首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies have revealed that mossy fiber axons of granule cells in the dentate gyrus undergo reorganization of their terminal projections in both animal models of epilepsy and human epilepsy. This synaptic reorganization has been demonstrated by the Timm method, a histochemical technique that selectively labels synaptic terminals of mossy fibers because of their high zinc content. It has been generally presumed that the reorganization of the terminal projections of the mossy fiber pathway is a consequence of axonal sprouting and synaptogenesis by mossy fibers. To evaluate this possibility further, the time course for development of Timm granules, which correspond ultrastructurally to mossy fiber synaptic terminals, was examined in the supragranular layer of the dentate gyrus at the initiation of kindling stimulation with an improved scoring method for assessment of alterations in Timm histochemistry. The progression and permanence of this histological alteration were similarly evaluated during the behavioral and electrographic evolution of kindling evoked by perforant path, amygdala, or olfactory bulb stimulation. Mossy fiber synaptic terminals developed in the supragranular region of the dentate gyrus by 4 d after initiation of kindling stimulation in a time course compatible with axon sprouting. The induced alterations in the terminal projections of the mossy fiber pathway progressed with the evolution of behavioral kindled seizures, became permanent in parallel with the development of longlasting susceptibility to evoked seizures, and were observed as long as 8 months after the last evoked kindled seizure. The results demonstrated a strong correlation between mossy fiber synaptic reorganization and the development, progression, and permanence of the kindling phenomenon.  相似文献   

2.
Seizures evoked by kainic acid and a variety of experimental methods induce sprouting of the mossy fiber pathway in the dentate gyrus. In this study, the morphological features and spatial distribution of sprouted mossy fiber axons in the dorsal dentate gyrus of kainate-treated rats were directly shown in granule cells filled in vitro with biocytin and in vivo with the anterograde lectin tracer Phaseolus vulgaris leucoagglutinin (PHAL). Sprouted axon collaterals of biocytin-filled granule cells projected from the hilus of the dentate gyrus into the supragranular layer in both transverse and longitudinal directions in kainate-treated rats but were not observed in normal rats. The sprouted axon collaterals projected into the supragranular region for 600–700 μm along the septotemporal axis. Collaterals from granule cells in the infrapyramidal blade crossed the hilus and sprouted into the supragranular layer of the suprapyramidal blade. Sprouted axon segments in the supragranular layer had more terminal boutons per unit length than the axon segments in the hilus of both normal and kainate-treated rats but did not form giant boutons, which are characteristic of mossy fiber axons in the hilus and CA3. Mossy fiber axons in the hilus of kainate-treated rats had more small terminal boutons, fewer giant boutons, and there was a trend toward greater axon length compared with mossy fibers in the hilus of normal rats. With the additional length of supragranular sprouted collaterals, there was an overall increase in the length of mossy fiber axons in kainate-treated rats. The synaptic and axonal remodeling of the mossy fiber pathway could alter the functional properties of hippocampal circuitry by altering synaptic connectivity in local circuits within the hilus of the dentate gyrus and by increasing the divergence of the mossy fiber terminal field along the septotemporal axis. J. Comp. Neurol. 390:578–594, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
Mossy fiber synaptic reorganization in the epileptic human temporal lobe   总被引:26,自引:0,他引:26  
The distribution of the mossy fiber synaptic terminals was examined using the Timm histochemical method in surgically excised hippocampus and dentate gyrus from patients who underwent lobectomy of the anterior part of the temporal lobe for refractory partial complex epilepsy. The dentate gyrus of epileptic patients demonstrated intense Timm granules and abundant mossy fiber synaptic terminals in the supragranular region and the inner molecular layer. In contrast, the dentate gyrus of presenescent nonepileptic primates demonstrated no Timm granules in the supragranular region. In nonepileptic senescent primates, occasional very sparse supragranular Timm granules were results are morphological evidence of mossy fiber synaptic reorganization in the temporal lobe of epileptic humans, and suggest the intriguing possibility that mossy fiber sprouting and synaptic reorganization induced by repeated partial complex seizures may play a role in human epilepsy.  相似文献   

4.
Kindling, a phenomenon in which repeated electrical stimulation of certain forebrain structures leads to an increase in the evoked epileptogenic response, is widely used to investigate the mechanisms of epilepsy. Kindling also results in sprouting of the dentate gyrus mossy fiber pathway and triggers astrocyte hypertrophy and increased volume of the hilus of the dentate gyrus. Our previous studies showed that infusion of the neurotrophin nerve growth factor accelerated the behavioral progression of amygdala kindling and affected kindling-induced structural changes in the brain, whereas intrahilar infusion of another neurotrophin, brain-derived neurotrophic factor, delayed amygdala kindling-induced seizure development and reduced the growth in afterdischarge duration, but had little effect on kindling-induced structural changes. In this paper, we report the effects of infusion of glial cell line-derived neurotrophic factor, a neurotrophic factor of the TGF-beta superfamily having similar central nervous system neuronal targets as brain-derived neurotrophic factor. We show that continuous intraventricular infusion of glial cell line-derived neurotrophic factor inhibits the behavioral progression of perforant path kindling-induced seizures without affecting afterdischarge duration. In addition, we demonstrate that intraventricular administration of glial cell line-derived neurotrophic factor prevents kindling-induced increases in hilar area and blocks mossy fiber sprouting in the CA3 region of the hippocampus. Glial cell line-derived neurotrophic factor did not have a statistically significant effect on the mossy fiber density in the inner molecular layer. Our results raise the possibility that glial cell line-derived neurotrophic factor plays a role in kindling and activation-induced neural growth via mechanisms distinct from those of the neurotrophins.  相似文献   

5.
Collateral sprouting of dentate granule cell axons, the mossy fibers, occurs in response to denervation, kindling, or excitotoxic damage to the hippocampus. Organotypic slice culture of rodent hippocampal tissue is a model system for the controlled study of collateral sprouting in vitro. Organotypic roller-tube cultures were prepared from hippocampal slices derived from postnatal day 7 mice. The Timm heavy metal stain and densitometry were used to assay the degree of mossy fiber collateral sprouting in the molecular layer of the hippocampal dentate gyrus. Factors influencing mossy fiber collateral sprouting were time in culture, positional origin of the slice culture along the septotemporal axis of the hippocampus, and presence of attached subicular-entorhinal cortical tissues. Collateral sprouting in the molecular layer was first detected after 6 days in culture and increased steadily thereafter. By 2 weeks considerable sprouting was apparent, and at 3 weeks intense sprouting was observed within the molecular layer. An intrinsic septal-to-temporal gradient of collateral sprouting was apparent at 14 days in culture. To determine whether differential damage to the mossy fibers was the basis for the differences in collateral sprouting along the septotemporal axis, we made complete transections of the mossy fiber projection as it exited the dentate hilus at various levels along the septotemporal axis; no differences were found on subsequent collateral sprouting in the dentate molecular layer. Timm-stained hippocampal cultures with an attached entorhinal cortex, a major source of afferent innervation to the dentate granule cells, displayed significantly less collateral sprouting at 10 days in culture compared to that in cultures from adjacent sections without attached subicular-entorhinal tissues present. Thus, time in culture, position along the septotemporal axis, and presence of afferent cortical tissues influence aberrant neurite collateral sprouting in organotypic slice cultures of neonatal mouse hippocampus. © Wiley-Liss, Inc.  相似文献   

6.
Various clinical and experimental studies of epilepsy have described synaptic reorganization in the dentate gyrus of hippocampus, in the form of collateral sprouting of the mossy fibers. These reports have led to the hypothesis that reorganized mossy fibers form a functional excitatory feedback circuit that contributes to local circuit hyperexcitability and chronic seizures. Much of the evidence supporting the sprouting hypothesis has been derived from kindling. We recently reported that transection of the fimbria/fornix (FF), which produces chronic epileptiform activity in the hippocampus, also induces mossy fiber sprouting in the inner molecular layer of the dentate gyrus. In the present study, we attempted to determine whether mossy fiber sprouting contributes to epileptiform activity, by examining the effects FF transections on perforant path (PP) kindling and associated mossy fiber sprouting. We found that FF transections and PP kindling produced moderate levels of sprouting, whereas the combination of the two treatments produced significantly denser sprouting. FF transections had mixed effects on kindling: afterdischarge thresholds were decreased and clonus and afterdischarge durations were increased, suggesting increased local excitation, whereas the kindling of behavioral seizures was delayed, suggesting decreased epileptogenesis.  相似文献   

7.
The mossy fiber pathway in the dentate gyrus undergoes sprouting and synaptic reorganization in response to seizures. The types of new synapses, their location and number, and the identity of their postsynaptic targets determine the functional properties of the reorganized circuitry. The goal of this study was to characterize the types and proportions of sprouted mossy fiber synapses in kindled and kainic acid-treated rats. In normal rats, synapses labeled by Timm histochemistry or dynorphin immunohistochemistry were rarely observed in the supragranular region of the inner molecular layer when examined by electron microscopy. In epileptic rats, sprouted mossy fiber synaptic terminals were frequently observed. The ultrastructural analysis of the types of sprouted synapses revealed that 1) in the supragranular region, labeled synaptic profiles were more frequently axospinous than axodendritic, and many axospinous synapses were perforated; 2) sprouted mossy fiber synaptic terminals formed exclusively asymmetric, putatively excitatory synapses with dendritic spines and shafts in the supragranular region and with the soma of granule cells in the granule cell layer; 3) in contrast to the large sprouted mossy fiber synapses in resected human epileptic hippocampus, the synapses formed by sprouted mossy fibers in rats were smaller; and 4) in several cases, the postsynaptic targets of sprouted synapses were identified as granule cells, but, in one case, a sprouted synaptic terminal formed a synapse with an inhibitory interneuron. The results demonstrate that axospinous asymmetric synapses are the most common type of synapse formed by sprouted mossy fiber terminals, supporting the viewpoint that most sprouted mossy fibers contribute to recurrent excitation in epilepsy.  相似文献   

8.
O Steward 《Hippocampus》1992,2(3):247-268
This study evaluates whether three forms of sprouting occur in the hippocampus of the cat following unilateral entorhinal cortex (EC) lesions: (1) sprouting of projections from the EC contralateral to the lesion; (2) sprouting of the commissural/associational system; and (3) sprouting of mossy fibers. Tract tracing techniques were used to define the normal organization of the entorhinal cortical projection system, the commissural/associational (C/A) systems, and the mossy fiber projections in normal cats. The same techniques were then used to evaluate whether there were changes in these projections in animals with long-standing unilateral EC lesions. The projections from the entorhinal cortex were evaluated autoradiographically following injections of 3H proline into the entorhinal area. The projections of the C/A system were traced using the Fink-Heimer technique after lesions of the hippocampal commissures, and by using autoradiographic techniques after injections of 3H proline into the hippocampus. The distribution of mossy fibers was evaluated using the Timm's stain. The results reveal that unilateral lesions of the EC in cats lead to the same sorts of sprouting that have been described in rats. There is: (1) an increase in the density of the crossed projection from the surviving EC to the contralateral dentate gyrus that had been deprived of its normal EC inputs; (2) an expansion of the terminal field of the C/A projection system into portions of the molecular layer of the dentate gyrus normally occupied by EC projections; and (3) an increase in supragranular mossy fibers in some animals. The mossy fiber sprouting was especially prominent when the lesions encroached upon the hippocampus. The studies also reveal additional details about the normal organization of hippocampal pathways in cats. The most important points are: (1) there is a crossed projection from the entorhinal cortex to the contralateral dentate gyrus; and (2) there is a complex laminar organization of the commissural and associational terminal fields in the molecular layer of the dentate gyrus that appears to be related to the point of origin of the projections along the septotemporal axis of the hippocampus. This heretofore unrecognized aspect of the laminar organization of C/A terminations has important implications for the temporal competition hypothesis, which has been advanced to account for the development of these afferent systems.  相似文献   

9.
Temporal lobe epilepsy is a common form of epilepsy in human adults and is associated with a unique pattern of damage in the hippocampus. The damage includes cell loss of the CA3 and CA4 areas and synaptic growth (sprouting) of mossy fibers in the supragranular layer of the dentate gyrus. Experimental evidence indicates that in adult rats the excitatory amino acid, kainic acid, induces a similar pattern of changes in hippocampal circuitry associated with alterations in perforant path excitation and inhibition. It has been suggested that, in humans, this type of damage may be a result of seizures early in life. In this study we examined the effects of kainic acid-induced status epilepticus on synaptic reorganization and paired-pulse electrophysiology in developing rats and adults. Kainic acid induced more severe seizures in 15-day-old rat pups than in adults. In contrast to adult rats, these seizures did not produce CA3/CA4 neuronal loss, mossy fiber sprouting or changes in paired-pulse excitation or inhibition in the hippocampus of rat pups tested 2-4 weeks after status epilepticus. Our results provide evidence that the immature hippocampus may be more resistant to seizure-induced changes than the mature hippocampus.  相似文献   

10.
Kainic acid, an analog of the excitatory amino acid L-glutamate, induces acute hyperexcitability and permanent structural alterations in the hippocampal formation of the adult rat. Administration of kainic acid is followed by acute seizures in hippocampal pathways, neuronal loss in CA3 and the hilus of the dentate gyrus, and reorganization of the synaptic connections of the mossy fiber pathway. Rats with these hippocampal structural alterations have increased susceptibility to kindling. To evaluate the role of the acute seizures and associated hippocampal structural alterations in the development of this long-lasting susceptibility, rats that received intraventricular kainic acid were cotreated with phenobarbital (60 mg/kg, s.c., once daily). Treatment with this dose for 5 d after administration of kainic acid suppressed acute seizure activity, protected against excitotoxic damage in the dentate gyrus, reduced mossy fiber sprouting, and completely abolished the increased susceptibility to kindling associated with kainic acid. Brief treatment with phenobarbital modified the pattern of damage and synaptic reorganization in the dentate gyrus in response to seizure-induced injury, and altered the long-lasting functional effects associated with hippocampal damage. As phenobarbital treatment did not protect against neuronal damage in CA3 or other regions of the hippocampus, the circuitry of the dentate gyrus was implicated as a locus of cellular alterations that influenced the development of kindling. These observations are evidence that pharmacological intervention can prevent the development of epilepsy in association with acquired structural lesions, and suggest that pharmacological modification of cellular responses to injury can favorably alter long-term functional effects of CNS damage.  相似文献   

11.
Morphological data from humans with temporal lobe epilepsy and from animal models of epilepsy suggest that seizure-induced damage to dentate hilar neurons causes granule cells to sprout new axon collaterals that innervate other granule cells. This aberrant projection has been suggested to be an anatomical substrate for epileptogenesis. This hypothesis was tested in the present study with intra- and extracellular recordings from granule cells in hippocampal slices removed from rats 1-4 months after kainate treatment. In this animal model, hippocampal cell loss leads to sprouting of mossy fiber axons from the granule cells into the inner molecular layer of the dentate gyrus. Unexpectedly, when slices with mossy fiber sprouting were examined in normal medium, extracellular stimulation of the hilus or perforant path evoked relatively normal responses. However, in the presence of the GABAA-receptor antagonist, bicuculline, low-intensity hilar stimulation evoked delayed bursts of action potentials in about one-quarter of the slices. In one-third of the bicuculline-treated slices with mossy fiber sprouting, spontaneous bursts of synchronous spikes were superimposed on slow negative field potentials. Slices from normal rats or kainate-treated rats without mossy fiber sprouting never showed delayed bursts to weak hilar stimulation or spontaneous bursts in bicuculline. These data suggest that new local excitatory circuits may be suppressed normally, and then emerge functionally when synaptic inhibition is blocked. Therefore, after repeated seizures and excitotoxic damage in the hippocampus, synaptic reorganization of the mossy fibers is consistently associated with normal responses; however, in some preparations, the mossy fibers may form functional recurrent excitatory connections, but synaptic inhibition appears to mask these potentially epileptogenic alterations.  相似文献   

12.
Electrical and chemical kindling induces sprouting of the mossy fibre system and potentiation of evoked field potentials in the dentate gyrus. It has been postulated that such changes may also be induced by repeated induction of long-term potentiation (LTP) with tetanic stimulation of the perforant pathway. LTP was induced in rats chronically implanted with stimulation electrodes in the ipsilateral and contralateral angular bundles and with a recording electrode in the ipsilateral dorsal dentate gyrus. The animals were stimulated 10 times on 10 consecutive days but with different tetanization strengths. Sprouting of the mossy fibres terminating in the CA3 region was significantly induced only in the group of 'strongly' tetanized animals, but not in that of 'weakly' tetanized animals, or in low-frequency stimulated animals. Additionally, a novel form of potentiation which was previously found in pentylenetetrazol (PTZ)-kindled animals was also observed in the group of 'strongly' and 'weakly' tetanized rats. Differences in duration of this potentiation were found between the two groups of animals tetanized with different strengths. The results further demonstrate that morphological and functional changes in the hippocampus, similar to those seen after kindling, can also occur in an activation paradigm leading to long-lasting synaptic plasticity but not accompanied by seizure activity.  相似文献   

13.
The present study was aimed at evaluating an extended kindling model of spontaneous epilepsy. Behavioral and electrographic responses to repeated kindling of either the perforant path or amygdala were monitored for up to 300 trials. Kindling initially led to generalized convulsions equivalent to the level 5 seizure on the rating scale developed by Racine. The evoked seizures became progressively more complex with additional kindling, which was described by a 10-stage classification system. The highest stage (stage 10) was achieved when the kindling stimulation evoked two or more bouts of level 5 seizures combined with running and jumping fits. These more complex seizures developed over the course of amygdala, but not perforant path kindling. Electrographic seizures from both the amygdala and dentate gyrus increased in duration and amplitude during the early phase of kindling, but did not correlate with motor seizure development beyond level 5. During the late phase of kindling, the dentate gyrus afterdischarge amplitude decreased and became dissociated from the behavioral seizures. Manifestations of spontaneously recurring seizures were seen in the majority of animals, but spontaneous seizures of level 4 or greater were observed in only five rats. The second part of this study examined kindling transfer effects, the efficacy of kindling a new site after the completion of the initial (in this case extended) kindling protocol. The effect depended on both primary and secondary site location. When the amygdala served as primary site, perforant path transfer was complete in some animals but absent in others. No transfer occurred in the opposite direction, from the perforant path to the amygdala. Finally, transfer effects in the dentate gyrus, which was tested as tertiary site, were complete. Previous studies have found weaker transfer effects in the dentate when kindling to the standard stage 5 level.  相似文献   

14.
Is Synaptic Potentiation Necessary for the Development of Kindling?   总被引:2,自引:0,他引:2  
Abstract: Field potentials were recorded from the dentate gyrus of freely moving rats to examine the role of synaptic potentiation in the development of seizure susceptibility during rapid kindling. Kindling stimulations (10 Hz for 10 sec) were delivered to the perforant path at every 5 min for 5 or 6 hrs. This procedure produced a sustained depression of excitatory synaptic transmission at the perforant path-granule cell synapse during and after kindling. However, the kindling procedure resulted in the prolongation of afterdischarges and the development of interictal discharges originated from granule cells, indicating an increase in the seizure susceptibility of these neurons. These results indicate that synaptic potentiation is not a critical requirement for an increase in seizure susceptibility during rapid kindling, even if it has a facilitating effect on the development of kindling as suggested in previous studies.  相似文献   

15.
Repeated electrical stimulation of limbic structures has been reported to produce the kindling effect together with morphological changes in the hippocampus such as mossy fiber sprouting and/or neuronal loss. However, to argue against a causal role of these neuropathological changes in the development of kindling-associated seizures, we examined mossy fiber sprouting in amygdala (AM)-kindled rats using Timm histochemical staining, and evaluated the hippocampal neuronal degeneration in AM-kindled rats by terminal deoxynucleotidyl transferase-mediated digoxigenin-11-dUTP nick end labelling (TUNEL). Amygdala kindling was established by 10.3 +/- 0.7 electrical stimulations, and no increase in Timm granules (neuronal sprouting) was observed up to the time of acquisition of a fully kindled state. However, the density and distribution of Timm granules increased significantly in the dentate gyrus compared with unkindled rats after 29 after-discharges or more than 10 kindled convulsions. In addition, no significant increase in TUNEL-positive cells was found in the hilar polymorphic neurons or in CA3 pyramidal neurons of the kindled rats that had fewer than 29 after-discharges. However, a significant increase of TUNEL-positive cells was found in the granule cell layer in the dentate gyrus of the stimulated side after 18 after-discharges or 10 kindled convulsions. Our result show that AM kindling develops without evidence of mossy fiber sprouting, and that mossy fiber sprouting may appear after repeated kindled convulsions, following death of the granule cells in the dentate gyrus.  相似文献   

16.
Kindling, an experimental model of epileptogenesis, and activation-induced synaptic reorganization are modulated by nerve growth factor (NGF), but whether NGF acts via its high-affinity receptor TrkA and/or the common neurotrophin receptor p75NTR is unknown. We previously demonstrated, and confirmed in this study, that inhibition of NGF binding to both TrkA and p75NTR inhibited kindling and decreased kindling-induced mossy fiber sprouting. We now report specific inhibition of TrkA.NGF binding, but not p75NTR.NGF binding, retarded perforant path kindling progression. However, mossy fiber sprouting was inhibited by either selective TrkA.NGF or p75NTR.NGF antagonists. Our results suggest that TrkA, but not p75NTR, plays a role in kindling, while both receptors modulate kindling-induced mossy fiber sprouting. This implicates different mechanisms of neurotrophin action on kindling (mediated by TrkA) and neuronal sprouting (mediated by both TrkA and p75NTR) and suggests that sprouting involves kindling-independent neurotrophin action via p75NTR.  相似文献   

17.
It has been shown that both amygdaloid and hippocampal kindling induce sprouting of the mossy fibers in the dentate gyrus. In this study, we investigated whether non-epileptogenic stimulation could also induce mossy fiber sprouting. Long-term potentiation (LTP) was induced in the dentate gyrus by the application of brief, high-frequency trains to the perforant path. The potentiating stimulation was applied each day for 10 days, and the tissue was prepared for Timm labelling 7 days later. Sprouting was significantly increased in the LTP group compared to the implanted control rats. These results suggest that mossy fiber sprouting is not damage-induced and is dependent on neuronal activation.  相似文献   

18.
Neonatal seizures are frequently associated with cognitive impairment and reduced seizure threshold. Previous studies in our laboratory have demonstrated that rats with recurrent neonatal seizures have impaired learning, lower seizure thresholds, and sprouting of mossy fibers in CA3 and the supragranular region of the dentate gyrus in the hippocampus when studied as adults. The goal of this study was to determine the age of onset of cognitive dysfunction and alterations in seizure susceptibility in rats subjected to recurrent neonatal seizures and the relation of this cognitive impairment to mossy fiber sprouting and expression of glutamate receptors. Starting at postnatal day (P) 0, rats were exposed to 45 flurothyl-induced seizures over a 9-day period of time. Visual-spatial learning in the water maze and seizure susceptibility were assessed in subsets of the rats at P20 or P35. Brains were evaluated for cell loss, mossy fiber distribution, and AMPA (GluR1) and NMDA (NMDAR1) subreceptor expression at these same time points. Rats with neonatal seizures showed significant impairment in the performance of the water maze and increased seizure susceptibility at both P20 and P35. Sprouting of mossy fibers into the CA3 and supragranular region of the dentate gyrus was seen at both P20 and P35. GluR1 expression was increased in CA3 at P20 and NMDAR1 was increased in expression in CA3 and the supragranular region of the dentate gyrus at P35. Our findings indicate that altered seizure susceptibility and cognitive impairment occurs prior to weaning following a series of neonatal seizures. Furthermore, these alterations in cognition and seizure susceptibility are paralleled by sprouting of mossy fibers and increased expression of glutamate receptors. To be effective, our results suggest that strategies to alter the adverse outcome following neonatal seizures will have to be initiated during, or shortly following, the seizures.  相似文献   

19.
Intragranular and supragranular mossy fibers arise from granule cells and are present in the dentate gyrus of hippocampi from kindled and epileptic animals. The intragranular fibers often appear as fibers perpendicular to the long axis of the granule cell layer at periodic intervals. Rats and gerbils were analyzed to determine whether such mossy fibers are also associated with nongranule cells (including the basket cells), which send their apical dendrites through this layer with a periodicity similar to that of mossy fibers. The results for rats and both epileptic and nonepileptic gerbils show that many intragranular mossy fibers are apposed to the surfaces of the somata and apical dendrites of basket cells where they form asymmetric synapses. This plexus of mossy fiber axons appears to follow the dendrites of these neurons into the inner molecular layer. Based on previous data indicating that basket cells are GABAergic inhibitory neurons, the present findings in normal rats and both types of gerbils suggest that intragranular and supragranular mossy fibers provide additional circuitry for feedback inhibition to granule cells. It is possible that under pathological conditions, such as denervation or kindling, these fibers sprout and form synapses with granule cells.  相似文献   

20.
Kindled seizures evoked by electrical stimulation of limbic pathways in the rat induce sprouting and synaptic reorganization of the mossy fiber pathway in the dentate gyrus (DG). To investigate whether seizures evoked by different methods also induce reorganization of this pathway, the distribution of mossy fiber terminals in the DG was examined with Timm histochemistry after systemic administration of pentylenetetrazol, a chemoconvulsant that reduces Cl- mediated GABAergic inhibition. Myoclonic seizures evoked by subconvulsant doses of pentylenetetrazol (24 mg/kg i.p.) were not accompanied by electrographic seizures in the DG, and did not induce mossy fiber sprouting. Generalized tonic-clonic seizures evoked by repeated administration of PTZ (24 mg/kg i.p.) were consistently accompanied by electrographic seizure activity in the DG, and induced sprouting and synaptic reorganization of the mossy fiber pathway. The results demonstrated that repeated generalized tonic-clonic seizures evoked by pentylenetetrazol induced mossy fiber synaptic reorganization when ictal electrographic discharges activated the circuitry of the DG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号