首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synaptic vesicle cycle is vital for sustained neurotransmitter release. It has been assumed that functional synaptic vesicles are replenished autonomously at individual presynaptic terminals. Here we tested this assumption by using FM dyes in combination with fluorescence recovery after photobleaching and correlative light and electron microscopy in cultured rat hippocampal neurons. After photobleaching, synapses acquired recently recycled FM dye-labeled vesicles originating from nonphotobleached synapses by a process requiring dynamic actin turnover. The imported vesicles entered the functional pool at their host synapses, as revealed by the exocytic release of the dye upon stimulation. FM1-43 photoconversion and ultrastructural analysis confirmed the incorporation of imported vesicles into the presynaptic terminal, where they mixed with the native vesicle pools. Our results demonstrate that synaptic vesicle recycling is not confined to individual presynaptic terminals as is widely believed; rather, a substantial proportion of recycling vesicles are shared constitutively between boutons.  相似文献   

2.
Experiments on the mouse diaphragm muscle using intracellular microelectrode recordings and fluorescence microscopy were performed to study the dynamics of transmitter secretion and synaptic vesicle recycling processes (the exocytosis-endocytosis cycle) in motor nerve endings (NE) during prolonged rhythmic stimulation (20 impulses/sec). During stimulation, there were triphasic changes in the amplitude of endplate potentials (EPP): an initial rapid reduction, followed by prolonged (1–2 min) stabilization of amplitude, i.e., a plateau, and then a further slow decrease. Restoration of EPP amplitude after stimulation for 3 min occurred over a period of several seconds. Loading of synaptic vesicles with the fluorescent endocytic stain FM1-43 showed that rhythmic stimulation led to a gradual (over 5–6 min) decrease in NE fluorescence, demonstrating exocytosis of synaptic vesicles. Quantum analysis of the electrophysiological data and comparison of these data with results from fluorescence studies suggested that mouse NE have a high rate of endocytosis and reutilization of synaptic vesicles (the mean recycling time was about 50 sec), which may support the maintenance of reliable synaptic transmission during prolonged high-frequency activity. The sizes of the release-ready and recycling pools of synaptic vesicles were determined quantitatively. It is suggested that vesicle recycling in mouse NE occurs via a short, rapid pathway with incorporation into the recycling pool. Vesicles of the reserve pool are not used for transmitter secretion in the stimulation conditions used here. Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 94, No. 2, pp. 129–141, February, 2008.  相似文献   

3.
The synaptic vesicles are organized in distinct populations or 'pools': the readily releasable pool (the first vesicles released upon stimulation), the recycling pool (which maintains release under moderate stimulation) and the reserve pool (which is called into action only upon strong, often unphysiological stimulation). A major question in the field is whether the pools consist of biochemically different vesicles or whether the pool tag is a spatial one (with the recycling vesicles found next to the release sites, and the reserve ones farther away). A strong and stable spatial segregation has been proposed in the last decade in the Drosophila larval neuromuscular junction – albeit based solely on light microscopy experiments. We have tested here this hypothesis using electron microscopy (EM) photoconversion. We found the recycling and reserve pools to be thoroughly intermixed at the EM level, indicating that spatial location is irrelevant for the functional properties of the vesicle.  相似文献   

4.
The synaptic vesicle population in a nerve terminal is traditionally divided into subpopulations according to physiological criteria; the readily releasable pool (RRP), the recycling pool, and the reserve pool. It is recognized that the RRP subserves synaptic transmission evoked by low-frequency neural activity and that the recycling and reserve populations are called on to supply vesicles as neural activity increases. Here we investigated the contribution of nonmuscle myosin II (NMMII) to synaptic transmission with emphasis on the role a motor protein could play in the supply of vesicles. We used Drosophila genetics to manipulate NMMII and assessed synaptic transmission at the larval neuromuscular junction. We observed a positive correlation between synaptic strength at low-frequency stimulation and NMMII expression: reducing NMMII reduced the evoked response, while increasing NMMII increased the evoked response. Further, we found that NMMII contributed to the spontaneous release of vesicles differentially from evoked release, suggesting differential contribution to these two release mechanisms. By measuring synaptic responses under conditions of differing external calcium concentration in saline, we found that NMMII is important for normal synaptic transmission under high-frequency stimulation. This research identifies diverse functions for NMMII in synaptic transmission and suggests that this motor protein is an active contributor to the physiology of synaptic vesicle recruitment.  相似文献   

5.
During periods of high-frequency stimulation the maintenance of synaptic transmission depends on a continued supply of synaptic vesicles. Local recycling in the terminals ensures synaptic vesicle replenishment, but the intermediate steps are still a matter of debate. We analyzed changes in synaptic vesicle pools and endosome-like organelles near the active zone in central nerve terminals during depolarization at the ultrastructural level by electron microscopy. A short, 100 ms, depolarization-induced recruitment of synaptic vesicles was observed from a reserve pool to a recruited pool, within 150 nm of the active zone, and the docked pool at the active zone was increased as well. Prolonged, 15 s or 3 min, depolarization decreased the total amount of synaptic vesicles, which was accompanied by a parallel increase in size and amount of endosome-like organelles. After a period of rest, the number of endosome-like organelles decreased and the amount of synaptic vesicles was restored to control level.The endocytotic nature of part of the endosome-like organelles after 15 s and 3 min depolarization was indicated by their labeling with extracellularly added horseradish peroxidase (HRP). In addition, a small number of synaptic vesicles entrapped HRP under these conditions. After repolarization, the number of HRP-loaded endosome-like structures decreased. Simultaneously, a strong increase in amount of HRP-loaded small vesicles did occur.These results indicate that during sub-second depolarization, synaptic vesicles were rapidly recruited from the reserve pool to replenish the releasable pool, whereas prolonged depolarization (s-min) induced local endocytosis in at least two ways, i.e. either directly as vesicles or via endosome-like organelles from which synaptic vesicles were reformed.  相似文献   

6.
The synaptic vesicles keep recycling by the processes of endocytosis and exocytosis to maintain the normal synaptic transmission. The synaptic vesicles are classified as the readily releasable pool (RRP) and the reserve pool (RP). In the endocytosis process, calcineurin (CaN), a Ca2+/calmodulin-dependent protein phosphatase, has been shown to play important roles. However, it is unclear about its roles in different vesicle pools. Here, we investigated the role of CaN in the regulation of vesicle recycling in the RRP and RP. Vesicle recycling was monitored by using fluorescent dyes FM1-43 and FM4-64 in the primary cultures of hippocampal neurons. Inhibition of CaN by FK506 and cyclosporin A suppressed the endocytosis in the RP, but not in the RRP. Inhibition of CaN also restrained the exocytic process triggered by 10 Hz stimulation, but had no effect on 3-5 Hz stimulation-induced exocytosis. FK506 also reduced the total vesicle pool size in the synaptic terminals. A synthesized CaN inhibitory peptide showed the similar effects as FK506 and cyclosporin A. These results revealed a novel mechanism that CaN plays critical roles in the distinct vesicle recycling processes.  相似文献   

7.
Regulation of transmitter release by synapsin II in mouse motor terminals   总被引:1,自引:1,他引:1  
We investigated quantal release and ultrastructure in the neuromuscular junctions of synapsin II knockout (Syn II KO) mice. Synaptic responses were recorded focally from the diaphragm synapses during electrical stimulation of the phrenic nerve. We found that synapsin II affects transmitter release in a Ca2+-dependent manner. At reduced extracellular Ca2+ (0.5 m m ), Syn II KO mice demonstrated a significant increase in evoked and spontaneous quantal release, while at the physiological Ca2+ concentration (2 m m ), quantal release in Syn II KO synapses was unaffected. Protein kinase inhibitor H7 (100 μ m ) suppressed quantal release significantly stronger in Syn II KO synapses than in wild type (WT), indicating that Syn II KO synapses may compensate for the lack of synapsin II via a phosphorylation-dependent pathway. Electron microscopy analysis demonstrated that the lack of synapsin II results in an approximately 40% decrease in the density of synaptic vesicles in the reserve pool, while the number of vesicles docked to the presynaptic membrane remained unchanged. Synaptic depression in Syn II KO synapses was slightly increased, which is consistent with the depleted vesicle store in these synapses. At reduced Ca2+ frequency facilitation of synchronous release was significantly increased in Syn II KO, while facilitation of asynchronous release was unaffected. Thus, at the reduced Ca2+ concentration, synapsin II suppressed transmitter release and facilitation. These results demonstrate that synapsin II can regulate vesicle clustering, transmitter release, and facilitation.  相似文献   

8.
We investigated the roles of two Rab-family proteins, Rab3a and Rab5a, in hippocampal synaptic transmission using real-time fluorescence imaging. During synaptic activity, Rab3a dissociated from synaptic vesicles and dispersed into neighbouring axonal regions. Dispersion required calcium-dependent exocytosis and was complete before the entire vesicle pool turned over. In contrast, even prolonged synaptic activity produced limited dispersion of Rab5a. A GTPase-deficient mutant, Rab3a (Q81L), dispersed more slowly than wild-type Rab3a, and decreased the rate of exocytosis and the size of the recycling pool of vesicles. While overexpression of Rab3a did not affect vesicle recycling, overexpression of Rab5a reduced the recycling pool size by 50%. We propose that while Rab3a preferentially associates with recycling synaptic vesicles and modulates their trafficking, Rab5a is largely excluded from recycling vesicles.  相似文献   

9.
Synapsins, a family of synaptic vesicle proteins, have been shown to regulate neurotransmitter release; the mechanism(s) by which they act are not fully understood. Here we have studied the role of domain E of synapsins in neurotransmitter release at the squid giant synapse. Two squid synapsin isoforms were cloned and found to contain a carboxy (C)-terminal domain homologous to domain E of the vertebrate a-type synapsin isoforms. Presynaptic injection of a peptide fragment of domain E greatly reduced the number of synaptic vesicles in the periphery of the active zone, and increased the rate and extent of synaptic depression, suggesting that domain E is essential for synapsins to regulate a reserve pool of synaptic vesicles. Domain E peptide had no effect on the number of docked synaptic vesicles, yet reversibly inhibited and slowed the kinetics of neurotransmitter release, indicating a second role for synapsins that is more intimately associated with the release process itself. Thus, synapsin domain E is involved in at least two distinct reactions that are crucial for exocytosis in presynaptic terminals.  相似文献   

10.
In vertebrate motor nerve terminals and in the electromotor nerve terminals of Torpedo there are two major pools of synaptic vesicles: readily releasable and reserve. The electromotor terminals differ in that the reserve vesicles are twice the diameter of the readily releasable vesicles. The vesicles contain high concentrations of ACh and ATP. Part of the ACh is brought into the vesicle by the vesicular ACh transporter, VAChT, which exchanges two protons for each ACh, but a fraction of the ACh seems to be accumulated by different, unexplored mechanisms. Most of the vesicles in the terminals do not exchange ACh or ATP with the axoplasm, although ACh and ATP are free in the vesicle interior. The VAChT is controlled by a multifaceted regulatory complex, which includes the proteoglycans that characterize the cholinergic vesicles. The drug (-)-vesamicol binds to a site on the complex and blocks ACh exchange. Only 10-20% of the vesicles are in the readily releasable pool, which therefore is turned over fairly rapidly by spontaneous quantal release. The turnover can be followed by the incorporation of false transmitters into the recycling vesicles, and by the rate of uptake of FM dyes, which have some selectivity for the two recycling pathways. The amount of ACh loaded into recycling vesicles in the readily releasable pool decreases during stimulation. The ACh content of the vesicles can be varied over eight-fold range without changing vesicle size.  相似文献   

11.
Synapsin dispersion and reclustering during synaptic activity.   总被引:12,自引:0,他引:12  
Presynaptic modulation of synaptic transmission provides an important basis for control of synaptic function. The synapsins, a family of highly conserved proteins associated with synaptic vesicles, have long been implicated in the regulation of neurotransmitter release. However, direct physiological measurements of the molecular mechanisms have been lacking. Here we show that in living hippocampal terminals, green fluorescent protein (GFP)-labeled synapsin Ia dissociates from synaptic vesicles, disperses into axons during action potential (AP) firing, and reclusters to synapses after the cessation of synaptic activity. Using various mutated forms of synapsin Ia that prevent phosphorylation at specific sites, we performed simultaneous FM 4-64 measurements of vesicle pool mobilization along with synapsin dispersion kinetics. These studies indicate that the rate of synapsin dispersion is controlled by phosphorylation, which in turn controls the kinetics of vesicle pool turnover. Thus synapsin acts as a phosphorylation-state-dependent regulator of synaptic vesicle mobilization, and hence, neurotransmitter release.  相似文献   

12.
There is a longstanding controversy on the identity of synaptic vesicles undergoing spontaneous versus evoked release. A recent study, introducing a new genetic probe, suggested that spontaneous release is driven by a resting pool of synaptic vesicles refractory to stimulation. We found that cross-depletion of spontaneously or actively recycling synaptic vesicle pools occurred on stimulation in rat hippocampal neurons and identified the recycling pool as a major source of spontaneous release.  相似文献   

13.
Summary Cat sympathetic ganglia were prepared for electron microscopy by perfusion fixation with glutaraldehyde in the presence of Mg++. At resting boutons de passage the populations of synaptic vesicles were 6400 per bouton. The vesicle distributions displayed many of the features of spheres in close-packing. Calculations based on a vesicle close-packing hypothesis gave a figure of 8000 vesicles per bouton. In ganglia stimulated for 20 min at 20/s the vesicle populations were reduced to 25%, and to 28.5% in ganglia in which acetylcholine (ACh) synthesis was inhibited by hemicholinium (HC-3). The reduction was to 34% when stimulation was for 1 min. In ganglia stimulated for 20 min at 1/s and 4/s the vesicle populations were reduced to 44% and 46% respectively. Even following 1 min stimulation at 4/s over half the boutons showed significant loss of vesicles. ACh stores in ganglia are known not to be depleted by any of these procedures except stimulation in the presence of HC-3. The fraction of ganglionic ACh stores known to be released by stimulation for 1 min at 20/s or 4/s and by 20 min stimulation at 1/s is substantially less than the fraction of vesicles lost. The observations therefore were not readily accounted for by the vesicle theory of transmitter storage and release. They were consistent with the idea the ACh is stored in vesicles at rest, but that during maintained activity over half the bouton ACh is free in the cytoplasm. The concentration of cytoplasmic ACh was calculated to be approximately 50–150 mm 1–1. Examination of the hypothesis that ACh may be released from this cytoplasmic pool during synaptic activation indicated an efflux of approximately 1.5–3.0 × 10–12 M Ach cm–2 synapsing membrane/impulse.Medical Research Associate of the Medical Research Council of Canada.  相似文献   

14.
Ultrastructural observations made in the study of the frog neuromuscular junction (NMJ) almost three decades ago showed that synaptic vesicle cycling functions through a slow pathway, requiring the use of clathrin-coated vesicles and an endosomal compartment. Simultaneously, a conceptually simpler model emerged, postulating rapid retrieval of vesicle membrane through a mechanism similar to a reversal of vesicle fusion. With the advent of fluorescence imaging which allows the investigator to monitor recycling in living nerve-muscle preparations, new data appeared which reconcile at least in part the two models, indicating that both may be important at this synapse. Two different synaptic vesicle pools can be defined, a readily releasable pool (RRP), consisting of quanta that are immediately available for release, and a reserve pool (RP) that is exocytosed only after prolonged stimulation. Vesicles in the RRP recycle through a fast endocytic pathway, which does not rely on an endosomal compartment, while vesicles in the RP cycle more slowly through formation of infoldings and endosomes and their subsequent severance into vesicles. The two pools mix slowly, and their recycling may be regulated by different mechanisms.  相似文献   

15.
Phosphoinositides are key regulators of synaptic vesicle cycling and endocytic traffic; the actin cytoskeleton also seems to be involved in modulating these processes. We investigated the effects of perturbing phosphoinositide signalling and actin dynamics on vesicle cycling in frog motor nerve terminals, using fluorescence and electron microscopy, and electrophysiology. Antibody staining for β-actin revealed that actin surrounds but does not overlap with synaptic vesicle clusters. Latrunculin A, which disrupts actin filaments by binding actin monomers, and wortmannin, an inhibitor of phosphatidyl inositol-3-kinase (PI3-kinase), each disrupted the pattern of presynaptic actin staining, but not vesicle clusters in resting terminals. Latrunculin A, but not wortmannin, also reduced vesicle mobilization and exocytosis. Both drugs inhibited the stimulation-induced uptake of the styryl dye FM1-43 and blocked vesicle reformation from internalized membrane objects after tetanic stimulation. These results are consistent with a role of PI3-kinase and the actin cytoskeleton in the slow pathway of vesicle endocytosis, used primarily by reserve pool vesicles.  相似文献   

16.
C A Mason 《Neuroscience》1986,19(4):1319-1333
A fundamental question in central nervous system development is the timing of synaptogenesis in relation to invasion of targets by afferent axons. A related question is how growth cones transform into synaptic terminals. These two aspects of axon maturation were examined in developing mouse cerebellum, by labeling single axons with horseradish peroxidase, to study their form and cytology, and by immunocytochemical staining of a synaptic vesicle antigen, synapsin I, a phosphoprotein found on synaptic vesicles in all mature CNS synapses. From embryonic day 16 to postnatal day 3, horseradish peroxidase-labeled afferent axons extend well into the cerebellum and have simple forms. At embryonic day 16, axon growing tips are synapsin I-negative. Synapsin I is first expressed at embryonic day 17, and by embryonic day 18, fibers are stained throughout the cerebellum. Synapsin I expression coincides with a general increase in synaptic specializations, although growing tips continue to have the cytology of growth cones. During the period that axons have primitive shapes, synapsin I is distributed throughout the terminal arbor, corresponding to the presence of small vesicles along neurite lengths, even at non-synaptic sites. After postnatal day 3, when synaptic terminals develop into stereotypic shapes and engage in characteristic synaptic relations, synapsin I is restricted to boutons. Thus, the synapse-specific protein synapsin I is expressed in fetal mouse brain, long before nerve endings have the structure and connections of adult brain. In cerebellar axons, the expression of this protein follows axon arrival, coincides with the appearance of elementary synapses, and accompanies the transformation of growing tips into stereotypic synaptic boutons. The time course of expression of synapsin I, a phosphoprotein that may be involved in synaptic efficacy, suggests that transmitter release may influence early axon-target cell interactions.  相似文献   

17.
The GTPase dynamin is involved in endocytosis in many cell types, as first revealed by temperature-sensitive paralytic mutations in the Drosophila dynamin gene, shibire (shi), which disrupt synaptic vesicle endocytosis and deplete synaptic terminals of vesicles. Here we report that shi synapses exhibit a fast synaptic fatigue phenotype within 20 ms of repetitive stimulation, which cannot be explained by vesicle depletion, as we confirmed by electron microscopy. These results suggest that, in addition to its well-characterized role in synaptic vesicle recycling, dynamin may be required for short-term maintenance of the readily releasable pool of synaptic vesicles.  相似文献   

18.
Although clathrin-mediated endocytosis is thought to be the predominant mechanism of synaptic vesicle recycling, it seems to be too slow for fast recycling. Therefore, it was suggested that a presorted and preassembled pool of synaptic vesicle proteins on the presynaptic membrane might support a first wave of fast clathrin-mediated endocytosis. In this study we monitored the temporal dynamics of such a 'readily retrievable pool' of synaptic vesicle proteins in rat hippocampal neurons using a new type of probe. By applying cypHer5E, a new cyanine dye-based pH-sensitive exogenous marker, coupled to antibodies to luminal domains of synaptic vesicle proteins, we could reliably monitor synaptic vesicle recycling and demonstrate the preferential recruitment of a surface pool of synaptic vesicle proteins upon stimulated endocytosis. By using fluorescence nanoscopy of surface-labeled synaptotagmin 1, we could resolve the spatial distribution of the surface pool at the periactive zone in hippocampal boutons, which represent putative sites of endocytosis.  相似文献   

19.
Drosophila neuromuscular junctions ( D NMJs) are malleable and its synaptic strength changes with activities. Mobilization and recruitment of synaptic vesicles (SVs), and replenishment of SV pools in the presynaptic terminal are involved in control of synaptic efficacy. We have studied dynamics of SVs using a fluorescent styryl dye, FM1-43, which is loaded into SVs during endocytosis and released during exocytosis, and identified two SV pools. The exo/endo cycling pool (ECP) is loaded with FM1-43 during low frequency nerve stimulation and releases FM1-43 during exocytosis induced by high K(+). The ECP locates close to release sites in the periphery of presynaptic boutons. The reserve pool (RP) is loaded and unloaded only during high frequency stimulation and resides primarily in the center of boutons. The size of ECP closely correlates with the efficacy of synaptic transmission during low frequency neuronal firing. An increase of cAMP facilitates SV movement from RP to ECP. Post-tetanic potentiation (PTP) correlates well with recruitment of SVs from RP. Neither PTP nor post-tetanic recruitment of SVs from RP occurs in memory mutants that have defects in the cAMP/PKA cascade. Cyotochalasin D slows mobilization of SVs from RP, suggesting involvement of actin filaments in SV movement. During repetitive nerve stimulation the ECP is replenished, while RP replenishment occurs after tetanic stimulation in the absence of external Ca(2+). Mobilization of internal Ca(2+) stores underlies RP replenishment. SV dynamics is involved in synaptic plasticity and D NMJs are suitable for further studies.  相似文献   

20.
Activity-related redistribution of presynaptic proteins at the active zone   总被引:2,自引:0,他引:2  
Tao-Cheng JH 《Neuroscience》2006,141(3):1217-1224
Immunogold labeling distributions of seven presynaptic proteins were quantitatively analyzed under control conditions and after high K+ depolarization in excitatory synapses from dissociated rat hippocampal cultures. Three parallel zones in presynaptic terminals were sampled: zones I and II, each about one synaptic vesicle wide extending from the active zone; and zone III, containing a distal pool of vesicles up to 200 nm from the presynaptic membrane. The distributions of SV2 and synaptophysin, two synaptic vesicle integral membrane proteins, generally followed the distribution of synaptic vesicles, which were typically evenly distributed under control conditions and had a notable depletion in zone III after stimulation. Labels of synapsin I and synuclein, two synaptic vesicle-associated proteins, were similar to each other; both were particularly sparse in zone I under control conditions but showed a prominent enrichment toward the active zone, after stimulation. Labels of Bassoon, Piccolo and RIM 1, three active zone proteins, had very different distribution profiles from one another under control conditions. Bassoon was enriched in zone II, Piccolo and RIM 1 in zone I. After stimulation, Bassoon and Piccolo remained relatively unchanged, but RIM 1 redistributed with a significant decrease in zone I, and increases in zones II and III. These results demonstrate that Bassoon and Piccolo are stable components of the active zone while RIM 1, synapsin I and synuclein undergo dynamic redistribution with synaptic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号