首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous reports indicate that ephrinB2 expression by osteoblasts is stimulated by parathyroid hormone (PTH) and its related protein (PTHrP) and that ephrinB2/EphB4 signaling between osteoblasts and osteoclasts stimulates osteoblast differentiation while inhibiting osteoclast differentiation. To determine the role of the ephrinB2/EphB4 interaction in the skeleton, we used a specific inhibitor, soluble EphB4 (sEphB4), in vitro and in vivo. sEphB4 treatment of cultured osteoblasts specifically inhibited EphB4 and ephrinB2 phosphorylation and reduced mRNA levels of late markers of osteoblast/osteocyte differentiation (osteocalcin, dentin matrix protein‐1 [DMP‐1], sclerostin, matrix‐extracellular phosphoglycoprotein [MEPE]), while substantially increasing RANKL. sEphB4 treatment in vivo in the presence and absence of PTH increased osteoblast formation and mRNA levels of early osteoblast markers (Runx2, alkaline phosphatase, Collagen 1α1, and PTH receptor [PTHR1]), but despite a substantial increase in osteoblast numbers, there was no significant change in bone formation rate or in late markers of osteoblast/osteocyte differentiation. Rather, in the presence of PTH, sEphB4 treatment significantly increased osteoclast formation, an effect that prevented the anabolic effect of PTH, causing instead a decrease in trabecular number. This enhancement of osteoclastogenesis by sEphB4 was reproduced in vitro but only in the presence of osteoblasts. These data indicate that ephrinB2/EphB4 signaling within the osteoblast lineage is required for late stages of osteoblast differentiation and, further, restricts the ability of osteoblasts to support osteoclast formation, at least in part by limiting RANKL production. This indicates a key role for the ephrinB2/EphB4 interaction within the osteoblast lineage in osteoblast differentiation and support of osteoclastogenesis. © 2013 American Society for Bone and Mineral Research.  相似文献   

2.
Osteocytes have a major role in the control of bone remodeling. Mechanical stimulation decreases osteocyte apoptosis and promotes bone accrual, whereas skeletal unloading is deleterious in both respects. PTH1R ablation or overexpression in osteocytes in mice produces trabecular bone loss or increases bone mass, respectively. The latter effect was related to a decreased osteocyte apoptosis. Here, the putative role of PTH1R activation in osteocyte protection conferred by mechanical stimulation was assessed. Osteocytic MLO‐Y4 cells were subjected to mechanical stimuli represented by hypotonic shock (216 mOsm/kg) or pulsatile fluid flow (8 Hz, 10 dynes/cm2) for a short pulse (10 min), with or without PTH1R antagonists or after transfection with specific PTHrP or PTH1R siRNA. These mechanical stimuli prevented cell death induced within 6 hours by etoposide (50 μM), related to PTHrP overexpression; and this effect was abolished by the calcium antagonist verapamil (1 μM), a phospholipase C (PLC) inhibitor (U73122; 10 μM), and a PKA activation inhibitor, Rp‐cAMPS (25 μM), in these cells. Each mechanical stimulus also rapidly induced β‐catenin stabilization and nuclear ERK translocation, which were inhibited by the PTH1R antagonist PTHrP(7–34) (1 μM), or PTH1R siRNA, and mimicked by PTHrP(1–36) (100 nM). Mechanical stretching by hypotonic shock did not affect cAMP production but rapidly (<1 min) stimulated Cai2+ transients in PTH1R‐overexpressing HEK‐293 cells and in MLO‐Y4 cells, in which calcium signaling was unaffected by the presence of a PTHrP antiserum or PTHrP siRNA but inhibited by knocking down PTH1R. These novel findings indicate that PTH1R is an important component of mechanical signal transduction in osteocytic MLO‐Y4 cells, and that PTH1R activation by PTHrP‐independent and dependent mechanisms has a relevant role in the prosurvival action of mechanical stimulus in these cells. © 2014 American Society for Bone and Mineral Research © 2014 American Society for Bone and Mineral Research  相似文献   

3.
Intermittent administration of parathyroid hormone (PTH) increases bone mass, at least in part, by increasing the number of osteoblasts. One possible source of osteoblasts might be conversion of inactive lining cells to osteoblasts, and indirect evidence is consistent with this hypothesis. To better understand the possible effect of PTH on lining cell activation, a lineage tracing study was conducted using an inducible gene system. Dmp1‐CreERt2 mice were crossed with ROSA26R reporter mice to render targeted mature osteoblasts and their descendents, lining cells and osteocytes, detectable by 5‐bromo‐4‐chloro‐3‐indolyl‐β‐d‐galactopyranoside (X‐gal) staining. Dmp1‐CreERt2(+):ROSA26R mice were injected with 0.25 mg 4‐OH‐tamoxifen (4‐OHTam) on postnatal days 3, 5, 7, 14, and 21. The animals were euthanized on postnatal day 23, 33, or 43 (2, 12, or 22 days after the last 4‐OHTam injection). On day 43, mice were challenged with a subcutaneous injection of human PTH (1–34, 80 µg/kg) or vehicle once daily for 3 days. By 22 days after the last 4‐OHTam injection, most X‐gal (+) cells on the periosteal surfaces of the calvaria and the tibia were flat. Moreover, bone formation rate and collagen I(α1) mRNA expression were decreased at day 43 compared to day 23. After 3 days of PTH injections, the thickness of X‐gal (+) cells increased, as did their expression of osteocalcin and collagen I(α1) mRNA. Electron microscopy revealed X‐gal–associated chromogen particles in thin cells prior to PTH administration and in cuboidal cells following PTH administration. These data support the hypothesis that intermittent PTH treatment can increase osteoblast number by converting lining cells to mature osteoblasts in vivo. © 2012 American Society for Bone and Mineral Research.  相似文献   

4.
5.
6.
After developing antisera against the extracellular part of the parathyroid hormone (PTH)/parathyroid hormone-related peptide (PTHrP) receptor (PTH/PTHrP receptor), we examined the receptor's localization in rat tibiae. Immunoreactivity for the PTH/PTHrP receptor was intense on chondrocytes in the late proliferating zone and the early hypertrophic zone in the growth plate. Active bone surface osteoblasts also showed intense immunoreactivity for the PTH/PTHrP receptor along their plasma membranes. In other osteoblastic cells, the PTH/PTHrP receptor was detected on spindle-shaped mononuclear cells located between the blood vessels and osteoblasts, osteocytes, and flat osteoblasts. Some stromal cells in bone marrow and bone marrow cells with a round profile also showed immunoreactivity. However, we could not detect immunoreactivity on osteoclasts. It is still unclear whether the PTH/PTHrP receptor exists on osteoclast precursor cells. However, these data confirmed the stage-dependent changes in PTH/PTHrP receptor levels on chondrocytes in the growth plate and on osteoblastic cell lineage, suggesting that the effect of PTH and/or PTHrP on mineral homeostasis as well as on skeletal growth and development is well mediated by chondrocytes and osteoblasts.This study was partly supported by a grant from the Japanese Ministry of Education, Science and Culture to I.K. (No. 06771577) and O.H. (No. 06404063)  相似文献   

7.
Human in vivo models of primary hyperparathyroidism (HPT), humoral hypercalcemia of malignancy (HHM), or lactational bone mobilization for more than 48 hours have not been described previously. We therefore developed 7‐day continuous‐infusion models using human parathyroid hormone(1–34) [hPTH(1–34)] and human parathyroid hormone–related protein(1–36) [hPTHrP(1–36)] in healthy human adult volunteers. Study subjects developed sustained mild increases in serum calcium (10.0 mg/dL), with marked suppression of endogenous PTH(1–84). The maximal tolerated infused doses over a 7‐day period (2 and 4 pmol/kg/h for PTH and PTHrP, respectively) were far lower than in prior, briefer human studies (8 to 28 pmol/kg/h). In contrast to prior reports using higher PTH and PTHrP doses, both 1,25‐dihydroxyvitamin D3 [1,25(OH)2D3] and tubular maximum for phosphorus (TmP/GFR) remained unaltered with these low doses despite achievement of hypercalcemia and hypercalciuria. As expected, bone resorption increased rapidly and reversed promptly with cessation of the infusion. However, in contrast to events in primary HPT, bone formation was suppressed by 30% to 40% for the 7 days of the infusions. With cessation of PTH and PTHrP infusion, bone‐formation markers abruptly rebounded upward, confirming that bone formation is suppressed by continuous PTH or PTHrP infusion. These studies demonstrate that continuous exposure of the human skeleton to PTH or PTHrP in vivo recruits and activates the bone‐resorption program but causes sustained arrest in the osteoblast maturation program. These events would most closely mimic and model events in HHM. Although not a perfect model for lactation, the increase in resorption and the rebound increase in formation with cessation of the infusions are reminiscent of the maternal skeletal calcium mobilization and reversal that occur following lactation. The findings also highlight similarities and differences between the model and HPT. © 2011 American Society for Bone and Mineral Research  相似文献   

8.
Interaction of the cytoplasmic adaptor molecule β-arrestin2 with the activated parathyroid hormone (PTH)/PTHrP receptor inhibits G protein mediated signaling and triggers MAPKs signaling. In turn, the effects of both intermittent (i.) and continuous (c.) PTH on bone are altered in β-arrestin2-deficient (Arrb2−/−) mice. To elucidate the expression profile of bone genes responsive to PTH and targeted for regulation by β-arrestin2, we performed microarray analysis using total RNA from primary osteoblastic cells isolated from wild-type (WT) and Arrb2−/− mice. By comparing gene expression profiles in cells exposed to i.PTH, c.PTH or vehicle (Veh) for 2 weeks, we found that i.PTH specifically up-regulated 215 sequences (including β-arrestin2) and down-regulated 200 sequences in WT cells, about two-thirds of them being under the control of β-arrestin2. In addition, β-arrestin2 appeared necessary to the down-regulation of a genomic cluster coding for small leucin-rich proteins (SLRPs) including osteoglycin, osteomodulin and asporin. Pathway analyses identified a main gene network centered on p38 MAPK and NFκB that requires β-arrestin2 for up- or down-regulation by i.PTH, and a smaller network of PTH-regulated genes centered on TGFB1, that is normally repressed by β-arrestin2. In contrast the expression of some known PTH gene targets regulated by the cAMP/PKA pathway was not affected by the presence or absence of β-arrestin2 in osteoblasts. These results indicate that β-arrestin2 targets prominently p38 MAPK- and NFκB-dependent expression in osteoblasts exposed to i.PTH, and delineates new molecular mechanisms to explain the anabolic and catabolic effects of PTH on bone.  相似文献   

9.
While much research focuses on the range of signals detected by the osteoblast lineage that originate from endocrine influences, or from other cells within the body, there are also multiple interactions that occur within this family of cells. Osteoblasts exist as teams and form extensive communication networks both on, and within, the bone matrix. We provide four snapshots of communication pathways that exist within the osteoblast lineage between different stages of their differentiation, as follows: (1) PTHrP, a factor produced by early osteoblasts that stimulates the activity of more mature bone-forming cells and the most mature osteoblast embedded within the bone matrix, the osteocyte; (2) sclerostin, a secreted factor, released by osteocytes into their extensive communication network to restrict the activity of younger osteoblasts on the bone surface; (3) oncostatin M, a member of the IL-6/gp130 family of cytokines, expressed throughout osteoblast differentiation and acting to stimulate osteoblast activity that works on a different receptor in the mature osteocyte compared to the preosteoblast; and (4) Eph/ephrins, cell-contact-dependent kinases, and the osteoblast-lineage-specific interaction of EphB4 and ephrinB2, which provides a checkpoint for entry to the late stages of osteoblast differentiation and restricts RANKL expression.  相似文献   

10.
11.
Control of systemic inorganic phosphate (Pi) levels is crucial for osteoid mineralization. Parathyroid hormone (PTH) mediates actions on phosphate homeostasis mostly by regulating the activity of the type 2 sodium–phosphate cotransporter (Npt2), and this action requires the PDZ protein NHERF1. Osteoblasts express Npt2 and in response to PTH enhance osteogenesis by increasing mineralized matrix. The regulation of Pi transport in osteoblasts is poorly understood. To address this gap we characterized PTH-dependent Pi transport and the role of NHERF1 in primary mouse calvarial osteoblasts. Under proliferating conditions osteoblasts express Npt2a, Npt2b, PTH receptor, and NHERF1. Npt2a mRNA expression was lower in calvarial osteoblasts from NHERF1-null mice. Under basal conditions Pi uptake in osteoblasts from wild-type mice was greater than that of knockout mice. PTH inhibited Pi uptake in proliferating osteoblasts from wild-type mice, but not in cells from knockout mice. In vitro induction of mineralization enhanced osteoblast differentiation and increased osterix and osteocalcin expression. Contrary to the results with proliferating osteoblasts, PTH increased Pi uptake and ATP secretion in differentiated osteoblasts from wild-type mice. PTH had no effect on Pi uptake or ATP release in differentiated osteoblasts from knockout mice. NHERF1 regulation of PTH-sensitive Pi uptake in proliferating osteoblasts is mediated by cAMP/PKA and PLC/PKC, while modulation of Pi uptake in differentiated osteoblasts depends only on cAMP/PKA signaling. The results suggest that NHERF1 cooperates with PTH in differentiated osteoblasts to increase matrix mineralization. We conclude that NHERF1 regulates PTH that differentially affects Na-dependent Pi transport at distinct stages of osteoblast proliferation and maturation.  相似文献   

12.
目的探讨用于颅缝早闭症相关实验的荧光定量PCR的最佳内参基因。方法应用与颅骨成骨、颅缝闭合相关的3组实验标本,分别为:Fgfr2cC342Y/+Crouzon综合征小鼠颅缝组织、颅缝早闭患者体外培养颅缝原代细胞和体外培养的小鼠Kusa 4b 10成骨细胞株。以常用的候选管家基因作为研究对象,利用geNorm软件对RT-qPCR结果进行比较分析,以筛选出在不同组织细胞中表达最为稳定的管家基因作为内参。结果Fgfr2cC342Y/+小鼠颅缝组织,Cyc1-Gapdh-Canx为最佳组合;颅缝早闭症患者体外培养颅缝原代细胞,18S rRNA和ATP5B为最佳组合;体外培养的小鼠Kusa 4b10成骨细胞株,18S rRNA和Canx为最佳组合。选择不同内参基因对目的基因RT-qPCR的结果影响显著。结论在设计RT-qPCR实验之前,应针对所选择的标本类型与种类进行管家基因稳定性分析,以增加结果的可信度。  相似文献   

13.
Parathyroid hormone–related protein (PTHrP) and parathyroid hormone (PTH) have N‐terminal domains that bind a common receptor, PTHR1. N‐terminal PTH (teriparatide) and now a modified N‐terminal PTHrP (abaloparatide) are US Food and Drug Administration (FDA)‐approved therapies for osteoporosis. In physiology, PTHrP does not normally circulate at significant levels, but acts locally, and osteocytes, cells residing within the bone matrix, express both PTHrP and the PTHR1. Because PTHR1 in osteocytes is required for normal bone resorption, we determined how osteocyte‐derived PTHrP influences the skeleton. We observed that adult mice with low PTHrP in osteocytes (targeted with the Dmp1(10kb)‐Cre) have low trabecular bone volume and osteoblast numbers, but osteoclast numbers were unaffected. In addition, bone size was normal, but cortical bone strength was impaired. Osteocyte‐derived PTHrP therefore stimulates bone formation and bone matrix strength, but is not required for normal osteoclastogenesis. PTHrP knockdown and overexpression studies in cultured osteocytes indicate that osteocyte‐secreted PTHrP regulates their expression of genes involved in matrix mineralization. We determined that osteocytes secrete full‐length PTHrP with no evidence for secretion of lower molecular weight forms containing the N‐terminus. We conclude that osteocyte‐derived full‐length PTHrP acts through both PTHR1 receptor‐mediated and receptor‐independent actions in a paracrine/autocrine manner to stimulate bone formation and to modify adult cortical bone strength. © 2017 American Society for Bone and Mineral Research.  相似文献   

14.
Ephrin B2/EphB4 mediates interactions among osteoblasts (OBs), osteoclasts (OCLs), and chondrocytes to regulate their differentiation. We investigated the role of ephrin B2/EphB4 signaling in mediating the anabolic effects of insulin‐like growth factor‐I (IGF‐I) and parathyroid hormone (PTH) on those cells and overall endochondral bone formation. Immunohistochemistry demonstrated that the expression of ephrin B2 in OBs, OCLs, and osteocytes, and the expression of EphB4 in OBs and osteocytes was dramatically decreased in global IGF‐I knockout mice. Inactivation of EphB4 by EphB4 small, interfering RNA (siRNA) in cultured bone marrow stromal cells significantly decreased the mRNA levels of OB differentiation markers and abolished the stimulatory effects of IGF‐I on these markers. Blocking the interaction of EphB4 and ephrin B2 in the OB‐OCL cocultures with the EphB4 specific peptide TNYL‐RAW or deletion of ephrin B2 in OCL prior to coculture led to fewer and smaller tartrate‐resistant acid phosphatase (TRAP)‐positive cells, decreased expression of OB differentiation markers, and blunted response to IGF‐I for both OCL and OB differentiation. In the growth plate, both ephrin B2 and EphB4 are expressed in late stage proliferating and prehypertrophic chondrocytes, and their expression was decreased in mice lacking the IGF‐I receptor specifically in chondrocytes. In vitro, blocking the interaction of EphB4 and ephrin B2 in chondrogenic ATDC5 cells with TNYL‐RAW significantly decreased both basal and IGF1‐induced expression of type II and type X collagen. In the cocultures of ATDC5 cells and spleen cells (osteoclast precursors), TNYL‐RAW decreased the numbers of TRAP‐positive cells and the expression of nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) and receptor activator of NF‐κB (RANK), and blocked their stimulation by IGF‐I. Our data indicate that IGF‐I/IGF‐IR signaling promotes OB, OCL, and chondrocyte differentiation via ephrin B2/EphB4 mediated cell‐cell communication. © 2014 American Society for Bone and Mineral Research.  相似文献   

15.
Previous reports have identified a role for the tyrosine kinase receptor EphB4 and its ligand, ephrinB2, as potential mediators of both bone formation by osteoblasts and bone resorption by osteoclasts. In the present study, we examined the role of EphB4 during bone repair after traumatic injury. We performed femoral fractures with internal fixation in transgenic mice that overexpress EphB4 under the collagen type 1 promoter (Col1‐EphB4) and investigated the bone repair process up to 12 weeks postfracture. The data indicated that Col1‐EphB4 mice exhibited stiffer and stronger bones after fracture compared with wild‐type mice. The fractured bones of Col1‐EphB4 transgenic mice displayed significantly greater tissue and bone volume 2 weeks postfracture compared with that of wild‐type mice. These findings correlated with increased chondrogenesis and mineral formation within the callus site at 2 weeks postfracture, as demonstrated by increased safranin O and von Kossa staining, respectively. Interestingly, Col1‐EphB4 mice were found to possess significantly greater numbers of clonogenic mesenchymal stromal progenitor cells (CFU‐F), with an increased capacity to form mineralized nodules in vitro under osteogenic conditions, when compared with those of the wild‐type control mice. Furthermore, Col1‐EphB4 mice had significantly lower numbers of TRAP‐positive multinucleated osteoclasts within the callus site. Taken together, these observations suggest that EphB4 promotes endochondral ossification while inhibiting osteoclast development during callus formation and may represent a novel drug target for the repair of fractured bones. © 2013 American Society for Bone and Mineral Research.  相似文献   

16.
Parathyroid hormone-related protein (PTHrP) plays a major role in the syndrome of humoral hypercalcemia of malignancy (HHM) by its actions on bone and kidney. In this study an isolated osteoclast bone resorption assay was used to investigate the actions of this peptide and the structure-activity relationships for its resorption effect. As with PTH, neither synthetic nor recombinant PTHrP preparations stimulated resorption within highly purified osteoclast populations. Resorption was stimulated only in the presence of contaminating osteoblasts or in cocultures with the osteoblast-like cell line UMR-106. In the presence of osteoblasts PTHrP-(1-34) and PTHrP-(1-84) stimulated bone resorption in a dose-dependent manner with a potency comparable to that of PTH-(1-34) on a molar basis. The biologic activity of the PTHrP was shown to reside in the first 34 amino acids, and within that region the structural requirements for promotion of osteoclastic resorption resembled closely those for promotion of cyclic AMP formation in osteoblast-like cells. Using emulsion autoradiography with iodinated PTHrP-(1-34) and PTHrP-(1-84) on mixed bone cell preparations from neonatal rats, specific binding was demonstrated only to osteoblasts, not to osteoclasts. These results clearly demonstrate that PTHrP is a potent stimulator of bone resorption and that these effects are, like those of PTH, mediated by initial actions upon cells of the osteoblast lineage.  相似文献   

17.
Alos N  Ecarot B 《BONE》2005,37(4):589-598
Human/murine X-linked hypophosphatemia is a dominant disorder associated with renal phosphate wasting and defective bone mineralization. This disorder results from mutations in the PHEX/Phex (Phosphate-regulating gene with homologies to endopeptidases on the X chromosome) gene, which is expressed in fully differentiated osteoblasts. The purpose of the present study was to assess whether PTH, a major regulator of bone development and turnover, modulates osteoblastic Phex expression. The effects of different concentrations of PTH (rat fragment 1-34) were determined on Phex mRNA and protein expression in vitro using MC3T3-E1 osteoblastic cells and mouse primary osteoblasts; and in vivo using 45-day-old mice infused for 3 days with PTH. Phex mRNA levels were quantitated on Northern blots by densitometric analysis relative to GAPDH mRNA levels. Phex protein levels were analyzed by immunoprecipitation of 35S-methionine-labeled osteoblast lysates or by immunoblotting of calvaria membrane extracts using a polyclonal rabbit antiserum raised against a mouse Phex carboxy-terminal peptide. Fully differentiated MC3T3-E1 cells were incubated for 4 to 48 h with increasing concentrations of PTH (10(-11) to 10(-7) M). PTH inhibited Phex mRNA expression in both mineralizing and nonmineralizing osteoblast cultures in a dose- and time-dependent manner with a maximal inhibition at 10(-7) M PTH after 24 h (15+/-7% of control levels, n=5, P<0.001). The PTH-mediated downregulation of Phex mRNA levels was associated with corresponding decreases in Phex protein synthesis and suppression at 10(-7) M PTH. Similar results were obtained with primary osteoblasts isolated from newborn mouse calvaria. Consistent with the in vitro findings, continuous PTH infusion to mice elicited decreases in Phex expression in calvaria. The effect of PTH was also assessed on matrix mineralization by mature MC3T3-E1 cells by measuring 45Ca accumulation in cell layers. PTH (10(-7) M) inhibited the initiation (57+/-2% of control levels, n=5, P<0.001) and the progression of matrix mineralization (75+/-1% of control levels, n=5, P<0.001). In summary, PTH inhibits osteoblastic Phex expression in vitro and in vivo. The downregulation of Phex expression by PTH in vitro is associated with inhibition of matrix mineralization, consistent with a role for Phex in bone mineralization.  相似文献   

18.
Parathyroid hormone‐related protein (PTHrP)(1‐36) increases lumbar spine (LS) bone mineral density (BMD), acting as an anabolic agent when injected intermittently, but it has not been directly compared with parathyroid hormone (PTH)(1‐34). We performed a 3‐month randomized, prospective study in 105 postmenopausal women with low bone density or osteoporosis, comparing daily subcutaneous injections of PTHrP(1‐36) to PTH(1‐34). Thirty‐five women were randomized to each of three groups: PTHrP(1‐36) 400 µg/day; PTHrP(1‐36) 600 µg/day; and PTH(1‐34) 20 µg/day. The primary outcome measures were changes in amino‐terminal telopeptides of procollagen 1 (PINP) and carboxy‐terminal telopeptides of collagen 1 (CTX). Secondary measures included safety parameters, 1,25(OH)2 vitamin D, and BMD. The increase in bone resorption (CTX) by PTH(1‐34) (92%) (p < 0.005) was greater than for PTHrP(1‐36) (30%) (p < 0.05). PTH(1‐34) also increased bone formation (PINP) (171%) (p < 0.0005) more than either dose of PTHrP(1‐36) (46% and 87%). The increase in PINP was earlier (day 15) and greater than the increase in CTX for all three groups. LS BMD increased equivalently in each group (p < 0.05 for all). Total hip (TH) and femoral neck (FN) BMD increased equivalently in each group but were only significant for the two doses of PTHrP(1‐36) (p < 0.05) at the TH and for PTHrP(1‐36) 400 (p < 0.05) at the FN. PTHrP(1‐36) 400 induced mild, transient (day 15) hypercalcemia. PTHrP(1‐36) 600 required a dose reduction for hypercalcemia in three subjects. PTH(1‐34) was not associated with hypercalcemia. Each peptide induced a marked biphasic increase in 1,25(OH)2D. Adverse events (AE) were similar among the three groups. This study demonstrates that PTHrP(1‐36) and PTH(1‐34) cause similar increases in LS BMD. PTHrP(1‐36) also increased hip BMD. PTH(1‐34) induced greater changes in bone turnover than PTHrP(1‐36). PTHrP(1‐36) was associated with mild transient hypercalcemia. Longer‐term studies using lower doses of PTHrP(1‐36) are needed to define both the optimal dose and full clinical benefits of PTHrP. © 2013 American Society for Bone and Mineral Research. © 2013 American Society for Bone and Mineral Research.  相似文献   

19.
Parathyroid hormone (1-34) [PTH-(1-34)] has been shown to stimulate sodium-dependent phosphate transport (NaPiT) in UMR-106 osteoblast-like cells through a cAMP-dependent mechanism. Whether a synthetic amino-terminal fragment of parathyroid hormone-related protein (PTHrP) or the full-length molecule, which are recognized to interact with the same receptor as PTH, affect NaPiT in the same way is not known. We investigated and compared the effects of bPTH-(1-34), PTHrP-(1-34), and PTHrP-(1-141) on NaPiT and cAMP production in the osteoblastic cell line UMR-106. Each of the three peptides increased cAMP production and exerted a concentration-dependent stimulation of NaPiT after incubation for 4-6 h. We also studied the effect of transforming growth factor-alpha (TGF-alpha), which is another tumoral product secreted by certain hypercalcemia-associated tumors, on NaPiT and the TGF-alpha-induced modulation of the response to PTHrP or PTH. TGF-alpha caused a 30% stimulation of NaPiT, which remained stable from 6 to 24 h, by a cAMP-independent mechanism. In contrast, TGF-alpha attenuated cAMP production stimulated by PTH, PTHrP-(1-34), or PTHrP-(1-141). PTHrP or PTH did not further increase NaPiT in TGF-alpha-treated cells. These results indicate that NaPiT, a possibly important function of osteoblastic cells, was similarly affected by PTH and PTHrP. TGF-alpha increased NaPiT and modulated in a similar way the effects of both PTH and PTHrP.  相似文献   

20.
Teriparatide, a recombinant peptide corresponding to amino acids 1‐34 of human parathyroid hormone (PTH), has been an effective bone anabolic drug for over a decade. However, the mechanism whereby PTH stimulates bone formation remains incompletely understood. Here we report that in cultures of osteoblast‐lineage cells, PTH stimulates glucose consumption and lactate production in the presence of oxygen, a hallmark of aerobic glycolysis, also known as Warburg effect. Experiments with radioactively labeled glucose demonstrate that PTH suppresses glucose entry into the tricarboxylic acid cycle (TCA cycle). Mechanistically, the increase in aerobic glycolysis is secondary to insulin‐like growth factor (Igf) signaling induced by PTH, whereas the metabolic effect of Igf is dependent on activation of mammalian target of rapamycin complex 2 (mTORC2). Importantly, pharmacological perturbation of glycolysis suppresses the bone anabolic effect of intermittent PTH in the mouse. Thus, stimulation of aerobic glycolysis via Igf signaling contributes to bone anabolism in response to PTH. © 2015 American Society for Bone and Mineral Research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号