首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GABAergic neurons were localized in the rat basal ganglia by glutamate decarboxylase (GAD) immunohistochemistry. In the striatum (caudato-putamen, accumbens nucleus) a medium density of GAD-positive terminals was observed; a small number of medium-to-large size neurons and the vast majority of medium-size neurons were GAD immunoreactive. In addition, opioid peptide-like immunoreactivity was colocalized in a subclass of GAD-positive medium-size striatal neurons. The pallido-nigral system (GP, VP, EP, SNR) displayed a high density of GAD-positive axon terminals which synapsed upon dendrites and nerve cell bodies. The majority of pallido-nigral neurons also were GAD-immunoreactive. In contrast, the substantia nigra pars compacta and the subthalamic nucleus contained only few GAD-immunoreactive neurons.  相似文献   

2.
The nucleus accumbens (NAc) is positioned to integrate signals originating from limbic and cortical areas and to modulate reward-related motor output of various goal-directed behaviours. The major target of the NAc GABAergic output neurons is the ventral pallidum (VP). VP is part of the reward circuit and controls the ascending mesolimbic dopamine system, as well as the motor output structures and the brainstem. The excitatory inputs governing this system converge in the NAc from the prefrontal cortex (PFC), ventral hippocampus (vHC), midline and intralaminar thalamus (TH) and basolateral nucleus of the amygdala (BLA). It is unclear which if any of these afferents innervate the medium spiny neurons of the NAc, that project to the VP. To identify the source of glutamatergic afferents that innervate neurons projecting to the VP, a dual-labelling method was used: Phaseolus vulgaris leucoagglutinin for anterograde and EGFP-encoded adenovirus for retrograde tract-tracing. Within the NAc, anterogradely labelled BLA terminals formed asymmetric synapses on dendritic spines that belonged to medium spiny neurons retrogradely labelled from the VP. TH terminals also formed synapses on dendritic spines of NAc neurons projecting to the VP. However, dendrites and dendritic spines retrogradely labelled from VP received no direct synaptic contacts from afferents originating from mPFC and vHC in the present material, despite the large number of fibres labelled by the anterograde tracer injections. These findings represent the first experimental evidence for a selective glutamatergic innervation of NAc neurons projecting to the VP. The glutamatergic inputs of different origin (i.e. mPFC, vHC, BLA, TH) to the NAc might thus convey different types of reward-related information during goal-directed behaviour, and thereby contribute to the complex regulation of nucleus accumbens functions.  相似文献   

3.
Mu opioid receptor (MOR) signaling in the nucleus accumbens (NAcc) elicits marked increases in the consumption of palatable tastants. However, the mechanism and circuitry underlying this effect are not fully understood. Multiple downstream target regions have been implicated in mediating this effect but the role of the ventral pallidum (VP), a primary target of NAcc efferents, has not been well defined. To probe the mechanisms underlying increased consumption, we identified behavioral changes in rats' licking patterns following NAcc MOR stimulation. Because the temporal structure of licking reflects the physiological substrates modulating consumption, these measures provide a useful tool in dissecting the cause of increased consumption following NAcc MOR stimulation. Next, we used a combination of pharmacological inactivation and lesions to define the role of the VP in hyperphagia following infusion of the MOR-specific agonist [d-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO) into the NAcc. In agreement with previous studies, results from lick microstructure analysis suggest that NAcc MOR stimulation augments intake through a palatability-driven mechanism. Our results also demonstrate an important role for the VP in normal feeding behavior: pharmacological inactivation of the VP suppresses baseline and NAcc DAMGO-induced consumption. However, this interaction does not occur through a serial circuit requiring direct projections from the NAcc to the VP. Rather, our results indicate that NAcc and VP circuits converge on a common downstream target that regulates food intake.  相似文献   

4.
5.
Electrophysiological and pharmacological studies have demonstrated that alpha-1 adrenergic receptor (α1AR) activation facilitates dopamine (DA) transmission in the striatum and ventral midbrain. However, because little is known about the localization of α1ARs in dopaminergic regions, the substrate(s) and mechanism(s) underlying this facilitation of DA signaling are poorly understood. To address this issue, we used light and electron microscopy immunoperoxidase labeling to examine the cellular and ultrastructural distribution of α1ARs in the caudate putamen, nucleus accumbens, ventral tegmental area, and substantia nigra in the rat. Analysis at the light microscopic level revealed α1AR immunoreactivity mainly in neuropil, with occasional staining in cell bodies. At the electron microscopic level, α1AR immunoreactivity was found primarily in presynaptic elements, with scarce postsynaptic labeling. Unmyelinated axons and about 30–50% terminals forming asymmetric synapses contained the majority of presynaptic labeling in the striatum and midbrain, while in the midbrain a subset of terminals forming symmetric synapses also displayed immunoreactivity. Postsynaptic labeling was scarce in both striatal and ventral midbrain regions. On the other hand, only 3–6% of spines displayed α1AR immunoreactivity in the caudate putamen and nucleus accumbens. These data suggest that the facilitation of dopaminergic transmission by α1ARs in the mesostriatal system is probably achieved primarily by pre-synaptic regulation of glutamate and GABA release.  相似文献   

6.
The ventral part of the oral pontine reticular nucleus (vRPO) is involved in the generation and maintenance of rapid eye movement (REM) sleep. Both GABAergic and serotonergic neurotransmission have been implicated in the control of the sleep–wakefulness cycle. Nevertheless, the synaptic organization of serotonergic terminals in the vRPO has not yet been characterized. We performed an electron microscope study of serotonin-immunoreactive (5-HT-IR) terminals using immunoperoxidase or immunogold–silver methods. In a second set of experiments, combining GABA immunoperoxidase and 5-HT immunogold–silver techniques, we examined inputs from GABA-immunoreactive (GABA-IR) terminals to serotonergic neurons. 5-HT-IR terminals were located primarily on dendrites and occasionally on somata of unlabeled and 5-HT-IR neurons. The majority of the synapses formed by 5-HT-IR terminals were of the symmetrical type, making contacts primarily with unlabeled dendritic profiles. Moreover, 5-HT-IR terminals contacted unlabeled axon terminals that formed asymmetric synapses on dendrites. Double immunolabeling experiments showed 5-HT-IR and GABA-IR afferents, in apposition to each other, making synapses with the same dendrites. Finally, GABA-IR terminals innervated 5-HT-IR and GABA-IR dendrites. Our findings indicate that serotonin would modulate the neuronal activity through inhibitory or excitatory influences, although the action of serotonin on the vRPO would predominantly be inhibitory. Moreover, the present results suggest that the serotonin modulation of vRPO neurons might involve indirect connections. In addition, GABA might contribute to the induction and maintenance of REM sleep by inhibiting serotonergic and GABAergic neurons in the vRPO.  相似文献   

7.
The topographical distribution of neuropeptide-containing cell bodies, fibers and terminals was studied in human parabrachial nuclei and the pontine tegmentum with immunohistochemical stainings. Brains of seven adult human subjects of 35-72 years were fixed within 2 h post mortem. Serial sections were immunostained by antisera of 14 different neuropeptides--oxytocin, vasopressin, thyrotropin-releasing hormone, angiotensin II, calcitonin gene-related peptide, beta-endorphin, dynorphin A, dynorphin B, leucine-enkephalin, alpha-melanocyte stimulating hormone, substance P, neuropeptide Y, cholecystokinin and galanin--alternately. All of these peptides were found to be present in nerve fibers and terminals, but only two, angiotensin II and dynorphin B, in cell bodies of the parabrachial nuclei. Calcitonin gene-related peptide-, neuropeptide Y-, cholecystokinin- and galanin-immunoreactive cells were present in other areas of the pontine tegmentum, like the motor trigeminal nucleus, locus coeruleus, periventricular gray matter but not in the parabrachial nuclei. Peptidergic fibers were distributed unevenly throughout the pontine tegmentum having unique, individual distribution patterns. In the parabrachial nuclei, substance P, neuropeptide Y, cholecystokinin and galanin showed the highest density of immunoreactive neuronal networks. Moderate to low concentrations of immunoreactive processes were detected by calcitonin gene-related peptide, alpha-melanocyte stimulating hormone, dynorphin B, thyrotropin releasing hormone, leucine-enkephalin, dynorphin A, angiotensin II, beta-endorphin, vasopressin and oxytocin antisera, respectively. Other pontine tegmental areas, like the locus coeruleus, dorsal tegmental, pontine raphe and motor trigeminal nuclei as well as the central gray of the tegmental region exhibited a varying assortment of neuropeptides with distinct, individual localization patterns. Their detailed topographical distributions are mapped and given in coronal sections.  相似文献   

8.
9.
The distribution of twelve biologically active neuropeptides, i.e., thyrotropin-releasing hormone, corticotropin-releasing factor, pro-opiomelanocortin-derived peptides (adrenocorticotropic hormone, β-endorphin, α-melanocyte-stimulating hormone), leucine-enkephalin, dynorphin A, dynorphin B, cholecystokinin, substance P, galanin and calcitonin gene-related peptide, was examined by immunohistochemistry in the human dorsal vagal complex including the nucleus of the solitary tract, the dorsal motor nucleus of the vagus and the area postrema. Immunoreactivity of all the twelve neuropeptides was found widely distributed in the various subdivisions of the nucleus of the solitary tract, showing a unique distribution for every peptide. Neuronal cell bodies immunostained with leucine-enkephalin, galanin and dynorphin B were found in this region. There were no immunopositive perikarya for any of the peptides in the other structures studied. Fibers containing galanin, corticotropin-releasing factor, substance P, dynorphin B, thyrotropin-releasing hormone and calcitonin gene-related peptide were observed at a relatively high density in the nucleus of the solitary tract. In the same structure, a moderately dense network of fibers immunostained with dynorphin A, cholecystokinin and leucine-enkephalin, but only solitary pro-opiomelanocortin-derived peptides-containing fiber fragments were observed. In the dorsal motor nucleus of the vagus the most prominent network of fibers was found to contain thyrotropin-releasing hormone, galanin and substance P. In contrast to these, no β-endorphin immunoreactivity was detected. The area postrema contained only moderate to low densities of galanin-, substance P-, calcitonin gene-related peptide-, dynorphin B- and cholecystokinin-immunoreactive fibers.  相似文献   

10.
11.
本实验用免疫组化电镜技术对骶髓后连合核中SP祥、CGRP样、L-ENK样阳性终末进行了观察,结果表明:SP样阳性终末主要含圆形清亮小泡,间有少量颗粒囊泡,主要与中、小树突形成不对称型轴-树突触(93%);还可见到不对称型轴-体突触(5%);也可见到少量的轴-轴突触(2%),SP样阳性终末为突触后成分。CGRP样阳性终末以含圆形清亮小泡为主,有的终末内混有颗粒囊泡。大多数终末(89%)与树突构成轴-树突触,但以远侧树突为主;也有少数(6%)的CGRP样阳性终末与胞体形成轴-体突触;还观察到由阴性终末与CGRP样阳性终末构成的轴-轴突触。L-ENK样阳性终末以含圆形清亮小泡为主,有时可见散在的颗粒囊泡,多与中、小树突形成不对型轴-树突触(92%);也观察到轴-体突触(5%)和轴-轴突触(3%)。  相似文献   

12.
The expression of tachykinin-like and opioid-like peptides was studied in medium-sized neurons of the caudate nucleus in tissue from adult cats pretreated with colchicine. Two methods, a serial thin-section peroxidase-antiperoxidase technique and a two-fluorochrome single-section technique, were applied. Quantitative estimates were made mainly with the peroxidase-antiperoxidase method. The numbers of neurons expressing substance P-like, dynorphin B-like, and enkephalin-like immunoreactivity were recorded in regions identified, respectively, as striosomes and extrastriosomal matrix. Striosomes were defined by the presence of clustered substance P-positive and dynorphin B-positive neurons and neuropil. Tests for the co-existence of enkephalin-like peptide and glutamate decarboxylase-like immunoreactivity were also made with the peroxidase-antiperoxidase method. Co-expression of substance P-like and dynorphin B-like immunoreactivities was the rule both in striosomes and in the matrix. In striosomes, substance P-like immunoreactivity was found in 96% of dynorphin B-immunoreactive neurons, and in the matrix 89% of dynorphin B-positive cells contained substance P-like immunoreactivity. Substance P/dynorphin B-positive neurons corresponded to over half (57%) of the neurons in striosomes but only 39% of the neurons in the matrix. Both in the matrix and in striosomes, about two-thirds of all neurons (63% and 65%, respectively) were identified as enkephalin-positive. Among all substance P/dynorphin B-positive medium-sized neurons, 76% also contained enkephalin-like antigen. The enkephalin-positive neurons characterized by triple peptide co-existence (enkephalin/substance P/dynorphin B) represented a mean of 63% of striosomal enkephalin-positive neurons (41% of all striosomal neurons) and 35% of matrical enkephalin-positive neurons (26% of all matrical neurons). Finally, nearly all enkephalin-positive neurons were immunoreactive for glutamate decarboxylase, and therefore probably GABAergic, but only about half the glutamate decarboxylase-positive population was enkephalin-immunoreactive. These findings suggest that neuropeptides from three distinct precursors may be co-localized in single medium-sized neurons in the striatum, and that the differential patterns of co-expression of substance P-like, dynorphin B-like, and enkephalin-like peptides may confer functional specializations upon subpopulations of GABAergic neurons giving rise to the efferent projections of the striatum. The linked expression of substance P-like and dynorphin B-like peptides in single neurons both in striosomes and matrix suggests that some regulatory mechanisms controlling peptide expression apply regardless of compartment.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
14.
We have examined the distribution pattern and the density of various neuropeptide, neurotransmitter and enzyme containing neurons in the rat medial septum and the nucleus of the diagonal band of Broca to assess their possible involvement in the septohippocampal, septocortical and septobulbar pathways. Immunohistochemical methods were combined with the retrograde transport of a protein-gold complex injected in the hippocampus, the cingulate cortex or the olfactory bulb. Cholinergic neurons were the most numerous. Galanin-positive neurons were about two or three times less numerous than cholinergic cells. Both these cell types had a similar location though the choline acetyl transferase-like immunoreactive cells extended more caudally in the horizontal limb of the nucleus of the diagonal band of Broca. Immunoreactive cells for other neuroactive substances were few (calcitonin gene-related peptide, luteinizing hormone releasing hormone. [Met]enkephalin-arg-gly-leu) or occasional (dynorphin B, vasoactive intestinal polypeptide, somatostatin, neurotensin, cholecystokinin, neuropeptide Y and substance P). No immunoreactive cells for bombesin, alpha atrial natriuretic factor, corticotropin releasing factor, 5-hydroxytryptamine, melanocyte stimulating hormone, oxytocin, prolactin, tyrosine hydroxylase or arg-vasopressin were present. Choline acetyltransferase- and galanin-like immunoreactive cells densely participate to septal efferents. Cholinergic neurons constituted the bulk of septal efferent neurons. Galanin-positive cells were 22% of septohippocampal, 8% of septocortical, and 9% of septobulbar neurons. Galanin containing septohippocampal neurons were found in the medial septum and the nucleus of the diagonal band of Broca; galanin-positive septobulbar and septocortical cells were limited to the nucleus of the diagonal band of Broca. Occasional double-labellings were noticed with some peptides other than galanin. Luteinizing hormone-releasing hormone, calcitonin gene-related peptide and enkephalin were the most often observed; some other projecting cells stained for vasoactive intestinal polypeptide or dynorphin B. Luteinizing hormone-releasing hormone, calcitonin gene-related peptide and enkephalin were observed in septohippocampal neurons; luteinizing hormone-releasing hormone and vasoactive intestinal peptide were observed in septocortical neurons and calcitonin gene-related peptide, luteinizing hormone-releasing hormone and dynorphin B were observed in septo-bulbar cells. These results show that, in addition to acetylcholine, galanin is a major cellular neuroactive substance in septal projections to the hippocampus, the cingulate cortex and the olfactory bulb. The presence of septal projecting neurons immunoreactive for other peptides shows that a variety of distinct peptides may also participate, but in a smaller number, to septal efferent pathways.  相似文献   

15.
The nucleus accumbens (NAcc) is a brain region involved in functions ranging from motivation and reward to feeding and drug addiction. The NAcc is typically divided into two major subdivisions, the shell and the core. The primary output neurons of both of these areas are medium spiny neurons (MSNs), which are quiescent at rest and depend on the relative input of excitatory and inhibitory synapses to determine when they fire action potentials. These synaptic inputs are, in turn, regulated by a number of neurochemical signaling agents that can ultimately influence information processing in the NAcc. The present study characterized the ability of three major signaling pathways to modulate synaptic transmission in NAcc MSNs and compared this modulation across different synapses within the NAcc. The opioid [Met](5)enkephalin (ME) inhibited excitatory postsynaptic currents (EPSCs) in shell MSNs, an effect mediated primarily by micro-opioid receptors. Forskolin, an activator of adenylyl cyclase, potentiated shell EPSCs. An analysis of miniature EPSCs indicated a primarily presynaptic site of action, although a smaller postsynaptic effect may have also contributed to the potentiation. Adenosine and an adenosine A(1)-receptor agonist inhibited shell EPSCs, although no significant tonic inhibition by endogenous adenosine was detected. The effects of these signaling agents were then compared across four different synapses in the NAcc: glutamatergic EPSCs and GABAergic inhibitory postsynaptic currents (IPSCs) in both the core and shell subregions. ME inhibited all four of these synapses but produced a significantly greater inhibition of shell IPSCs than the other synapses. Forskolin produced an increase in transmission at each of the synapses tested. However, analysis of miniature IPSCs in the shell showed no sign of a postsynaptic contribution to this potentiation, in contrast to the shell miniature EPSCs. Tonic inhibition of synaptic currents by endogenous adenosine, which was not observed in shell EPSCs, was clearly present at the other three synapses tested. These results indicate that neuromodulation can vary between the different subregions of the NAcc and between the different synapses within each subregion. This may reflect differences in neuronal interconnections and functional roles between subregions and may contribute to the effects of drugs acting on these systems.  相似文献   

16.
We have re-evaluated, using the anterograde tracer biocytin, supraspinal efferent projections from the parabrachial complex (PBN) to gain new information about the nature of its connections and nerve terminal patterns. We selectively injected biocytin into the 3 main regions of the nucleus (lateral PBN, medial PBN and Kölliker-Fuse nucleus). We observed distinct groups of ascending and descending fibres of different calibre from the PBN running throughout the brain and reaching many brain areas involved in the regulation of autonomic function. Here we detected labelled bouton-like terminals and fibres with en-passage varicosities. The ascending efferents from the lateral PBN mainly reached the reticular, raphe and thalamic nuclei, the zona incerta (ZI), central nucleus of the amygdala (CeA) and lateral area of the periaqueductal grey (PAG). Thin descending efferents reached the ventral region of the solitary tract nucleus (STN). The ascending efferents from the medial PBN were seen in the raphe nuclei, reticular nuclei, ventral and lateral areas of the PAG, thalamic nuclei, and in the medial and lateral nuclei of the amygdala. Descending efferents were seen in the STN and in some reticular nuclei. The ascending projections from the Kölliker-Fuse targeted the ventral area of PAG, CeA, ZI, lateral hypothalamic area, ventromedial thalamic nucleus and, with only a few terminals, the ipsi and contralateral reticular area. A large number of descending efferents reached STN, caudal and paragigantocellular reticular nuclei. The higher sensitivity of biocytin compared with other types of markers allowed us to determine more effectively the distribution, nature and extent of the supraspinal PBN connections. This suggested that in several nerve circuits the PBN probably plays a more important role than previously thought.  相似文献   

17.
The distribution of the GABA transporter GAT-1 was studied by immunocytochemistry and electron microscopy in the monkey basal ganglia. Dense staining was observed in the globus pallidus externa and interna, intermediate in the subthalamic nucleus, and substantia nigra, and light staining in the caudate nucleus and putamen. Staining was observed in axon terminals, but not cell bodies. Electron microscopy showed that the GAT-1 positive axon terminals formed symmetrical synapses, suggesting that they were the terminals of GABAergic neurons. Comparison of areas high in GAT-1 protein with that of GABA showed a good correlation between the density in neuropil staining for GAT-1, and that of GABA.  相似文献   

18.
19.
The ezrin–radixin–moesin (ERM) proteins are a family of widely distributed membrane-associated proteins and have been implicated not only in cell-shape determination but also in signaling pathway. The nucleus accumbens (NAcc) is an important neuronal substrate mediating the effects of drugs of abuse. However, it has not been determined yet how ERM proteins are regulated in this site by drugs of abuse. Here we show in rat that the phosphorylation levels of ERM protein are dose- and time-dependently decreased in the NAcc by a single injection of cocaine (15 or 30 mg/kg i.p.). Further, we show that the amount of active RhoA, a small GTPase protein, is significantly reduced in the NAcc by cocaine, while the phosphorylation levels of ERM protein are also decreased by bilateral microinjections in this site of the Rho kinase inhibitors. Together, these results suggest that cocaine reduces phosphorylated ERM levels in the NAcc by making downregulation of RhoA–Rho kinase signaling, which may importantly contribute to initiate synaptic changes in this site leading to drug addiction.  相似文献   

20.
The activation of the delta-opioid receptors in the nucleus accumbens is known to induce a large and rapid increase of accumbal dopamine efflux. (+/-)-TAN-67 (2-methyl-4a(alpha)-(3-hydroxyphenyl)-1,2,3,4,4a,5,12,12a(alpha)-octahydro-quinolino[2,3,3,-g]isoquinoline) is a centrally acting non-peptidic delta opioid receptor agent which has recently become available. Interestingly, the (+) enantiomer of TAN-67 induces hyperalgesia in contrast to the (-) enantiomer of TAN-67 that produces profound antinociceptive effects in mice; the latter effects are mediated through delta-1 receptor stimulation. Using the microdialysis technique, the ability of the enantiomers of TAN-67 to alter the release of accumbal dopamine in vivo was analyzed. Like the 25-min infusion of the selective delta-1 opioid receptor agonist (D-[Pen2,5]-enkephalin) DPDPE (50 nM) and the delta-2 opioid receptor agonist deltorphin II (50 nM), the 25-min infusion of both (-)-TAN-67 (25 and 50 nM) and (+)-TAN-67 (25 and 50 nM) into the nucleus accumbens produced a similar transient dose-dependent increase in the accumbal extracellular dopamine level. Naloxone (1 mg/kg i.p., given 25 min prior to the drugs), namely a treatment that is known to inhibit the increase of dopamine induced by DPDPE and deltorphin II, did not affect the transient increase in the accumbal dopamine level produced by infusion of the enantiomers of TAN-67. The DPDPE and deltorphin II-induced increase in accumbal dopamine level, but not that of (-)-TAN-67 and (+)-TAN-67, was eliminated by subsequently perfused tetrodotoxin (2 microM) into the nucleus accumbens. The increase in accumbal dopamine level produced by an infusion of (-)-TAN-67 and (+)-TAN-67 was not altered by a Ca2+-free Ringer's solution. The (-)-TAN-67 and (+)-TAN-67-induced accumbal dopamine efflux was strongly prevented by reserpine (5 mg/kg i.p., given 24 h earlier) or alpha-methyl-para-tyrosine (250 mg/kg i.p., given 2 h earlier). The effects of the enantiomers of TAN-67 on the accumbal dopamine were nullified by combined treatment with reserpine and alpha-methyl-para-tyrosine. The (-)-TAN-induced dopamine efflux was significantly reduced by the N-methyl-D-aspartate (NMDA) receptor antagonists ifenprodil (20 mg/kg i.p., 20 min before) and MK-801 (0.5 mg/kg i.p., 20 min before), respectively. The effects of (-)-TAN-67 on the dopamine efflux were also inhibited by the free radical scavenger N-2-mercaptopropionyl glycine (100 mg/kg i.p., 20 min before). These results show that both enantiomers of TAN-67 enhance the release of reserpine sensitive, vesicular dopamine and alpha-methyl-p-tyrosine sensitive, cytosolic dopamine from dopaminergic nerve terminals in the nucleus accumbens in a way that is independent of neural activity; activation of delta opioid receptors plays no role in these events. All together, the results suggest that (-)-TAN-67 can generate a burst of free radicals that in turn trigger a release of glutamate that ultimately via activation of NMDA receptors enhances the release of dopamine from dopaminergic nerve terminals in the nucleus accumbens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号