首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A growing body of evidence demonstrates the involvement of plasminogen activators (PAs) in a number of physiologic and pathologic events in the CNS. Induction of both tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA) has been observed in different experimental models of epilepsy and tPA has been implicated in the mechanisms underlying seizure activity. We investigated the expression and the cellular distribution of tPA and uPA in several epileptogenic pathologies, including hippocampal sclerosis (HS; n=6), and developmental glioneuronal lesions, such as focal cortical dysplasia (FCD, n=6), cortical tubers in patients with the tuberous sclerosis complex (TSC; n=6) and in gangliogliomas (GG; n=6), using immuno-cytochemical, western blot and real-time quantitative PCR analysis. TPA and uPA immunostaining showed increased expression within the epileptogenic lesions compared to control specimens in both glial and neuronal cells (hippocampal neurons in HS and dysplastic neurons in FCD, TSC and GG specimens). Confocal laser scanning microscopy confirmed expression of both proteins in astrocytes and microglia, as well as in microvascular endothelium. Immunoblot demonstrated also up-regulation of the uPA receptor (uPAR; P<0.05). Increased expression of tPA, uPA, uPAR and tissue PA inhibitor type mRNA levels was also detected by PCR analysis in different epileptogenic pathologies (P<0.05). Our data support the role of PA system components in different human focal epileptogenic pathologies, which may critically influence neuronal activity, inflammatory response, as well as contributing to the complex remodeling of the neuronal networks occurring in epileptogenic lesions.  相似文献   

2.
Oxidative stress (OS) occurs in brains of patients with epilepsy and coincides with brain inflammation, and both phenomena contribute to seizure generation in animal models. We investigated whether expression of OS and brain inflammation markers co‐occurred also in resected brain tissue of patients with epileptogenic cortical malformations: hemimegalencephaly (HME), focal cortical dysplasia (FCD) and cortical tubers in tuberous sclerosis complex (TSC). Moreover, we studied molecular mechanisms linking OS and inflammation in an in vitro model of neuronal function. Untangling interdependency and underlying molecular mechanisms might pose new therapeutic strategies for treating patients with drug‐resistant epilepsy of different etiologies. Immunohistochemistry was performed for specific OS markers xCT and iNOS and brain inflammation markers TLR4, COX‐2 and NF‐κB in cortical tissue derived from patients with HME, FCD IIa, IIb and TSC. Additionally, we studied gene expression of these markers using the human neuronal cell line SH‐SY5Y in which OS was induced using H2O2. OS markers were higher in dysmorphic neurons and balloon/giant cells in cortex of patients with FCD IIb or TSC. Expression of OS markers was positively correlated to expression of brain inflammation markers. In vitro, 100 µM, but not 50 µM, of H2O2 increased expression of TLR4, IL‐1β and COX‐2. We found that NF‐κB signaling was activated only upon stimulation with 100 µM H2O2 leading to upregulation of TLR4 signaling and IL‐1β. The NF‐κB inhibitor TPCA‐1 completely reversed this effect. Our results show that OS positively correlates with neuroinflammation and is particularly evident in brain tissue of patients with FCD IIb and TSC. In vitro, NF‐κB is involved in the switch to an inflammatory state after OS. We propose that the extent of OS can predict the neuroinflammatory state of the brain. Additionally, antioxidant treatments may prevent the switch to inflammation in neurons thus targeting multiple epileptogenic processes at once.  相似文献   

3.
In recent years the role of the mammalian target of rapamycin (mTOR) pathway has emerged as crucial for normal cortical development. Therefore, it is not surprising that aberrant activation of mTOR is associated with developmental malformations and epileptogenesis. A broad spectrum of malformations of cortical development, such as focal cortical dysplasia (FCD) and tuberous sclerosis complex (TSC), have been linked to either germline or somatic mutations in mTOR pathway‐related genes, commonly summarised under the umbrella term ‘mTORopathies’. However, there are still a number of unanswered questions regarding the involvement of mTOR in the pathophysiology of these abnormalities. Therefore, a monogenetic disease, such as TSC, can be more easily applied as a model to study the mechanisms of epileptogenesis and identify potential new targets of therapy. Developmental neuropathology and genetics demonstrate that FCD IIb and hemimegalencephaly are the same diseases. Constitutive activation of mTOR signalling represents a shared pathogenic mechanism in a group of developmental malformations that have histopathological and clinical features in common, such as epilepsy, autism and other comorbidities. We seek to understand the effect of mTOR dysregulation in a developing cortex with the propensity to generate seizures as well as the aftermath of the surrounding environment, including the white matter.  相似文献   

4.
5.
The number of patients with intractable epilepsy undergoing surgical management in China is increasing rapidly. We retrospectively reviewed 435 consecutive cases of intractable epilepsy receiving surgical resection from 2005 to 2008 in our hospital, looking specifically at the neuropathological findings. The three most common causes of intractable epilepsy were focal cortical dysplasia (FCD; 52.9%), scar lesions (22.8%) and brain tumors (11.7%). Hippocampal sclerosis was identified in 74 cases (17.0%), although most of these were accompanied by dual pathology with FCD (especially Palmini type IB), scar lesions or tumors. Among FCD cases, Palmini type I lesions are the most frequently observed abnormality, with a preferred location in the temporal lobe (60.1%) and often accompanied by dual pathology. In contrast, Palmini type II FCD lesions occurred predominantly in the frontal regions and with a lower age of onset. Most tumors were mixed neuronal–glial tumors, mainly ganglioglioma (19 cases) and dysembryoplastic neuroepithelial tumor (10 cases), with a trend toward a temporal location and usually accompanied by cortical dysplasia in the peritumor area. Our data on the neuropathology of intractable epilepsy in China show that glioneuronal lesions are the most prominent cause of intractable epilepsy, and this is consistent with reports from other countries.  相似文献   

6.
7.
目的:探讨药物难治性癫癎患儿在注射18F-DG药物时发生癫癎发作后所查正电子发射断层扫描(PET)显示局灶性高代谢灶的意义,并复习相关文献。方法:1例1岁零2个月女性患儿有发作性抽搐伴意识丧失13个月,智能发育落后于正常同龄儿童,视频脑电图显示左颁局限性癎样放电,MRI显示左侧颁叶局灶病变,在注射18F-DG药物时发生癫癎发作,斯时所查PET-CT显示左颁局灶性高代谢灶,因为与无创检查结果定位一致,遂行左侧颁叶后部癎灶切除术加中央前回软脑膜下横纤维切断术。结果:术前服用抗癫癎药物状态下每日发作数10次,术后6个月患儿癫癎完全缓解,切除组织病理学提示局灶性皮质发育不良(FCDIIb),手术后13d视频脑电图正常,6个月脑电图左侧额区尖波。患儿手术后6个月时智力有所进步,但仍落后于正常同龄儿。有文献显示在癫癎发作期注射18F-DG后PET在局灶性癫痂患者中一般显示局灶高代谢灶,并能定位政癎灶。结论:癫癎发作期注射18F-DGPET所显示的局灶高代谢区对致癎灶定位有很大帮助。  相似文献   

8.
Cannabinoid type 1 receptor (CB1R), which is traditionally located on axon terminals, plays an important role in the pathology of epilepsy and neurodegenerative diseases by modulating synaptic transmission. Using the pilocarpine model of chronic spontaneous recurrent seizures, which mimics the main features of mesial temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS) in humans, we examined the expression of CB1R in hippocampal astrocytes of epileptic rats. Furthermore, we also examined the expression of astrocytic CB1R in the resected hippocampi from patients with medically refractory mesial TLE. Using immunofluorescent double labeling, we found increased expression of astrocytic CB1R in hippocampi of epileptic rats, whereas expression of astrocytic CB1R was not detectable in hippocampi of saline treated animals. Furthermore, CB1R was also found in some astrocytes in sclerotic hippocampi in a subset of patients with intractable mesial TLE. Detection with immune electron microscopy showed that the expression of CB1R was increased in astrocytes of epileptic rats and modest levels of CB1R were also found on the astrocytic membrane of sclerotic hippocampi. These results suggest that increased expression of astrocytic CB1R in sclerotic hippocampi might be involved in the cellular basis of the effects of cannabinoids on epilepsy.  相似文献   

9.
Malformations of cortical development are recognized causes of chronic medically intractable epilepsy. An increasing number of observations suggests an important role for cation-chloride co-transporters (CCTs) in controlling neuronal function. Deregulation of their expression may contribute to the mechanisms of hyperexcitability that lead to seizures. In the present study the expression and cell-specific distribution of Na+-K+-2Cl--cotransporter (NKCC1) and K+-Cl--cotransporter (KCC2) were studied immunocytochemically in different developmental lesions, including focal cortical dysplasia (FCD) type IIB (n=9), hemimegalencephaly (HMEG, n=6) and ganglioglioma (GG, n=9) from patients with medically intractable epilepsy and in age-matched controls. In normal control adult cortex, NKCC1 displayed low neuronal and glial expression levels. In contrast KCC2 showed strong and diffuse neuropil staining. Notable glial immunoreactivity (IR) was not found for KCC2. NKCC1 was highly expressed in the majority of FCD, HMEG and GG specimens. NKCC1 IR was observed in neurons of different size, including large dysplastic neurons, in balloon cells (in FCD and HMEG cases) and in glial cells with astrocytic morphology. The immunoreactivity pattern of KCC2 in FCD, HMEG and GG specimens was characterized by less neuropil staining and more intrasomatic IR compared with control. KCC2 IR was observed in neurons of different size, including large dysplastic neurons, but not in balloon cells or in glial cells with astrocytic morphology. Double-labeling experiments confirmed the differential cellular distribution of the two CCTs and their expression in GABA(A) receptor (alpha1 subunit)-positive dysplastic neurons. The cellular distribution of CCTs, with high expression of NKCC1 in dysplastic neurons and altered subcellular distribution of KCC2 resembles that of immature cortex and suggests a possible contribution of CCTs to the high epileptogenicity of malformations of cortical development.  相似文献   

10.
Endocannabinoids are powerful modulators of synaptic transmission that act on presynaptic cannabinoid receptors. Cannabinoid receptor type 1 (CB1) is the dominant receptor in the CNS, and is present in many brain regions, including sensory cortex. To investigate the potential role of CB1 receptors in cortical development, we examined the developmental expression of CB1 in rodent primary somatosensory (barrel) cortex, using immunohistochemistry with a CB1-specific antibody. We found that before postnatal day (P) 6, CB1 receptor staining was present exclusively in the cortical white matter, and that CB1 staining appeared in the gray matter between P6 and P20 in a specific laminar pattern. CB1 staining was confined to axons, and was most prominent in cortical layers 2/3, 5a, and 6. CB1 null (-/-) mice showed altered anatomical barrel maps in layer 4, with enlarged inter-barrel septa, but normal barrel size. These results indicate that CB1 receptors are present in early postnatal development and influence development of sensory maps.  相似文献   

11.
Intravenous injection of 10 mg/kg anandamide reduces the incidence and duration of epinephrine-induced arrhythmias in rats. SR141716A and SR144528, antagonists of cannabinoid receptor I and II did not abolish the antiarrhythmic effect of anandamide. These data suggest that the antiarrhythmic effect of anandamide is nonspecific or mediated via unknown cannabinoid receptors, but not associated with activation of cannabinoid receptors I and II.  相似文献   

12.
Cannabinoids have profound effects on synaptic function and behavior. Of the two cloned cannabinoid receptors, cannabinoid receptor 1 (CB1) is widely distributed in the CNS and accounts for most of the neurological effects of cannabinoids, while cannabinoid receptor 2 (CB2) expression in the CNS is very limited. The presence of additional receptors [i.e. cannabinoid receptor 3 (CB3)] is suggested by growing evidence of cannabinoid effects that are not mediated by CB1 or CB2. The most direct functional evidence for a CB3 comes from a study in hippocampus where deletion of CB1 was shown to have no effect on cannabinoid-mediated suppression of the excitatory synapse between Schaffer collateral/commissural fibers and CA1 pyramidal cells [Novel cannabinoid-sensitive receptor mediates inhibition of glutamatergic synaptic transmission in the hippocampus. Neuroscience 106:1-4]. In contrast, we report here that in extracellular field recordings, the cannabinoid agonist WIN 55,212-2 (5 microM) had no effect on Schaffer collateral/commissural fiber-CA1 pyramidal cell (Sch-CA1) synaptic transmission in slices from two independently made cannabinoid receptor 1-/- lines [Zimmer et al 1999 and Ledent et al 1999] while strongly suppressing Sch-CA1 synaptic transmission in CB1+/+ mice of the background strains. Also, we observed robust cannabinoid-mediated suppression of the Sch-CA1 synapse in pure C57BL/6 mice, contradicting a recent report that cannabinoid suppression of this synapse is absent in this strain [Hoffman AF, Macgill AM, Smith D, Oz M, Lupica CR (2005) Species and strain differences in the expression of a novel glutamate-modulating cannabinoid receptor in the rodent hippocampus. Eur J Neurosci 22:2387-2391]. Our results strongly suggest that cannabinoid-induced suppression of the Sch-CA1 synapse is mediated by CB1. Non-canonical cannabinoid receptors do not seem to play a major role in inhibiting transmitter release at this synapse.  相似文献   

13.
The distribution of cannabinoid receptors was studied in the monkey spinal cord by immunocytochemistry and electron microscopy, using an antibody to the CB1 brain cannabinoid receptor. Large numbers of labelled neurons were observed in all portions of the grey matter of the spinal cord. These included small diameter 9–16µm neurons in the dorsal horn, larger (40–60µm) neurons in the intermediate grey, and very large (60–100µm), motor neurons in the ventral horn. Reaction product was observed in dendrites postsynaptic to unlabelled axon terminals. Since cannabinoid receptor activation decreases neuronal excitability by several mechanisms, including inhibition of voltage dependent calcium channels, the dense staining of CB1 in dorsal horn neurons suggests that CB1 could reduce calcium influx through such channels in these neurons. This, in turn, could decrease calcium-dependent changes in synaptic transmission and decrease sensitisation to nociceptive stimuli in these neurons. Similarly, the dense staining of CB1 in ventral horn cells suggests that cannabinoid receptors could limit calcium influx through voltage dependent calcium channels in these neurons, and could be significant in terms of neuroprotection to these neurons.  相似文献   

14.
Cortical tubers are malformations of cortical development in patients with tuberous sclerosis complex (TSC), and highly associated with pediatric intractable epilepsy. Recent evidence has shown that signaling mediated through vascular endothelial growth factor‐C (VEGF‐C) and its receptors, VEGFR‐2 and VEGFR‐3, has direct effects on both neurons and glial cells. To understand the potential role of VEGF‐C system in the pathogenesis of cortical tubers, we investigated the expression patterns of VEGF‐C signaling in cortical tubers compared with age‐matched normal control cortex (CTX). We found that VEGF‐C, VEGFR‐2 and VEGFR‐3 were clearly upregulated in tubers at both the mRNA and protein levels, compared with CTX. The in situ hybridization and immunostaining results demonstrated that VEGF‐C, VEGFR‐2 and VEGFR‐3 were highly expressed in dysplastic neurons (DNs), giant cells (GCs) and reactive astrocytes within tubers. Most DNs/GCs expressing VEGF‐C and its receptors co‐labeled with neuronal rather than astrocytic markers, suggesting a neuronal lineage. In addition, protein levels of Akt‐1, p‐Bad and ERK1/2, the important downstream factors of the VEGF‐C pathway, were significantly increased in cortical tubers, indicating involvement of VEGF‐C–dependent prosurvival signaling in cortical tubers. Taken together, our results suggest a putative role for the VEGF‐C signaling pathway in the pathogenesis of cortical tubers.  相似文献   

15.
Although the effects of Δ9‐tetrahydrocannabinol (THC) on ovarian physiology have been known for many decades, its mechanism of action in the rat ovary remains poorly understood. The effects of THC and endocannabinoids on many cell types appear to be mediated through the G‐protein‐coupled CB1 and CB2 receptors. Evidence also suggests that the concentration of the endocannabinoid anandamide is regulated by cellular fatty acid amide hydrolase (FAAH). Therefore, we examined the rat ovary for the presence of CB1 and CB2 receptors and FAAH. The CB1 receptor was present in the ovarian surface epithelium (OSE), the granulosa cells of antral follicles, and the luteal cells of functional corpus luteum (CL). The granulosa cells of small preantral follicles, however, did not express the CB1 receptor. Western analysis also demonstrated the presence of a CB1 receptor. In both preantral and antral follicles, the CB2 receptor was detected only in the oocytes. In the functional CL, the CB2 receptor was detected in the luteal cells. FAAH was codistributed with CB2 receptor in both oocytes and luteal cells. FAAH was also present in the OSE, subepithelial cords of the tunica albuginea (TA) below the OSE, and in cells adjacent to developing preantral follicles. Western analysis also demonstrated the presence of FAAH in oocytes of both preantral and antral follicles. Our observations provide potential explanation for the effects of THC on steroidogenesis in the rat ovary observed by earlier investigators and a role for FAAH in the regulation of ovarian anandamide. Anat Rec 293:1425–1432, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
Several lines of evidence suggest that cell injury may occur in malformations of cortical development associated with epilepsy. Moreover, recent studies support the link between neurodevelopmental and neurodegenerative mechanisms. We evaluated a series of focal cortical dysplasia (FCD, n = 26; type I and II) and tuberous sclerosis complex (TSC, n = 6) cases. Sections were processed for terminal deoxynucleotidyl transferase‐mediated 2′‐deoxyuridine 5′‐triphosphate nick‐end labeling (TUNEL) labeling and immunohistochemistry using markers for the evaluation of apoptosis signaling pathways and neurodegeneration‐related proteins/pathways. In both FCD II and TSC specimens, we observed significant increases in both TUNEL‐positive and caspase–3‐positive cells compared with controls and FCD I. Expression of β‐amyloid precursor protein was observed in neuronal soma and processes in FCD II and TSC. In these specimens, we also observed an abnormal expression of death receptor‐6. Immunoreactivity for phosphorylated tau was only found in older patients with FCD II and TSC. In these cases, prominent nuclear/cytoplasmic p62 immunoreactivity was detected in both dysmorphic neurons and balloon/giant cells. Our data provide evidence of complex, but similar, mechanisms of cell injury in focal malformations of cortical development associated with mammalian target of rapamycin pathway hyperactivation, with prominent induction of apoptosis‐signaling pathways and premature activation of mechanisms of neurodegeneration.  相似文献   

17.
目的:观察脊髓背角大麻素CB_1受体(CB_1R)在坐骨神经缩窄性损伤(CCI)所致的神经病理性疼痛中的作用及其对嘌呤能P2X_2受体表达的调节。方法:7~8周龄SD大鼠分为4组:(1)sham组;(2)CCI组;(3)CP55940+CCI组;(4)AM251+CP55940+CCI组。分别于CCI术前1 d,术后1、3、5、7、10、14 d测定热缩足反射潜伏期(TWL);免疫印迹技术检测各组大鼠损伤侧L_4~L_6段脊髓背角P2X_2受体表达。结果:CCI术后大鼠出现热痛敏,TWL明显缩短;鞘内给予非选择性大麻素受体激动剂CP55940可明显延长CCI大鼠TWL(P0.05);预先鞘内注射CB_1R拮抗剂AM251(0.05 mg/kg)可显著降低CP55940的镇痛效果(P0.05)。免疫印迹实验结果显示:CCI大鼠脊髓背角P2X_2受体在术后7、14 d表达明显增加(P0.05);鞘内给予CP55940可显著降低P2X_2受体表达(P0.05),而预先给予AM251可降低CP55940抑制P2X_2受体表达的效应(P0.05)。结论:脊髓背角CB_1受体激活对CCI所致的神经病理性疼痛具有良好的镇痛作用,其镇痛效应可能与抑制CCI大鼠嘌呤能P2X_2受体表达有关。  相似文献   

18.
There is recent evidence supporting the notion that the cannabinoid signaling system plays a modulatory role in the regulation of cell proliferation and migration, survival of neural progenitors, neuritic elongation and guidance, and synaptogenesis. This assumption is based on the fact that cannabinoid 1-type receptors (CB1 receptors) and their ligands emerge early in brain development and are abundantly expressed in certain brain regions that play key roles in these processes. We have recently presented in vivo evidence showing that this modulatory action might be exerted through regulating the synthesis of the cell adhesion molecule L1 that is also a key element for those processes. To further explore this issue, we conducted here immunohistochemical studies aimed at determining the cellular substrates of CB1 receptor–L1 interactions in the rat brain during late fetal development. In this period, we previously found that the activation of CB1 receptors increased L1 synthesis in several forebrain white matter regions but not in gray matter areas. Using double labeling studies, we observed here colocalization of both proteins in fiber tracts including the corpus callosum, the adjacent subcortical white matter, the internal capsule and the anterior commissure. Experiments conducted with cultures of fetal rat cortical nerve cells revealed that L1 is present mainly in neurons but not in glial cells. This fact, together with the results obtained in the double labeling studies, would indicate that L1 and CB1 receptors should possibly be present in axons elongating through these white matter tracts, or, alternatively, in migrating neurons. Further experiments confirmed the presence of CB1 receptors in elongating axons, since these receptors colocalized with growth-associated protein 43 (GAP-43), a marker of growth cones, but not with synaptophysin, a marker of active synaptic terminals, in the same forebrain white matter regions. Lastly, using cultured fetal rat cortical neurons, we also observed that the activation of cannabinoid receptors increased the levels of the full-length L1 and altered those of some active proteolytic fragments of this protein whose generation has been associated with specific steps in the process of neuritic elongation in cultured neurons. In summary, we have demonstrated that the effects caused by cannabinoid agonists on L1 are facilitated by the colocalization of this cell adhesion molecule with CB1 receptors in several forebrain white matter regions during fetal brain development. We have provided strong evidence that this phenomenon occurs in axons elongating through these white matter tracts, and we have explored in vitro how cannabinoid receptors influence L1 levels. Considering the role played by L1 in different events related to neural development, our observations support the occurrence of a physiological mechanism by which the cannabinoid system might regulate the process of axonal growth and guidance through regulating the synthesis and function of L1.  相似文献   

19.
Rearing rats in isolation has been shown to produce behavioral and neurochemical alterations similar to those observed in psychoses such as schizophrenia. Also, a dysregulation in both the endocannabinoid and dopaminergic systems has been implicated in schizophrenia. The aim of this study was to determine if there are differences in CB1 receptor and fatty acid amide hydrolase (FAAH) protein expression, as well as D2 dopamine receptor expression in different brain regions in rats reared in different environmental conditions. Twenty-one-day-old male Sprague-Dawley rats were either reared in individual cages (isolated rats) or in group cages of six per cage (group-housed rats) for 8 weeks. Quantitative fluorescence immunohistochemistry was performed on brain slices using antibodies specific to the CB1 or D2 receptor, or the enzyme FAAH. Raising rats in isolation led to a significant decrease in CB1 receptor expression in the caudate putamen and the amygdala, a significant increase in FAAH expression in the caudate putamen and the nucleus accumbens core and shell, and no significant change in D2 receptor expression in any region studied. These results indicate that the endocannabinoid system is altered in an animal model of aspects of psychosis. This implies that rearing rats under different housing conditions may provide new insight into the role of the endocannabinoid system in the development of psychoses.  相似文献   

20.
Potassium channels contribute to basic neuronal excitability and modulation. Here, we examined expression patterns of the voltage-gated potassium channel Kv1.4, the nociceptive transduction channels TRPV1 and TRPV2 as well as the putative anti-nociceptive cannabinoid receptor CB1 by immunofluorescence double-labelings in sections of rat dorsal root ganglia (DRGs). Kv1.4, TRPV1 and CB1 were each detected in about one third of neurons (35.7+/-0.5%, 29.4+/-1.1% and 36.4+/-0.5%, respectively, mean diameter 19.1+/-0.3 microm). TRPV2 was present in 4.4+/-0.4% of all neurons that were significantly larger in diameter (27.4+/-0.7 microm; P < 0.001). Antibody double-labeling revealed that the majority of Kv1.4-positive neurons co-expressed TRPV1 (73.9+/-1.5%) whereas none expressed TRPV2. The largest overlap was found with CB1 (93.1+/-0.1%). CB1 expression resembled that seen for Kv1.4 since the majority of neurons expressing CB1-protein also expressed TRPV1 (69.4+/-6.5%) but not TRPV2 (0.6+/-0.3%). When CB1-mRNA was detected using in situ hybridizations an additional subset of larger neurons was labeled including 82.4+/-17.7% of the TRPV2 expressing neurons. However, co-localization of Kv1.4 with CB1-mRNA (92%, mean diameter: 18.5 microm) was essentially the same as with CB1-protein. The almost complete overlap of CB1 and Kv1.4 in nociceptive DRG neurons suggests a functional synergistic action between Kv1.4 and CB1. The potassium channel may have two important roles in nociception. As the molecular basis of A-type current it could be involved in the control of repetitive discharges at peripheral terminals and as a downstream signal transduction site of CB1 in the control of presynaptic transmitter release at central terminals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号