首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In vivo electrophysiology and microdialysis were used to investigate the physiological role of 5-HT(2C) receptors in the control of substantia nigra pars reticulata (SNr) function. Extracellular single-unit recordings were performed from putative GABA-containing neurons in the SNr of anesthetized rats, and local GABA release was studied by in vivo microdialysis in the SNr of awake freely-moving rats. Systemic administration of the selective 5-HT(2C) receptor agonist (S)-2-(chloro-5-fluoro-indol-1-yl)-1-methylethylamine 1:1 C(4)H(4)O(4) (RO 60-0175) caused a dose-dependent excitation of about 30% of the SNr neurons recorded. However, the remaining neurons were either inhibited or unaffected by systemic RO 60-0175, in similar proportion. Local application of RO 60-0175 by microiontophoresis caused excitation in the majority of SNr neurons tested (48%), whereas a group of neurons was inhibited (16%) or unaffected (36%). Both the excitatory and the inhibitory effects of systemic and microiontophoretic RO 60-0175 were completely prevented by pretreatment with SB 243213 [5-methyl-1-({2-[(2-methyl-3-pyridyl)oxy]-5-pyridyl}carbamoyl)-6-trifluoromethylindoline], a selective and potent 5-HT(2C) receptor antagonist. Consistent with these electrophysiological data, both systemic and intranigral administration of RO 60-0175 and m-chlorophenylpiperazine (mCPP), a non-selective 5-HT(2C) agonist, markedly increased extracellular GABA levels in the SNr. The stimulatory effect of systemic and local RO 60-0175 on GABA release was completely prevented by systemic administration of SB 243213, whereas local application of SB 243213 into the SNr only partially blocked RO 60-0175-induced GABA release. It is concluded that selective activation of 5-HT(2C) receptors stimulates GABA-ergic function in the SNr, and the clinical relevance of these data is discussed.  相似文献   

2.
目的:观察电刺激大鼠黑质网状部(substantia nigra pars reticulata,SNr)对脚桥核(pedunculopontine nucleus,PPN)神经元自发放电活动的影响,进一步探讨脑内电刺激治疗帕金森病(Parkinson's disease,PD)的机制.方法:应用细胞外记录方法观察不同...  相似文献   

3.
Fast-scan cyclic voltammetry with carbon fibre microelectrodes was used to detect endogenous dopamine (DA) and 5-hydroxytryptamine (5-HT) release from three distinct regions of guinea-pig mid-brain in vitro: rostral and caudal substantia nigra (SN) and the ventral tegmental area (VTA). Previous electrophysiological studies have demonstrated that cells of the caudal SN and the VTA have similar characteristics, whereas cells in the rostral SN have distinctly different properties. In the present study, we confirmed that each region has tyrosine hydroxylase-positive neurons and determined, using high-performance liquid chromatography, that DA levels were similar in rostral and caudal SN, but lower in SN than in VTA. In each region, application of veratrine, which was shown by intracellular recordings to have a reversible depolarising action, evoked a signal attributable to DA and distinguishable from that of 5-HT. Release signals were monitored every 250 ms with a spatial resolution of less than 50 m. DA release was calcium-dependent and was not detectable in a catecholamine-poor area such as the cerebellum, or in mid-brain tissue pre-treated with reserpine. Within the normal mid-brain, the amount of DA released was correlated with tissue content in that it was higher in the VTA than in either region of SN. It is concluded that DA released from somato-dendritic parts of mid-brain neurons exhibits site-specific variation. This is the first report of direct monitoring of DA and 5-HT relase from these regions with in situ electrodes and demonstrates the utility of fast-scan cyclic voltammetry to investigate the mechanisms and possible non-classical functions of somato-dendritic DA release.  相似文献   

4.
Evidence for a projection from the dorsal raphe nucleus to the substantia nigra was obtained by the demonstration of reactive perikarya in the dorsal raphe nucleus after injections of horseradish peroxidase into the substantia nigra of the rat. No labelled cells were observed in the median raphe nucleus. Stereotaxic injections of [3H]leucine into the dorsal raphe nucleus resulted in the appearance of autoradiographic grains over both the zona compacta and zona reticulate of the substantia nigra, although the concentration of grains was higher over the zona compacta. Electrolytic lesions of the dorsal raphe nucleus reduced nigral and striatal 5-hydroxytryptamine content by 61.5 and 70% respectively. Stimulation of the dorsal raphe nucleus was found to inhibit the unit activity of cells in both the zona compacta and zona reticulate of the substantia nigra and this inhibition could be blocked by 60–72 h pretreatment with p-chlorophenylalanine. Stimulation of the median raphe nucleus produced no consistent effects upon nigral unit activity. para-Chlorophenylalanine pretreatment did not significantly affect the rate of striatal dopamine depletion produced by injections of α-methyl-para-tyrosine, suggesting that the serotonergic raphe-nigral projection exerts a phasic rather than a tonic inhibitory influence over the dopaminergic neurons of the nigro-striatal projection.The results are discussed with reference to the possibility that the projections of the dorsal raphe nucleus to the substantia nigra and the striatum may mediate some of the interactions between central serotonergic and dopaminergic mechanisms.  相似文献   

5.
Fast-scan cyclic voltammetry with carbon fibre microelectrodes was used to detect endogenous dopamine (DA) and 5-hydroxytryptamine (5-HT) release from three distinct regions of guinea-pig mid-brain in vitro : rostral and caudal substantia nigra (SN) and the ventral tegmental area (VTA). Previous electrophysiological studies have demonstrated that cells of the caudal SN and the VTA have similar characteristics, whereas cells in the rostral SN have distinctly different properties. In the present study, we confirmed that each region has tyrosine hydroxylase-positive neurons and determined, using high-performance liquid chromatography, that DA levels were similar in rostral and caudal SN, but lower in SN than in VTA. In each region, application of veratrine, which was shown by intracellular recordings to have a reversible depolarising action, evoked a signal attributable to DA and distinguishable from that of 5-HT. Release signals were monitored every 250 ms with a spatial resolution of less than 50 μm. DA release was calcium-dependent and was not detectable in a catecholamine-poor area such as the cerebellum, or in mid-brain tissue pre-treated with reserpine. Within the normal mid-brain, the amount of DA released was correlated with tissue content in that it was higher in the VTA than in either region of SN. It is concluded that DA released from somato-dendritic parts of mid-brain neurons exhibits site-specific variation. This is the first report of direct monitoring of DA and 5-HT relase from these regions with in situ electrodes and demonstrates the utility of fast-scan cyclic voltammetry to investigate the mechanisms and possible non-classical functions of somato-dendritic DA release.  相似文献   

6.
This study assessed the possible antinociceptive role of peripheral 5-HT1 receptor subtypes in the rat formalin test. Rats were injected into the dorsum of the hind paw with 50 μl of diluted formalin (1%). Nociceptive behavior was quantified as the number of flinches of the injected paw. Reduction of flinching was considered as antinociception. Ipsilateral, but not contralateral, peripheral administration of the 5-HT1 receptor agonists R(+)-UH-301 (5-HT1A; 0.1–3 μg/paw), CGS-12066A (5-HT1B; 0.01–0.3 μg/paw), GR46611 (5-HT1B/1D; 0.3–10 μg/paw), BRL54443 (5-HT1E/1F; 3–300 μg/paw) or LY344864 (5-HT1F; 3–300 μg/paw) significantly reduced formalin-induced flinching. The corresponding vehicle was devoid of any effect by itself. The local antinociceptive effect of R(+)-UH-301 (0.3 μg/paw) was significantly reduced by WAY-100635 (30–100 μg/paw; a 5-HT1A receptor antagonist). Moreover, the antagonists GR55562 (30–100 μg/paw; 5-HT1B/D) or SB224289 (30–100 μg/paw; 5-HT1B) dose-dependently reduced the antinociceptive effect of CGS-12066A (0.3 μg/paw) whereas GR55562 (30–100 μg/paw) or BRL15572 (30–100 μg/paw, 5-HT1D) reduced the antinociceptive effect of GR46611 (0.3 μg/paw). Interestingly, the effects of BRL54443 and LY344864 (300 μg/paw each) were partially reduced by methiothepin, but not by the highest doses of WAY-100635, SB224289 or BRL15572. The above antagonists did not produce any effect by themselves. These results suggest that peripheral activation of the 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1F and, probably, 5-HT1E receptor subtypes leads to antinociception in the rat formalin test. Thus, the use of selective 5-HT1 receptor agonists could be a therapeutic strategy to reduce inflammatory pain.  相似文献   

7.
The serotonin (5-HT)1A agonist, LY 165,163 (1-[2-(4-aminophenyl)ethyl]-4-(3-trifluoromethylphenyl)-piperazine), also known as PAPP, has been suggested to exert effects via an interaction with dopamine receptors. Thus, in this study, we examined its ability to induce rotation in rats sustaining unilateral 6-hydroxy-dopamine lesions of the substantia nigra, an in vivo model of dopaminergic activity. In analogy to the direct dopamine (mixed D1/D2) agonist, apomorphine, (0.01–0.63 mg/kg), LY 165,163 (0.16–10.0 mg/kg) dose-dependently elicited robust and substained contralateral rotation. Its maximal effect was comparable to that of apomorphine and its duration of action more extended. Rotation elicited by LY 165,163 (10.0 mg/kg) was resistant to the 5-HT1A antagonist, (−)-alprenolol. It was also unaffected by the selective D1 antagonist, SCH 23390 (R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5,tetraphydro-1H-3- benzazepine) (2.5 mg/kg) or the selective D2 antagonist, raclopride (10.0 mg/kg) when each was administered alone. However, upon joint administration they clearly diminished the effect of LY 165,163. The dopamine antagonist, haloperidol (D2 > D1) also reduced the action of LY 165,163. This profile of partial antagonism by mixed D1 and D2 receptor blockade has been reported previously for apomorphine and contrasts to that seen with selective D1 or D2 agonists, the actions of which are completely blocked by D1 or D2 antagonists, respectively. In conclusion, the present data demonstrate that LY 165,163 exerts pronounced rotation in nigral-lesioned rats: this reflects a mixed D1/D2 action rather than an activation of 5-HT1A sites. Thus, in addition to an agonist action at 5-HT1A receptors, dopaminergic effects contribute to the pharmacological profile of LY 165,163.  相似文献   

8.
The globus pallidus occupies an important position in the indirect pathway of the basal ganglia. Being a monoamine neurotransmitter, 5-HT is involved in mediating many physiological functions and pathophysiological processes in several movement disorders. Morphological studies have revealed that the globus pallidus receives serotonergic innervation arising from the raphe nuclei, mainly the dorsal raphe nucleus. A high level of 5-HT and 5-HT1B receptors were detected in the globus pallidus. In the present study, bilateral microinjection of 5-HT or 5-HT1B receptor agonist, CP-93129, into the globus pallidus significantly alleviated the symptoms of rigidity caused by haloperidol. To further elucidate 5-HT1B receptor-induced anticatalepsy, in vivo extracellular recordings were performed to examine the effects of 5-HT1B receptor activation on the firing activity of the globus pallidus neurons under the presence of haloperidol. Micro-pressure ejection of 5-HT or CP-93129 increased the spontaneous firing rate of the pallidal neurons. Furthermore, by using immunohistochemistry, positive staining of 5-HT1B receptor was observed in the globus pallidus neurons. Taken together, the present findings provide evidence that activation of 5-HT1B receptor may exert anticataleptic effects by increasing the activity of pallidal neurons.  相似文献   

9.
Quantitative autoradiography with selective radioligands was used to establish the respective distribution of serotonin 5-HT1A, 5-HT1D, 5-HT2A and 5-HT3 receptors at the cervical, thoracic and lumbar levels of the spinal cord from subjects who died at 81–94 years. A high density of 5-HT1A receptors, labeled by [3H]8-hydroxy-2-(di-n-propylamino)tetralin ([3H]8-OH-DPAT), was found in the superficial layers of the dorsal horn, with a significant enrichment ( 20%) in the lumbar vs. the thoracic and cervical segments. In contrast, only very low specific labeling by [3H]8-OH-DPAT (i.e. less than 10% of that measured in the dorsal horn), was detected in the ventral horn. 5-HT1D sites labeled by [125I]serotonin-O-carboxymethyl-glycyl-iodo-tyrosinamide ([125I]GTI) were also mainly located within the superficial layers of the dorsal horn, but no difference in their relative density was noted at the three levels of the spinal cord examined. 5-HT2A sites labeled by [3H]ketanserin were found in the dorsal horn of the cervical segments but no specific binding of this radioligand could be detected at any other level of the spinal cord of such aged subjects. Finally, a high density of [3H]S-zacopride-labeled 5-HT3 receptors was noted especially in the most superficial layer (lamina I) of the dorsal horn at all segments examined. These data provide anatomical support for a role of spinal serotonin especially in nociception processing.  相似文献   

10.
Group III metabotropic glutamate receptors (mGluRs) are widely distributed in the basal ganglia, especially on the terminals of pathways which seem to be overactive in Parkinson's disease. The aim of the present study was to determine whether (1S,3R,4S)-1-aminocyclo-pentane-1,3,4-tricarboxylic acid (ACPT-1), an agonist of group III mGluRs, injected bilaterally into the globus pallidus (GP), striatum or substantia nigra pars reticulata (SNr), can attenuate the haloperidol-induced catalepsy in rats, and whether that effect was related to modulation of proenkephalin (PENK) or prodynorphin (PDYN) mRNA expression in the striatum. Administration of ACPT-1 (0.05-1.6 microg/0.5 microl/side) caused a dose-and-structure-dependent decrease in the haloperidol (0.5 mg/kg i.p. or 1.5 mg/kg s.c.)-induced catalepsy whose order was as follows: GP>striatum>SNr. ACPT-1, given alone to any of those structures, induced no catalepsy in rats. Haloperidol (3 x 1.5 mg/kg s.c.) significantly increased PENK mRNA expression in the striatum, while PDYN mRNA levels were not affected by that treatment. ACPT-1 (3 x 1.6 microg/0.5 microl/side) injected into the striatum significantly attenuated the haloperidol-increased PENK mRNA expression, whereas administration of that compound into the GP or SNr did not influence the haloperidol-increased striatal PENK mRNA levels. Our results demonstrate that stimulation of group III mGluRs in the striatum, GP or SNr exerts antiparkinsonian-like effects in rats. The anticataleptic effect of intrastriatally injected ACPT-1 seems to correlate with diminished striatal PENK mRNA expression. However, since the anticataleptic effect produced by intrapallidal and intranigral injection of ACPT-1 is not related to a simultaneous decrease in striatal PENK mRNA levels, it is likely that a decrease in enkephalin biosynthesis is not a necessary condition to obtain an antiparkinsonian effect.  相似文献   

11.
12.
Neurons of the substantia nigra's pars reticulata that send axons to the thalamus, superior colliculus and midbrain reticular formation (including the pedunculopontine nucleus) have been revealed in monkeys by the technique of retrograde transport of horseradish peroxidase. The populations of nigrothalamic, nigrotectal and nigroreticular neurons differ from one another in their number, intranigral distribution and somatodendritic size and shape. Nigrothalamic cells are the most abundant and, although scattered throughout the mediolateral expanse of the pars reticulata, their numbers progressively diminish from rostral to caudal levels. Nigrotectal cells are least numerous and are restricted almost exclusively to the lateral margin of the rostral one-half of the pars reticulata. Nigroreticular cells, like nigrothalamic, are scattered throughout the mediolateral dimension of the nucleus, but are more commonly located at middle to caudal levels. In addition to their restricted intranigral location, the nigrotectal cells are larger, polygonal and have more major dendritic processes than the smaller nigrothalamic and nigroreticular cells which are usually triangular or fusiform. A small proportion of cells of all three types appears to project contralaterally.These findings indicate that the efferent organization of the primate pars reticulata differs markedly from that of the rodent18 and the monkey's nigrotectal cells constitute a spatially and morphologically distinct subpopulation within the pars reticulata. These data should be useful in understanding the functional organization of topographic inputs to the pars reticulata such as that from the neostriatum.  相似文献   

13.
Serotonin2C (5-HT2C) receptors act in the basal ganglia, a group of sub-cortical structures involved in motor behavior, where they are thought to modulate oral activity and participate in iatrogenic motor side-effects in Parkinson's disease and Schizophrenia. Whether abnormal movements initiated by 5-HT2C receptors are directly consequent to dysfunctions of the motor circuit is uncertain. In the present study, we combined behavioral, immunohistochemical and extracellular single-cell recordings approaches in rats to investigate the effect of the 5-HT2C agonist Ro-60-0175 respectively on orofacial dyskinesia, the expression of the marker of neuronal activity c-Fos in basal ganglia and the electrophysiological activity of substantia nigra pars reticulata (SNr) neuron connected to the orofacial motor cortex (OfMC) or the medial prefrontal cortex (mPFC). The results show that Ro-60-0175 (1 mg/kg) caused bouts of orofacial movements that were suppressed by the 5-HT2C antagonist SB-243213 (1 mg/kg). Ro-60-0175 (0.3, 1, 3 mg/kg) dose-dependently enhanced Fos expression in the striatum and the nucleus accumbens. At the highest dose, it enhanced Fos expression in the subthalamic nucleus, the SNr and the entopeduncular nucleus but not in the external globus pallidus. However, the effect of Ro-60-0175 was mainly associated with associative/limbic regions of basal ganglia whereas subregions of basal ganglia corresponding to sensorimotor territories were devoid of Fos labeling. Ro-60-0175 (1–3 mg/kg) did not affect the electrophysiological activity of SNr neurons connected to the OfMC nor their excitatory-inhibitory-excitatory responses to the OfMC electrical stimulation. Conversely, Ro-60-0175 (1 mg/kg) enhanced the late excitatory response of SNr neurons evoked by the mPFC electrical stimulation. These results suggest that oral dyskinesia induced by 5-HT2C agonists are not restricted to aberrant signalling in the orofacial motor circuit and demonstrate discrete modifications in associative territories.  相似文献   

14.
The results of this study support the conclusion that dopaminergic cells can be distinguished from non-dopaminergic cells, at both the light- and electron-microscopic level, by cytological features, and particularly by the pattern of Nissl substance. In both the substantia nigra and the ventral tegmental area, two main categories of cell type can be identified in Nissl preparations: (1) dark-staining, basophilic cells with large masses of Nissl substance and (2) light-staining cells with more translucent cytoplasm. The following findings provide evidence that the basophilic cells of both substantia nigra and ventral tegmental area are the dopaminergic cells. (1) There is a good correlation between the topographic distribution of basophilic cells and that of dopaminergic cells mapped by both histofluorescence and immunohistochemical methods. (2) After unilateral destruction of the dopaminergic neurons by intracerebral injection of 6-hydroxydopamine in the dopaminergic pathway, the basophilic cells in the substantia nigra and ventral tegmental area disappeared on the lesion side, while the lighter-staining cells appeared unaffected. (3) In normal rats, and in rats with unilateral 6-hydroxydopamine lesions, intraventricular injection of [3H]norepinephrine was used for specific labeling of dopaminergic neurons. In autoradiograms of semithin sections, such labeling was observed only in dark-staining and not in light-staining cells, and in cases of unilateral 6-hydroxydopamine lesion was totally absent on the lesion side. Electron-microscopy showed much of the cytoplasm of the basophilic dopaminergic cells to be densely filled with free ribosomes associated with large, well organized complexes of rough endoplasmic reticulum. The cytoplasm of the light, non-dopaminergic cells contains only sparse free ribosomes and small, widely spaced aggregates of rough endoplasmic reticulum. Both cell types occur in a similar variety of size and shape.  相似文献   

15.
The efficacy of the selective 5-HT1B receptor agonist CP 93,129 in inhibiting the forskolin-stimulated adenylyl cyclase activity in the rat substantia nigra was reduced by both moderate and intensive prolonged training compared with sedentary resting rats. The concentration–response curves of the agonist were shifted to the right with a sixfold increase of the half-maximal inhibitory concentration. A difference was observed between the two training exercises in regard to further changes in 5-HT1B receptor sensitivity induced by an acute restraint stress. This manipulation did not affect the functional response of the 5-HT1B receptors further in moderately trained rats, whereas an additional desensitization of the 5-HT1B receptors was observed in intensively trained rats. These results strongly suggest the existence of regulation mechanisms altering the functional efficacy of 5-HT1B receptors and, accordingly, affecting the serotonergic activity, since 5-HT1B receptors modulate the neuronal release of the amine.  相似文献   

16.
Background: The substantia nigra has been divided into three subdivisions. However, the cytoarchitecture of one of these subdivisions, the pars lateralis (SNI), has not been previously examined in detail at the light and electron microscopic levels in any species. In the adult opossum, the three nigral subdivisions can be easily distinguished as distinct, rostrocaudally oriented cell groups separated by neuron-free zones. Thus it was possible to determine the boundaries of the SNI unambiguously. This report covers the results of an examination of the morphology and organization of the SNI in the opossum. Methods: Material from 13 opossums was used for this study. Eight of the animals had been previously stained for Nissl substance (n=4) or impregnated by the Golgi technique (n=4). The remaining five animals were prepared for electron microscopic studies using standard procedures. Results: Two cell types were identified on the basis of morphological differences, small and medium-large neurons. Small neurons (10–18 μm long axis) have large nuclei with moderate amounts of heterochromatin and a thin rim of cytoplasm. They have long (up to 500 μm), spine-free dendrites. Medium-large neurons (18–54 μm long axis) have rounded nuclei with electron-lucent nucleoplasm. Few indentations of the nuclear envelope were observed. The surrounding cytoplasm has dense arrays of organelles. Nissl bodies are particularly prominent in the form of pyramids with their bases at juxtanuclear positions and their apices directed toward emerging dendrites. Dendrites of medium-large neurons are long (some>1 mm in length), are primarily oriented in the frontal plane, and extend along the dorsal surface of or into the cerebral peduncle. Some cells have dendrites that are moderately spinous, whereas other neurons possess sparsely spinous dendrites. Relatively few synaptic profiles are observed to contact somata and proximal dendrites. Conclusion: This report provides added morphological support for the idea that the SNI is a distinct subdivision of the substantia nigra, a distinction previously made on the basis of the physiologically characterized relationship between the lateral substantia nigra and orienting behaviors and seizure-related function. © 1995 Wiley-Liss, Inc.  相似文献   

17.
The D1 family of dopamine receptors (D1R) play a critical role in modulating reward in the nucleus accumbens (NAc). A better understanding of how D1Rs modulate NAc function must take into account the contributions of the two D1R subtypes, D1 and D5. In order to determine how these two subtypes contribute to dopamine's actions in the NAc, we utilized subtype specific antibodies and immunoelectron microscopy to quantitatively determine the localization of D1 and D5 in the neuropil of the primate NAc. We found that D1 was more commonly found in dendritic shafts and spines, while D5 was more commonly found in axon terminals, preterminal axons and glial processes. However, D5 is well positioned to play an important role in postsynaptic modulation of inputs onto NAc medium spiny neurons. Approximately one third of spines contained D1 and one quarter contained D5, and as we have previously observed in the prefrontal cortex (PFC) and amygdala, these receptors overlapped extensively in dendritic spines. Similarly, we found overlap of the two D1R in axon terminals in the NAc; however, here D5 labeled the larger population of terminals and D1 was found in a subpopulation of D5 containing terminals. Given the higher affinity of D5 for dopamine, this suggest that presynaptic modulation of inputs by dopamine may be more easily evoked than in PFC where D1 is the dominate presynaptic receptor. Finally, we investigated differences between the NAc and the dorsal striatum. We found that in the caudate half of dendritic spines contain D1, significantly more than in the NAc. This suggests differences in how receptor is translated and distributed in D1 mRNA expressing medium spiny neurons in the NAc and caudate.  相似文献   

18.
Activation of neurons in the bed nucleus of the stria terminalis (BNST) plays a critical role in stress and anxiety-related behaviors. Previously, we have shown that serotonin (5-HT) can directly modulate BNST neuronal excitability by an action at postsynaptic receptors. In this study we built upon that work to examine the effects of 5-HT on excitatory neurotransmission in an in vitro rat BNST slice preparation. Bath application of 5-HT reversibly reduced the amplitude of evoked excitatory postsynaptic currents (eEPSCs). These effects were mimicked by the 5-HT1B/D receptor agonist, sumatriptan, and by the 5-HT1B receptor selective agonist, CP93129. Conversely, the effects of 5-HT and sumatriptan could be blocked by the 5-HT1B receptor-selective antagonist, GR55562. In contrast, the 5-HT1A receptor agonist 8-OH DPAT or antagonist WAY 100635 could not mimic or block the effect of 5-HT on eEPSCs. Together, these data suggest that the 5-HT-induced attenuation of eEPSCs was mediated by 5-HT1B receptor activation. Moreover, sumatriptan had no effect on the amplitude of the postsynaptic current elicited by pressure applied AMPA, suggesting a possible presynaptic locus for the 5-HT1B receptor. Furthermore, 5-HT, sumatriptan and CP93129 all increased the paired pulse ratio of eEPSCs while they concomitantly decreased the amplitude of eEPSCs, suggesting that these agonists act to reduce glutamate release probability at presynaptic locus. Consistent with this observation, sumatriptan decreased the frequency of miniature EPSCs, but had no effect on their amplitude. Taken together, these results suggest that 5-HT suppresses glutamatergic neurotransmission in the BNST by activating presynaptic 5-HT1B receptors to decrease glutamate release from presynaptic terminals. This study illustrates a new pathway by which the activity of BNST neurons can be indirectly modulated by 5-HT, and suggests a potential new target for the development of novel treatments for depression and anxiety disorders.  相似文献   

19.
The serotoninergic system and the 5-HT1A receptors have been involved in the brain response to acute stress. The aim of our study was evaluate the role of the 5-HT1A receptors in serotoninergic cells of rostral and caudal raphe nuclei under acute immobilization in rats. Double immunocytochemical staining of 5-hydroxy-tryptamine and c-Fos protein and stereology techniques were used to study the specific cell activation in the raphe nuclei neurons in five groups (control group, immobilization group (immobilization lasting 1 h), DPAT group (8-OH-DPAT 0.3 mg/kg, s.c.), DPAT + IMMO group (8-OH-DPAT 0.3 mg/kg, s.c., 30′ prior acute immobilization) and WAY + DPAT + IMMO group (WAY-100635 0.3 mg/kg, s.c. and 8-OH-DPAT 0.3 mg/kg, s.c., 45′ and 30′, respectively, before immobilization). Our results showed an increase in the number of c-Fos immunoreactive nuclei in serotoninergic cells in both dorsal and median raphe nuclei in the immobilized group. The 8-OH-DPAT pretreatment counteracted the excitatory effects of the acute immobilization in these brain regions. In addition, WAY-100635 administration reduced the effect of 8-OH-DPAT injection, suggesting a selective 5-HT1A receptor role. Raphe pallidus and raphe obscurus did not show any differences among experimental groups. We suggest that somatodendritic 5-HT1A receptors in rostral raphe nuclei may play a crucial role in both mediating the consequences of uncontrollable stress and the possible beneficial effects of treatment with 5-HT1A receptor agonists.  相似文献   

20.
Yamamoto N  Soghomonian JJ 《Neuroscience》2008,154(3):1088-1099
Striatal projection neurons use GABA as their neurotransmitter and express the rate-limiting synthesizing enzyme glutamic acid decarboxylase (GAD) and the vesicular GABA transporter vGAT. The chronic systemic administration of an agonist of dopamine D1/D5-preferring receptors is known to alter GAD mRNA levels in striatonigral neurons in intact and dopamine-depleted rats. In the present study, the effects of a single or subchronic systemic administration of the dopamine D1/D5-preferring receptor agonist SKF-81297 on GAD65, GAD67, PPD and vGAT mRNA levels in the striatum and GABA(A) receptor alpha1 subunit mRNA levels in the substantia nigra, pars reticulata, were measured in rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion. After a single injection of SKF-81297, striatal GAD65 mRNA levels were significantly increased at 3 but not 72 h. In contrast, striatal GAD67 mRNA levels were increased and nigral alpha1 mRNA levels were decreased at 72 but not 3 h. Single cell analysis on double-labeled sections indicated that increased GAD or vGAT mRNA levels after acute SKF-81297 occurred in striatonigral neurons identified by their lack of preproenkephalin expression. Subchronic SKF-81297 induced significant increases in striatal GAD67, GAD65, preprodynorphin and vGAT mRNA levels and decreases in nigral alpha1 mRNA levels. In the striatum contralateral to the 6-OHDA lesion, subchronic but not acute SKF-81297 induced a significant increase in GAD65 mRNA levels. The other mRNA levels were not significantly altered. Finally, striatal GAD67 mRNA levels were negatively correlated with nigral alpha1 mRNA levels in the dopamine-depleted but not dopamine-intact side. The results suggest that different signaling pathways are involved in the modulation by dopamine D1/D5 receptors of GAD65 and GAD67 mRNA levels in striatonigral neurons. They also suggest that the down-regulation of nigral GABA(A) receptors is linked to the increase in striatal GAD67 mRNA levels in the dopamine-depleted striatum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号