of HRT on BMD. It also shows that low-dose vitamin D supplementation has only a minor effect in the prevention of osteoporosis in non-osteoporotic early postmenopausal women and does not give any benefit additional to that of HRT alone.  相似文献   

15.
Relationships between 1,25‐dihydroxyvitamin D (1,25(OH)2D) and skeletal outcomes are uncertain. We examined the associations of 1,25(OH)2D with bone mineral density (BMD), BMD change, and incident non‐vertebral fractures in a cohort of older men and compared them with those of 25‐hydroxyvitamin D (25OHD). The study population included 1000 men (aged 74.6 ± 6.2 years) in the Osteoporotic Fractures in Men (MrOS) study, of which 537 men had longitudinal dual‐energy X‐ray absorptiometry (DXA) data (4.5 years of follow‐up). A case‐cohort design and Cox proportional hazards models were used to test the association between vitamin D metabolite levels and incident nonvertebral and hip fractures. Linear regression models were used to estimate the association between vitamin D measures and baseline BMD and BMD change. Interactions between 25OHD and 1,25(OH)2D were tested for each outcome. Over an average follow‐up of 5.1 years, 432 men experienced incident nonvertebral fractures, including 81 hip fractures. Higher 25OHD was associated with higher baseline BMD, slower BMD loss, and lower hip fracture risk. Conversely, men with higher 1,25(OH)2D had lower baseline BMD. 1,25(OH)2D was not associated with BMD loss or nonvertebral fracture. Compared with higher levels of calcitriol, the risk of hip fracture was higher in men with the lowest 1,25(OH)2D levels (8.70 to 51.60 pg/mL) after adjustment for baseline hip BMD (hazard ratio [HR] = 1.99, 95% confidence interval [CI] 1.19–3.33). Adjustment of 1,25(OH)2D data for 25OHD (and vice versa) had little effect on the associations observed but did attenuate the hip fracture association of both vitamin D metabolites. In older men, higher 1,25(OH)2D was associated with lower baseline BMD but was not related to the rate of bone loss or nonvertebral fracture risk. However, with BMD adjustment, a protective association for hip fracture was found with higher 1,25(OH)2D. The associations of 25OHD with skeletal outcomes were generally stronger than those for 1,25(OH)2D. These results do not support the hypothesis that measures of 1,25(OH)2D improve the ability to predict adverse skeletal outcomes when 25OHD measures are available. © 2015 American Society for Bone and Mineral Research.  相似文献   

16.
The optimal dose of vitamin D to optimize bone metabolism in the elderly is unclear. We tested the hypothesis that vitamin D, at a dose higher than recommended by the Institute of Medicine (IOM), has a beneficial effect on bone remodeling and mass. In this double‐blind trial we randomized 257 overweight elderly subjects to receive 1000 mg of elemental calcium citrate/day, and the daily equivalent of 3750 IU/day or 600 IU/day of vitamin D3 for 1 year. The subjects’ mean age was 71 ± 4 years, body mass index 30 ± 4 kg/m2, 55% were women, and 222 completed the 12‐month follow‐up. Mean serum 25 hydroxyvitamin D (25OHD) was 20 ng/mL, and rose to 26 ng/mL in the low‐dose arm, and 36 ng/mL in the high‐dose arm, at 1 year (p < 0.05). Plasma parathyroid hormone, osteocalcin, and C‐terminal telopeptide (Cross Laps) levels decreased significantly by 20% to 22% in both arms, but there were no differences between the two groups for any variable, at 6 or 12 months, with the exception of serum calcitriol, which was higher in the high‐dose group at 12 months. Bone mineral density (BMD) increased significantly at the total hip and lumbar spine, but not the femoral neck, in both study arms, whereas subtotal body BMD increased in the high‐dose group only, at 1 year. However, there were no significant differences in percent change BMD between the two study arms at any skeletal site. Subjects with serum 25OHD <20 ng/mL and PTH level >76 pg/mL showed a trend for higher BMD increments at all skeletal sites, in the high‐dose group, that reached significance at the hip. Adverse events were comparable in the two study arms. This controlled trial shows little additional benefit in vitamin D supplementation at a dose exceeding the IOM recommendation of 600 IU/day on BMD and bone markers, in overweight elderly individuals. © 2017 American Society for Bone and Mineral Research.  相似文献   

17.
Children with calcium‐deficiency rickets may have increased vitamin D requirements and respond differently to vitamin D2 and vitamin D3. Our objective was to compare the metabolism of vitamins D2 and D3 in rachitic and control children. We administered an oral single dose of vitamin D2 or D3 of 1.25 mg to 49 Nigerian children—28 with active rickets and 21 healthy controls. The primary outcome measure was the incremental change in vitamin D metabolites. Baseline serum 25‐hydroxyvitamin D [25(OH)D] concentrations ranged from 7 to 24 and 15 to 34 ng/mL in rachitic and control children, respectively (p < .001), whereas baseline 1,25‐dihydroxyvitamin D [1,25(OH)2D] values (mean ± SD) were 224 ± 72 and 121 ± 34 pg/mL, respectively (p < .001), and baseline 24,25‐dihydroxyvitamin D [24,25(OH)2D] values were 1.13 ± 0.59 and 4.03 ± 1.33 ng/mL, respectively (p < .001). The peak increment in 25(OH)D was on day 3 and was similar with vitamins D2 and D3 in children with rickets (29 ± 17 and 25 ± 11 ng/mL, respectively) and in control children (33 ± 13 and 31 ± 16 ng/mL, respectively). 1,25(OH)2D rose significantly (p < .001) and similarly (p = .18) on day 3 by 166 ± 80 and 209 ± 83 pg/mL after vitamin D2 and D3 administration, respectively, in children with rickets. By contrast, control children had no significant increase in 1,25(OH)2D (19 ± 28 and 16 ± 38 pg/mL after vitamin D2 and D3 administration, respectively). We conclude that in the short term, vitamins D2 and D3 similarly increase serum 25(OH)D concentrations in rachitic and healthy children. A marked increase in 1,25(OH)2D in response to vitamin D distinguishes children with putative dietary calcium‐deficiency rickets from healthy children, consistent with increased vitamin D requirements in children with calcium‐deficiency rickets. © 2010 American Society for Bone and Mineral Research  相似文献   

18.
Vitamin D plays an essential role in regulating calcium and phosphate metabolism and maintaining a healthy mineralized skeleton. Humans obtain vitamin D from sunlight exposure, dietary foods and supplements. There are two forms of vitamin D: vitamin D3 and vitamin D2. Vitamin D3 is synthesized endogenously in the skin and found naturally in oily fish and cod liver oil. Vitamin D2 is synthesized from ergosterol and found in yeast and mushrooms. Once vitamin D enters the circulation it is converted by 25-hydroxylase in the liver to 25-hydroxyvitamin D [25(OH)D], which is further converted by the 25-hydroxyvitamin D-1α-hydroxylase in the kidneys to the active form, 1,25-dihydroxyvitamin D [1,25(OH)2D]. 1,25(OH)2D binds to its nuclear vitamin D receptor to exert its physiologic functions. These functions include: promotion of intestinal calcium and phosphate absorption, renal tubular calcium reabsorption, and calcium mobilization from bone. The Endocrine Society's Clinical Practice Guideline defines vitamin D deficiency, insufficiency, and sufficiency as serum concentrations of 25(OH)D of <20 ng/mL, 21–29 ng/mL, and 30–100 ng/mL, respectively. Vitamin D deficiency is a major global public health problem in all age groups. It is estimated that 1 billion people worldwide have vitamin D deficiency or insufficiency. This pandemic of vitamin D deficiency and insufficiency is attributed to a modern lifestyle and environmental factors that restrict sunlight exposure, which is essential for endogenous synthesis of vitamin D in the skin. Vitamin D deficiency is the most common cause of rickets and osteomalacia, and can exacerbate osteoporosis. It is also associated with chronic musculoskeletal pain, muscle weakness, and an increased risk of falling. In addition, several observational studies observed the association between robust levels of serum 25(OH)D in the range of 40–60 ng/mL with decreased mortality and risk of development of several types of chronic diseases. Therefore, vitamin D-deficient patients should be treated with vitamin D2 or vitamin D3 supplementation to achieve an optimal level of serum 25(OH)D. Screening of vitamin D deficiency by measuring serum 25(OH)D is recommended in individuals at risk such as patients with diseases affecting vitamin D metabolism and absorption, osteoporosis, and older adults with a history of falls or nontraumatic fracture. It is important to know if a laboratory assay measures total 25(OH)D or only 25(OH)D3. Using assays that measure only 25(OH)D3 could underestimate total levels of 25(OH)D and may mislead physicians who treat patients with vitamin D2 supplementation.  相似文献   

19.
Although several observational studies have demonstrated an association between vitamin K status and bone mineral density (BMD) in postmenopausal women, no placebo-controlled intervention trials of the effect of vitamin K1 supplementation on bone loss have been reported thus far. In the trial presented here we have investigated the potential complementary effect of vitamin K1 (1 mg/day) and a mineral + vitamin D supplement (8 µg/day) on postmenopausal bone loss. The design of our study was a randomized, double-blind, placebo-controlled intervention study; 181 healthy postmenopausal women between 50 and 60 years old were recruited, 155 of whom completed the study. During the 3-year treatment period, participants received a daily supplement containing either placebo, or calcium, magnesium, zinc, and vitamin D (MD group), or the same formulation with additional vitamin K1 (MDK group). The main outcome was the change in BMD of the femoral neck and lumbar spine after 3 years, as measured by DXA. The group receiving the supplement containing additional vitamin K1 showed reduced bone loss of the femoral neck: after 3 years the difference between the MDK and the placebo group was 1.7% (95% Cl: 0.35–3.44) and that between the MDK and MD group was 1.3% (95% Cl: 0.10–3.41). No significant differences were observed among the three groups with respect to change of BMD at the site of the lumbar spine. If co-administered with minerals and vitamin D, vitamin K1 may substantially contribute to reducing postmenopausal bone loss at the site of the femoral neck.  相似文献   

20.
Low vitamin K status is associated with low BMD and increased fracture risk. Additionally, a specific menaquinone, menatetrenone (MK4), may reduce fracture risk. However, whether vitamin K plays a role in the skeletal health of North American women remains unclear. Moreover, various K vitamers (e.g., phylloquinone and MK4) may have differing skeletal effects. The objective of this study was to evaluate the impact of phylloquinone or MK4 treatment on markers of skeletal turnover and BMD in nonosteoporotic, postmenopausal, North American women. In this double‐blind, placebo‐controlled study, 381 postmenopausal women received phylloquinone (1 mg daily), MK4 (45 mg daily), or placebo for 12 mo. All participants received daily calcium and vitamin D3 supplementation. Serum bone‐specific alkaline phosphatase (BSALP) and n‐telopeptide of type 1 collagen (NTX) were measured at baseline and 1, 3, 6, and 12 mo. Lumbar spine and proximal femur BMD and proximal femur geometry were measured by DXA at baseline and 6 and 12 mo. At baseline, the three treatment groups did not differ in demographics or study endpoints. Compliance with calcium, phylloquinone, and MK4 treatment was 93%, 93%, and 87%, respectively. Phylloquinone and MK4 treatment reduced serum undercarboxylated osteocalcin but did not alter BSALP or NTX. No effect of phylloquinone or MK4 on lumbar spine or proximal femur BMD or proximal femur geometric parameters was observed. This study does not support a role for vitamin K supplementation in osteoporosis prevention among healthy, postmenopausal, North American women receiving calcium and vitamin D supplementation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号