首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 107 毫秒
1.
Certain missense mutations affecting LRP5 cause high bone mass (HBM) in humans. Based on in vitro evidence, HBM LRP5 receptors are thought to exert their effects by providing resistance to binding/inhibition of secreted LRP5 inhibitors such as sclerostin (SOST) and Dickkopf homolog‐1 (DKK1). We previously reported the creation of two Lrp5 HBM knock‐in mouse models, in which the human p.A214V or p.G171V missense mutations were knocked into the endogenous Lrp5 locus. To determine whether HBM knock‐in mice are resistant to SOST‐ or DKK1‐induced osteopenia, we bred Lrp5 HBM mice with transgenic mice that overexpress human SOST in osteocytes (8kbDmp1SOST) or mouse DKK1 in osteoblasts and osteocytes (2.3kbCol1a1Dkk1). We observed that the 8kbDmp1SOST transgene significantly lowered whole‐body bone mineral density (BMD), bone mineral content (BMC), femoral and vertebral trabecular bone volume fraction (BV/TV), and periosteal bone‐formation rate (BFR) in wild‐type mice but not in mice with Lrp5 p.G171V and p.A214V alleles. The 2.3kbCol1a1‐Dkk1 transgene significantly lowered whole‐body BMD, BMC, and vertebral BV/TV in wild‐type mice and affected p.A214V mice more than p.G171V mice. These in vivo data support in vitro studies regarding the mechanism of HBM‐causing mutations, and imply that HBM LRP5 receptors differ in their relative sensitivity to inhibition by SOST and DKK1. © 2015 American Society for Bone and Mineral Research.  相似文献   

2.
The bone formation inhibitor sclerostin encoded by SOST binds in vitro to low‐density lipoprotein receptor‐related protein (LRP) 5/6 Wnt co‐receptors, thereby inhibiting Wnt/β‐catenin signaling, a central pathway of skeletal homeostasis. Lrp5/LRP5 deficiency results in osteoporosis‐pseudoglioma (OPPG), whereas Sost/SOST deficiency induces lifelong bone gain in mice and humans. Here, we analyzed the bone phenotype of mice lacking Sost (Sost?/?), Lrp5 (Lrp5?/?), or both (Sost?/?;Lrp5?/?) to elucidate the mechanism of action of Sost in vivo. Sost deficiency–induced bone gain was significantly blunted in Sost?/?;Lrp5?/? mice. Yet the Lrp5 OPPG phenotype was fully rescued in Sost?/?;Lrp5?/? mice and most bone parameters were elevated relative to wild‐type. To test whether the remaining bone increases in Sost?/?;Lrp5?/? animals depend on Lrp6, we treated wild‐type, Sost?/?, and Sost?/?;Lrp5?/? mice with distinct Lrp6 function blocking antibodies. Selective blockage of Wnt1 class–mediated Lrp6 signaling reduced cancellous bone mass and density in wild‐type mice. Surprisingly, it reversed the abnormal bone gain in Sost?/? and Sost?/?;Lrp5?/? mice to wild‐type levels irrespective of enhancement or blockage of Wnt3a class‐mediated Lrp6 activity. Thus, whereas Sost deficiency–induced bone anabolism partially requires Lrp5, it fully depends on Wnt1 class–induced Lrp6 activity. These findings indicate: first, that OPPG syndrome patients suffering from LRP5 loss‐of‐function should benefit from principles antagonizing SOST/sclerostin action; and second, that therapeutic WNT signaling inhibitors may stop the debilitating bone overgrowth in sclerosing disorders related to SOST deficiency, such as sclerosteosis, van Buchem disease, and autosomal dominant craniodiaphyseal dysplasia, which are rare disorders without viable treatment options. © 2014 American Society for Bone and Mineral Research.  相似文献   

3.
Apert syndrome is one of the most severe craniosynostoses, resulting from gain‐of‐function mutations in fibroblast growth factor receptor 2 (FGFR2). Previous studies have shown that gain‐of‐function mutations of FGFR2 (S252W or P253R) cause skull malformation of human Apert syndrome by affecting both chondrogenesis and osteogenesis, underscoring the key role of FGFR2 in bone development. However, the effects of FGFR2 on bone formation at the adult stage have not been fully investigated. To investigate the role of FGFR2 in bone formation, we generated mice with tamoxifen‐inducible expression of mutant FGFR2 (P253R) at the adult stage. Mechanical bone marrow ablation (BMX) was performed in both wild‐type and Fgfr2 mutant (MT) mice. Changes in newly formed trabecular bone were assessed by micro‐computed tomography and bone histomorphometry. We found that MT mice exhibited increased trabecular bone formation and decreased bone resorption after BMX accompanied with a remarkable increase in bone marrow stromal cell recruitment and proliferation, osteoblast proliferation and differentiation, and enhanced Wnt/β‐catenin activity. Furthermore, pharmacologically inhibiting Wnt/β‐catenin signaling can partially reverse the increased trabecular bone formation and decreased bone resorption in MT mice after BMX. Our data demonstrate that gain‐of‐function mutation in FGFR2 exerts a Wnt/β‐catenin‐dependent anabolic effect on trabecular bone by promoting bone formation and inhibiting bone resorption at the adult stage. © 2017 American Society for Bone and Mineral Research.  相似文献   

4.
The cell surface receptor low‐density lipoprotein receptor‐related protein 5 (LRP5) is a key regulator of bone mass and bone strength. Heterozygous missense mutations in LRP5 cause autosomal dominant high bone mass (HBM) in humans by reducing binding to LRP5 by endogenous inhibitors, such as sclerostin (SOST). Mice heterozygous for a knockin allele (Lrp5p.A214V) that is orthologous to a human HBM‐causing mutation have increased bone mass and strength. Osteogenesis imperfecta (OI) is a skeletal fragility disorder predominantly caused by mutations that affect type I collagen. We tested whether the LRP5 pathway can be used to improve bone properties in animal models of OI. First, we mated Lrp5+/p.A214V mice to Col1a2+/p.G610C mice, which model human type IV OI. We found that Col1a2+/p.G610C;Lrp5+/p.A214V offspring had significantly increased bone mass and strength compared to Col1a2+/p.G610C;Lrp5+/+ littermates. The improved bone properties were not a result of altered mRNA expression of type I collagen or its chaperones, nor were they due to changes in mutant type I collagen secretion. Second, we treated Col1a2+/p.G610C mice with a monoclonal antibody that inhibits sclerostin activity (Scl‐Ab). We found that antibody‐treated mice had significantly increased bone mass and strength compared to vehicle‐treated littermates. These findings indicate increasing bone formation, even without altering bone collagen composition, may benefit patients with OI. © 2014 American Society for Bone and Mineral Research.  相似文献   

5.
Bone morphogenetic proteins (BMPs) are known as ectopic bone inducers. The FDA approved BMPs (BMP2 and BMP7) for clinical use. However, direct effects of BMPs on endogenous bone metabolism are not yet well known. We conditionally disrupted BMP receptor type IA (BMPRIA) in osteoblasts during weanling and adult stages to show the impact of BMP signaling on endogenous bone modeling and remodeling. Cre recombination was detected in immature osteoblasts in the periosteum, osteoblasts, and osteocytes but not in chondrocytes and osteoclasts after tamoxifen administration. Bmpr1a conditional knockout mice (cKO) showed increased bone mass primarily in trabecular bone at P21 and 22 wk as determined by H&E staining. Vertebrae, tails, and ribs showed increased radiodensity at 22 wk, consistent with a significant increase in BMD. Both μCT and histomorphometry showed an increase in trabecular BV/TV and thickness of cKO adult bones, whereas osteoclast number, bone formation rate, and mineral apposition rate were decreased. Expression levels of bone formation markers (Runx2 and Bsp), resorption markers (Mmp9, Ctsk, and Tracp), and Rankl were decreased, and Opg was increased in adult bones, resulting in a reduction in the ratio of Rankl to osteoprotegerin (Opg). The reduction in osteoclastogenesis through the RANKL–OPG pathway was also observed in weanling stages and reproduced in newborn calvaria culture. These results suggest that Bmpr1a cKO increased endogenous bone mass primarily in trabecular bone with decreased osteoclastogenesis through the RANKL–OPG pathway. We conclude that BMPRIA signaling in osteoblasts affects both bone formation and resorption to reduce endogenous bone mass in vivo.  相似文献   

6.
Sclerosteosis is a rare autosomal recessive bone disorder marked by hyperostosis of the skull and tubular bones. Initially, we and others reported that sclerosteosis was caused by loss‐of‐function mutations in SOST, encoding sclerostin. More recently, we identified disease‐causing mutations in LRP4, a binding partner of sclerostin, in three sclerosteosis patients. Upon binding to sclerostin, LRP4 can inhibit the canonical WNT signaling that is known to be an important pathway in the regulation of bone formation. To further investigate the role of LRP4 in the bone formation process, we generated an Lrp4 mutated sclerosteosis mouse model by introducing the p.Arg1170Gln mutation in the mouse genome. Extensive analysis of the bone phenotype of the Lrp4R1170Q/R1170Q knock‐in (KI) mouse showed the presence of increased trabecular and cortical bone mass as a consequence of increased bone formation by the osteoblasts. In addition, three‐point bending analysis also showed that the increased bone mass results in increased bone strength. In contrast to the human sclerosteosis phenotype, we could not observe syndactyly in the forelimbs or hindlimbs of the Lrp4 KI animals. Finally, we could not detect any significant changes in the bone formation and resorption markers in the serum of the mutant mice. However, the serum sclerostin levels were strongly increased and the level of sclerostin in the tibia was decreased in Lrp4R1170Q/R1170Q mice, confirming the role of LRP4 as an anchor for sclerostin in bone. In conclusion, the Lrp4R1170Q/R1170Q mouse is a good model for the human sclerosteosis phenotype caused by mutations in LRP4 and can be used in the future for further investigation of the mechanism whereby LRP4 regulates bone formation. © 2017 American Society for Bone and Mineral Research.  相似文献   

7.
The cytokine RANKL is essential for osteoclast development in bone. The cellular sources of RANKL for support of osteoclast generation under various pathophysiological conditions have remained unclear, however. Here we show that inactivation of Rankl specifically in osteoblast lineage cells of mice with the use of an Osterix‐Cre transgene results in typical osteopetrosis in the trabecular compartment of the tibia, with the phenotype being progressively less marked in the femur and vertebrae. In contrast to its effects on trabecular bone, RANKL deficiency in osteoblast lineage resulted in thinning of the femoral cortex in association with suppression of bone formation during the modeling process. Ablation of RANKL specifically in T cells resulted in a moderate but significant increase in tibial trabecular bone. Mice with RANKL deficiency in osteoblast lineage were protected from bone loss induced by ovariectomy as well as from joint destruction associated with arthritis, whereas loss of RANKL in T cells did not confer such protection. Finally, inducible deletion of Rankl selectively in the osteoblasts from 6 to 12 weeks of age resulted in an increase in bone mass in association with reduced bone resorption and formation. Our results thus suggest that RANKL produced by osteoblasts contributes to osteoclast development in vivo. © 2014 American Society for Bone and Mineral Research.  相似文献   

8.
9.
Activating mutations of the putative Wnt co‐receptor Lrp5 or inactivating mutations of the secreted molecule Sclerostin cause excessive bone formation in mice and humans. Previous studies have suggested that Sclerostin functions as an Lrp5 antagonist, yet clear in vivo evidence was still missing, and alternative mechanisms have been discussed. Moreover, because osteoblast‐specific inactivation of β‐catenin, the major intracellular mediator of canonical Wnt signaling, primarily affected bone resorption, it remained questionable, whether Sclerostin truly acts as a Wnt signaling antagonist by interacting with Lrp5. In an attempt to address this relevant question, we generated a mouse model (Col1a1‐Sost) with transgenic overexpression of Sclerostin under the control of a 2.3‐kb Col1a1 promoter fragment. These mice displayed the expected low bone mass phenotype as a consequence of reduced bone formation. The Col1a1‐Sost mice were then crossed with two mouse lines carrying different high bone mass mutations of Lrp5 (Lrp5A170V and Lrp5G213V), both of them potentially interfering with Sclerostin binding. Using µCT‐scanning and histomorphometry we found that the anti‐osteoanabolic influence of Sclerostin overexpression was not observed in Lrp5A213V/A213V mice and strongly reduced in Lrp5A170V/A170V mice. As a control we applied the same strategy with mice overexpressing the transmembrane Wnt signaling antagonist Krm2 and found that the anti‐osteoanabolic influence of the Col1a1‐Krm2 transgene was not affected by either of the Lrp5 mutations. Taken together, our data support the concept that Sclerostin inhibits bone formation through Lrp5 interaction, yet their physiological relevance remains to be established. © 2015 American Society for Bone and Mineral Research.  相似文献   

10.
While the epidermal growth factor receptor (EGFR)–mediated signaling pathway has been shown to have vital roles in many developmental and pathologic processes, its functions in the development and homeostasis of the skeletal system has been poorly defined. To address its in vivo role, we constructed transgenic and pharmacologic mouse models and used peripheral quantitative computed tomography (pQCT), micro–computed tomography (µCT) and histomorphometry to analyze their trabecular and cortical bone phenotypes. We initially deleted the EGFR in preosteoblasts/osteoblasts using a Cre/loxP system (Col‐Cre Egfrf/f), but no bone phenotype was observed because of incomplete deletion of the Egfr genomic locus. To further reduce the remaining osteoblastic EGFR activity, we introduced an EGFR dominant‐negative allele, Wa5, and generated Col‐Cre EgfrWa5/f mice. At 3 and 7 months of age, both male and female mice exhibited a remarkable decrease in tibial trabecular bone mass with abnormalities in trabecular number and thickness. Histologic analyses revealed decreases in osteoblast number and mineralization activity and an increase in osteoclast number. Significant increases in trabecular pattern factor and structural model index indicate that trabecular microarchitecture was altered. The femurs of these mice were shorter and smaller with reduced cortical area and periosteal perimeter. Moreover, colony‐forming unit–fibroblast (CFU‐F) assay indicates that these mice had fewer bone marrow mesenchymal stem cells and committed progenitors. Similarly, administration of an EGFR inhibitor into wild‐type mice caused a significant reduction in trabecular bone volume. In contrast, EgfrDsk5/+ mice with a constitutively active EGFR allele displayed increases in trabecular and cortical bone content. Taken together, these data demonstrate that the EGFR signaling pathway is an important bone regulator and that it primarily plays an anabolic role in bone metabolism. © 2011 American Society for Bone and Mineral Research.  相似文献   

11.
12.
13.
High fracture rate and high circulating levels of the Wnt inhibitor, sclerostin, have been reported in diabetic patients. We studied the effects of Wnt signaling activation on bone health in a mouse model of insulin-deficient diabetes. We introduced the sclerostin-resistant Lrp5A214V mutation, associated with high bone mass, in mice carrying the Ins2Akita mutation (Akita), which results in loss of beta cells, insulin deficiency, and diabetes in males. Akita mice accrue less trabecular bone mass with age relative to wild type (WT). Double heterozygous Lrp5A214V/Akita mutants have high trabecular bone mass and cortical thickness relative to WT animals, as do Lrp5A214V single mutants. Likewise, the Lrp5A214V mutation prevents deterioration of biomechanical properties occurring in Akita mice. Notably, Lrp5A214V/Akita mice develop fasting hyperglycemia and glucose intolerance with a delay relative to Akita mice (7 to 8 vs. 5 to 6 weeks, respectively), despite lack of insulin production in both groups by 6 weeks of age. Although insulin sensitivity is partially preserved in double heterozygous Lrp5A214V/Akita relative to Akita mutants up to 30 weeks of age, insulin-dependent phosphorylated protein kinase B (pAKT) activation in vitro is not altered by the Lrp5A214V mutation. Although white adipose tissue depots are equally reduced in both compound and Akita mice, the Lrp5A214V mutation prevents brown adipose tissue whitening that occurs in Akita mice. Thus, hyperactivation of Lrp5-dependent signaling fully protects bone mass and strength in prolonged hyperglycemia and improves peripheral glucose metabolism in an insulin independent manner. Wnt signaling activation represents an ideal therapeutic approach for diabetic patients at high risk of fracture. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   

14.
Introduction : B‐cell leukemia/lymphoma 2 (Bcl2) is a proto‐oncogene best known for its ability to suppress cell death. However, the role of Bcl2 in the skeletal system is unknown. Bcl2 has been hypothesized to play an important anti‐apoptotic role in osteoblasts during anabolic actions of PTH. Although rational, this has not been validated in vivo; hence, the impact of Bcl2 in bone remains unknown. Materials and Methods : The bone phenotype of Bcl2 homozygous mutant (Bcl2?/?) mice was analyzed with histomorphometry and μCT. Calvarial osteoblasts were isolated and evaluated for their cellular activity. Osteoclastogenesis was induced from bone marrow cells using RANKL and macrophage‐colony stimulating factor (M‐CSF), and their differentiation was analyzed. PTH(1–3;34) (50 μg/kg) or vehicle was administered daily to Bcl2+/+ and Bcl2?/? mice (4 days old) for 9 days to clarify the influence of Bcl2 ablation on PTH anabolic actions. Western blotting and real‐time PCR were performed to detect Bcl2 expression in calvarial osteoblasts in response to PTH ex vivo. Results : There were reduced numbers of osteoclasts in Bcl2?/? mice, with a resultant increase in bone mass. Bcl2?/? bone marrow–derived osteoclasts ex vivo were significantly larger in size and short‐lived compared with wildtype, suggesting a pro‐apoptotic nature of Bcl2?/? osteoclasts. In contrast, osteoblasts were entirely normal in their proliferation, differentiation, and mineralization. Intermittent administration of PTH increased bone mass similarly in Bcl2+/+ and Bcl2?/? mice. Finally, Western blotting and real‐time PCR showed that Bcl2 levels were not induced in response to PTH in calvarial osteoblasts. Conclusions : Bcl2 is critical in osteoclasts but not osteoblasts. Osteoclast suppression is at least in part responsible for increased bone mass of Bcl2?/? mice, and Bcl2 is dispensable in PTH anabolic actions during bone growth.  相似文献   

15.
Androgens play a key role in skeletal growth and bone maintenance; however, their mechanism of action remains unclear. To address this, we selectively deleted the androgen receptor (AR) in terminally differentiated, mineralizing osteoblasts using the Cre/loxP system in mice (osteocalcin‐Cre AR knockouts [mOBL‐ARKOs]). Male mOBL‐ARKOs had decreased femoral trabecular bone volume compared with littermate controls because of a reduction in trabecular number at 6, 12, and 24 wk of age, indicative of increased bone resorption. The effects of AR inactivation in mineralizing osteoblasts was most marked in the young mutant mice at 6 wk of age when rates of bone turnover are high, with a 35% reduction in trabecular bone volume, decreased cortical thickness, and abnormalities in the mineralization of bone matrix, characterized by increased unmineralized bone matrix and a decrease in the amount of mineralizing surface. This impairment in bone architecture in the mOBL‐ARKOs persisted throughout adulthood despite an unexpected compensatory increase in osteoblast activity. Our findings show that androgens act through the AR in mineralizing osteoblasts to maintain bone by regulating bone resorption and the coordination of bone matrix synthesis and mineralization, and that this action is most important during times of bone accrual and high rates of bone remodeling.  相似文献   

16.
N‐cadherin inhibits osteogenic cell differentiation and canonical Wnt/β‐catenin signaling in vitro. However, in vivo both conditional Cdh2 ablation and overexpression in osteoblasts lead to low bone mass. We tested the hypothesis that N‐cadherin has different effects on osteolineage cells depending upon their differentiation stage. Embryonic conditional osteolineage Cdh2 deletion in mice results in defective growth, low bone mass, and reduced osteoprogenitor number. These abnormalities are prevented by delaying Cdh2 ablation until 1 month of age, thus targeting only committed and mature osteoblasts, suggesting they are the consequence of N‐cadherin deficiency in osteoprogenitors. Indeed, diaphyseal trabecularization actually increases when Cdh2 is ablated postnatally. The sclerostin‐insensitive Lrp5A214V mutant, associated with high bone mass, does not rescue the growth defect, but it overrides the low bone mass of embryonically Cdh2‐deleted mice, suggesting N‐cadherin interacts with Wnt signaling to control bone mass. Finally, bone accrual and β‐catenin accumulation after administration of an anti‐Dkk1 antibody are enhanced in N‐cadherin–deficient mice. Thus, although lack of N‐cadherin in embryonic and perinatal age is detrimental to bone growth and bone accrual, in adult mice loss of N‐cadherin in osteolineage cells favors bone formation. Hence, N‐cadherin inhibition may widen the therapeutic window of osteoanabolic agents. © 2017 American Society for Bone and Mineral Research.  相似文献   

17.
Mutations in low‐density lipoprotein receptor‐related protein 6 (LRP6) are associated with human skeletal disorders. LRP6 is required for parathyroid hormone (PTH)‐stimulated signaling pathways in osteoblasts. We investigated whether LRP6 in osteoblasts directly regulates bone remodeling and mediates the bone anabolic effects of PTH by specifically deleting LRP6 in mature osteoblasts in mice (LRP6 KO). Three‐month‐old LRP6 KO mice had a significant reduction in bone mass in the femora secondary spongiosa relative to their wild‐type littermates, whereas marginal changes were found in femoral tissue of 1‐month‐old LRP6 KO mice. The remodeling area of the 3‐month‐old LRP6 KO mice showed a decreased bone formation rate as detected by Goldner's Trichrome staining and calcein double labeling. Bone histomorphometric and immumohistochemical analysis revealed a reduction in osteoblasts but little change in the numbers of osteoclasts and osteoprogenitors/osteoblast precursors in LRP6 KO mice compared with wild‐type littermates. In addition, the percentage of the apoptotic osteoblasts on the bone surface was higher in LRP6 KO mice compared with wild‐type littermates. Intermittent injection of PTH had no effect on bone mass or osteoblastic bone formation in either trabecular and cortical bone in LRP6 KO mice, whereas all were enhanced in wild‐type littermates. Additionally, the anti‐apoptotic effect of PTH on osteoblasts in LRP6 KO mice was less significant compared with wild‐type mice. Therefore, our findings demonstrate that LRP6 in osteoblasts is essential for osteoblastic differentiation during bone remodeling and the anabolic effects of PTH. © 2013 American Society for Bone and Mineral Research.  相似文献   

18.
Ciliary neurotrophic factor (CNTF) receptor (CNTFR) expression has been described in osteoblast-like cells, suggesting a role for CNTF in bone metabolism. When bound to CNTF, neuropoietin (NP), or cardiotrophin-like-cytokine (CLC), CNTFR forms a signaling complex with gp130 and the leukemia inhibitory factor receptor, which both play critical roles in bone cell biology. This study aimed to determine the role of CNTFR-signaling cytokines in bone. Immunohistochemistry detected CNTF in osteoblasts, osteocytes, osteoclasts, and proliferating chondrocytes. CNTFR mRNA was detected in primary calvarial osteoblasts and was upregulated during osteoblast differentiation. Treatment of osteoblasts with CNTF or CLC, but not NP, significantly inhibited mineralization and osterix mRNA levels. Twelve-week-old male CNTF −/− mice demonstrated reduced femoral length, cortical thickness, and periosteal circumference; but femoral trabecular bone mineral density (Tb.BMD) and tibial trabecular bone volume (BV/TV) were not significantly different from wild-type, indicating a unique role for CNTF in bone growth in male mice. In contrast, female CNTF −/− femora were of normal width, but femoral Tb.BMD, tibial BV/TV, trabecular number, and trabecular thickness were all increased. Female CNTF −/− tibiae also demonstrated high osteoblast number and mineral apposition rate compared to wild-type littermates, and this was intrinsic to the osteoblast lineage. CNTF is expressed locally in bone and plays a unique role in female mice as an inhibitor of trabecular bone formation and in male mice as a stimulus of cortical growth.  相似文献   

19.
Osteogenesis imperfecta (OI), also known as brittle bone disease, displays a spectrum of clinical severity from mild (OI type I) to severe early lethality (OI type II), with clinical features including low bone mass, fractures, and deformities. Mutations in the FK506 Binding Protein 10 (FKBP10), gene encoding the 65‐kDa protein FKBP65, cause a recessive form of OI and Bruck syndrome, the latter being characterized by joint contractures in addition to low bone mass. We previously showed that Fkbp10 expression is limited to bone, tendon, and ligaments in postnatal tissues. Furthermore, in both patients and Fkbp10 knockout mice, collagen telopeptide hydroxylysine crosslinking is dramatically reduced. To further characterize the bone specific contributions of Fkbp10, we conditionally ablated FKBP65 in Fkbp10fl/fl mice (Mus musculus; C57BL/6) using the osteoblast‐specific Col1a1 2.3‐kb Cre recombinase. Using μCT, histomorphometry and quantitative backscattered electron imaging, we found minimal alterations in the quantity of bone and no differences in the degree of bone matrix mineralization in this model. However, mass spectroscopy (MS) of bone collagen demonstrated a decrease in mature, hydroxylysine‐aldehyde crosslinking. Furthermore, bone of mutant mice exhibits a reduction in mineral‐to‐matrix ratio and in crystal size as shown by Raman spectroscopy and small‐angle X‐ray scattering, respectively. Importantly, abnormalities in bone quality were associated with impaired bone biomechanical strength in mutant femurs compared with those of wild‐type littermates. Taken together, these data suggest that the altered collagen crosslinking through Fkbp10 ablation in osteoblasts primarily leads to a qualitative defect in the skeleton. © 2017 American Society for Bone and Mineral Research.  相似文献   

20.
Osteoblasts secrete matrix vesicles and proteins to bone surfaces, but the molecular mechanisms of this secretion system remain unclear. The present findings reveal the roles of important genes in osteoblasts involved in regulation of extracellular matrix secretion. We especially focused on “soluble N‐ethylmaleimide‐sensitive factor (NSF) attachment protein receptor” (SNARE) genes and identified notable Syntaxin 4a (Stx4a) expression on the basolateral side of the plasma membrane of osteoblasts. Furthermore, Stx4a overexpression was found to increase mineralization by osteoblastic cells, whereas Stx4a knockdown reduced levels of mineralization. Also, BMP‐4 and IGF‐1 induced the localization of Stx4a to the basolateral side of the cells. To examine the function of Stx4a in osteoblasts, we generated osteoblast‐specific Stx4a conditional knockout mice, which demonstrated an osteopenic phenotype due to reduced matrix secretion. Bone mineral density, shown by peripheral quantitative computed tomography (pQCT), was reduced in the femur metaphyseal and diaphyseal regions of Stx4a osteoblast‐specific deficient mice, whereas bone parameters, shown by micro–computed tomography (μCT) and bone histomorphometric analysis, were also decreased in trabecular bone. In addition, primary calvarial cells from those mice showed decreased mineralization and lower secretion of matrix vesicles. Our findings indicate that Stx4a plays a critical role in bone matrix production by osteoblasts. © 2016 American Society for Bone and Mineral Research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号