首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Neural regions which exercise an inhibitory influence on agonistic behavior are identified by the enhancement of agonistic behavior that follows their removal. The specific kinds of agonistic behaviors altered by each region are then examined. Increased reactivity to the experimenter and enhanced shock-induced fighting are produced by lesions of the region ventral to the anterior septum, the lateral septum, the medial hypothalamus, and the dorsal and median raphe nuclei. It is argued that the increased reactivity and shock-induced fighting correspond to an enhancement of defensive behavior. Mouse killing is induced by lesions of the anterior olfactory nucleus, the region ventral to the anterior septum, the lateral septum, the medial hypothalamus, the dorsal and median raphe nuclei, and the medial amygdala. Because the lesion-induced mouse killing is similar to that emitted by spontaneous mouse killers, it is argued that these regions normally exert an inhibitory control over predatory killing. The available evidence on social attack behavior has not convincingly identified regions exerting an inhibitory control over this dimension of behavior. Our conclusion is that separate brain systems exert an inhibitory control over defensive behavior, predatory killing, and social attack behavior. To a substantial extent, the regions modulating these behaviors appear to act independently of one another. The only neurotransmitter that is clearly active in these inhibitory systems is serotonin, and it has only been directly implicated in the control of mouse killing by neurons originating in the dorsal and median raphe nuclei.  相似文献   

2.
The cytoarchitecture and axonal projection pattern of pallial areas was studied in the fire-bellied toad Bombina orientalis by intracellular injection of biocytin into a total of 326 neurons forming 204 clusters. Five pallial regions were identified, differing in morphology and projection pattern of neurons. The rostral pallium receiving the bulk of dorsal thalamic afferents has reciprocal connections with all other pallial areas and projects to the septum, nucleus accumbens, and anterior dorsal striatum. The medial pallium projects bilaterally to the medial pallium, septum, nucleus accumbens, mediocentral amygdala, and hypothalamus and ipsilaterally to the rostral, dorsal, and lateral pallium. The ventral part of the medial pallium is distinguished by efferents to the eminentia thalami and the absence of contralateral projections. The dorsal pallium has only ipsilateral projections running to the rostral, medial, and lateral pallium; septum; nucleus accumbens; and eminentia thalami. The lateral pallium has ipsilateral projections to the olfactory bulbs and to the rostral, medial, dorsal, and ventral pallium. The ventral pallium including the striatopallial transition area (SPTA) has ipsilateral projections to the olfactory bulbs, rostral and lateral pallium, dorsal striatopallidum, vomeronasal amygdala, and hypothalamus. The medial pallium can be tentatively homologized with the mammalian hippocampal formation, the dorsal pallium with allocortical areas, the lateral pallium rostrally with the piriform and caudally with the entorhinal cortex, the ventral pallium with the accessory olfactory amygdala. The rostral pallium, with its projections to the dorsal and ventral striatopallidum, resembles the mammalian frontal cortex.  相似文献   

3.
The topographical distribution of enkephalin in the central nervous system of the lizard, Anolis carolinensis, has been studied by the immunoperoxidase technique with antiserum to leucine-enkephalin. Immunoreactive enkephalin perikarya, fibers and probably terminals are widely distributed throughout the central nervous system, which agrees well with the distribution of enkephalins in the mammalian brain. Enkephalin-containing perikarya are found in the subpallium (septum, nucleus accumbens, striatum, amydgala), preoptic and hypothalamic region, ventromedial nucleus and ventromedial area of thalamus, pretectal geniculate nucleus and posterodorsal nucleus of pretectum, nucleus of the lateral lemniscus, locus ceruleus, spinal trigeminal nucleus, nucleus of the solitary tract, medial parvocelluar nucleus, and dorsal horn of the spinal cord. Enkephalinergic fibers and terminals are found in the above–mentioned areas as well as in the pallium (medial and dorsal cortex, dorsal ventricular ridge), dorsomedial and anterior dorsolateral nucleus of the thalamus, habenua, nucleus of the stria medullaris, torus semicircularis, mesencephalic tegmental area, interpeducular nucleus, mesencephalic trigeminal nucleus, central gray, reticular formation, raphe nucleus, substantia nigra, isthmus region, and nucleus of the trapezoid body. Enkephalinergic pathways appear to exist between the septum and the medial cortex, nucleus accumbens and nucleus of the lateral olfactory tract, striatum and certain mesencephalic structures, hypothalamus and tegmentum, and between nucleus of the lateral lemniscus and torus semicirculais. In the pituitary, cells of the pars intermedia, and certain cells of the rostral pars distalis also show immunoreactivity to enkephalin antiserum. The distribution of enkephalin immunoreactivity throughout the hypothalamus and in the median eminence suggests involvement in neuroendocrine regulation. Presence of enkephalin in many extrahypothalamic brain areas indicates its important role in various sensory functions and in behavioral and autonomic integration.  相似文献   

4.
Serotonin neurons of the midbrain raphe: ascending projections.   总被引:10,自引:0,他引:10  
The ascending projections of serotonin neurons of the midbrain raphe were analyzed in the rat using the autoradiographic tracing method. Axons of raphe serotonin neurons ascend in the ventral tegmental area and enter the medial forebrain bundle. A number of fibers leave the major group to ascend along the fasciculus retroflexus. Some fibers enter the habenula but the majority turn rostrally in the internal medullary lamina of the thalamus to innervate dorsal thalamus. Two additional large projections leave the medial forebrain bundle in the hypothalamus; the ansa peduncularis-ventral amygdaloid bundle system turns laterally through the internal capsule into the striatal complex, amygdala and the external capsule to reach lateral and posterior cortex, and another system of fibers turns medially to innervate medial hypothalamus and median eminence and form a contrelateral projection via the supraoptic commissures. Rostrally the major group in the medial forebrain bundle divides into several components: fibers entering the stria medullaris to terminate in thalamus; fibers entering the stria terminalis to terminate in the amygdala; fibers traversing the fornix to the hippocampus; fibers running through septum to enter the cingulum and terminate in dorsal and medial cortex and in hippocampus; fibers entering the external capsule to innervate rostral and lateral cortex; and fibers continuing forward in the medial olfactory stria to terminate in the anterior olfactory nucleus and olfactory bulb.  相似文献   

5.
An overall and marked serotonin (5-HT) depletion of the brain was found to facilitate initiation of mouse-killing behavior in the rat, whereas more selective 5-HT depletions within forebrain structures such as the septum, hippocampus, cingular cortex and amygdala, did not have such an effect. In order to further investigate the topography of the 5-HT pathways and terminals thought to be involved in an inhibitory control over this behavior, localized lesions of the serotonergic system(s) were performed by means of bilateral 5,7-dihydroxytryptamine (5,7-DHT) injections (5 μg/μl) into the hypothalamus in naive rats. 5,7-DHT injections into the medial hypothalamus did not affect the initiation of mouse-killing behavior, whereas the reflexive startle responses to air puffs were increased. The animals' open-field behavior remained unchanged. Forebrain 5-HT content was reduced by 50% in this group. 5,7-DHT injections into the lateral hypothalamus increased the proportion of killers to 46% as compared to 10% in the control group, in spite of a reduced activity in the open-field and unchanged startle responses. Forebrain 5-HT content was reduced by 88%. As the lateral hypothalamus contains afferents from both the dorsal and the median raphe nuclei, it is likely that 5-HT terminals modulate some hypothalamic mechanism involved in the control of mouse-killing behavior.  相似文献   

6.
The nucleus incertus is located caudal to the dorsal raphe and medial to the dorsal tegmentum. It is composed of a pars compacta and a pars dissipata and contains acetylcholinesterase, glutamic acid decarboxylase, and cholecystokinin-positive somata. In the present study, anterograde tracer injections in the nucleus incertus resulted in terminal-like labeling in the perirhinal cortex and the dorsal endopyriform nucleus, the hippocampus, the medial septum diagonal band complex, lateral and triangular septum medial amygdala, the intralaminar thalamic nuclei, and the lateral habenula. The hypothalamus contained dense plexuses of fibers in the medial forebrain bundle that spread in nearly all nuclei. Labeling in the suprachiasmatic nucleus filled specifically the ventral half. In the midbrain, labeled fibers were observed in the interpeduncular nuclei, ventral tegmental area, periaqueductal gray, superior colliculus, pericentral inferior colliculus, pretectal area, the raphe nuclei, and the nucleus reticularis pontis oralis. Retrograde tracer injections were made in areas reached by anterogradely labeled fibers including the medial prefrontal cortex, hippocampus, amygdala, habenula, nucleus reuniens, superior colliculus, periaqueductal gray, and interpeduncular nuclei. All these injections gave rise to retrograde labeling in the nucleus incertus but not in the dorsal tegmental nucleus. These data led us to conclude that there is a system of ascending projections arising from the nucleus incertus to the median raphe, mammillary complex, hypothalamus, lateral habenula, nucleus reuniens, amygdala, entorhinal cortex, medial septum, and hippocampus. Many of the targets of the nucleus incertus were involved in arousal mechanisms including the synchronization and desynchronization of the theta rhythm.  相似文献   

7.
The μ, δ, and κ opioid receptors are the three main types of opioid receptors round in the central nervous system (CNS) and periphery. These receptors and the peptides with which they interact are important in a number of physiological functions, including analgesia, respiration, and hormonal regulation. This study examines the expression of μ, δ, and κ receptor mRNAs in the rat brain and spinal cord using in situ hybridization techniques. Tissue sections were hybridized with 35S-labeled cRNA probes to the rat μ (744–1, 064 b), δ (304–1,287 b), and κ (1,351–2,124 b) receptors. Each mRNA demonstrates a distinct anatomical distribution that corresponds well to known receptor binding distributions. Cells expressing μ receptor mRNA are localized in such regions as the olfactory bulb, caudate-putamen, nucleus accumbens, lateral and medial septum, diagonal band of Broca, bed nucleus of the stria terminalis, most thalamic nuclei, hippocampus, amygdala, medial preoptic area, superior and inferior colliculi, central gray, dorsal and median raphe, raphe magnus, locus coeruleus, parabrachial nucleus, pontine and medullary reticular nuclei, nucleus ambiguus, nucleus of the solitary tract, nucleus gracilis and cuneatus, dorsal motor nucleus of vagus, spinal cord, and dorsal root ganglia. Cellular localization of δ receptor mRNA varied from μ or κ, with expression in such regions as the olfactory bulb, allo- and neocortex, caudate-putamen, nucleus accumbens, olfactory tubercle, ventromedial hypothalamus, hippocampus, amygdala, red nucleus, pontine nuclei, reticulotegmental nucleus, motor and spinal trigeminal, linear nucleus of the medulla, lateral reticular nucleus, spinal cord, and dorsal root ganglia. Cells expressing, κ receptor mRNA demonstrate a third pattern of expression, with cells localized in regions such as the claustrum, endopiriform nucleus, nucleus accumbens, olfactory tubercle, medial preoptic area, bed nucleus of the stria terminalis, amygdala, most hypothalamic nuclei, median eminence, infundibulum, substantia nigra, ventral tegmental area, raphe nuclei, paratrigeminal and spinal trigeminal, nucleus of the solitary tract, spinal cord, and dorsal root ganglia. These findings are discussed in relation to the physiologica functions associated with the opioid receptors.  相似文献   

8.
Localization of neurotensin NTS2 receptors in rat brain, using   总被引:4,自引:0,他引:4  
The brain localization of the neurotensin receptor NTS2 was studied with [3H]levocabastine, using an autoradiographic procedure. This study suggests that NTS2 receptors are mainly intracellular. High densities of binding sites were observed in the cingulate, insular, temporal, occipital, enthorhinal cortex, amygdaloid complex, septohippocampal nuclei, medial thalamus, mammillary bodies and superior colliculi; a moderate labelling was observed in the anterior and medial hippocampus, olfactory tubercle, hypothalamus, periaqueductal gray matter, caudate putamen, nucleus accumbens, septum, lateral thalamus, dorsal raphe nucleus and cerebellum; finally, a low labelling was apparent in the ventral tegmentum area and substantia nigra. Thus it appears that NTS2 receptors are particularly abundant in the cerebral cortex, the limbic areas and some areas involved in pain perception.  相似文献   

9.
Differential projections of the infralimbic and prelimbic cortex in the rat   总被引:11,自引:0,他引:11  
The medial prefrontal cortex has been associated with diverse functions including attentional processes, visceromotor activity, decision-making, goal-directed behavior, and working memory. The present report compares and contrasts projections from the infralimbic (IL) and prelimbic (PL) cortices in the rat by using the anterograde anatomical tracer, Phaseolus vulgaris-leucoagglutinin. With the exception of common projections to parts of the orbitomedial prefrontal cortex, olfactory forebrain, and midline thalamus, PL and IL distribute very differently throughout the brain. Main projection sites of IL are: 1) the lateral septum, bed nucleus of stria terminalis, medial and lateral preoptic nuclei, substantia innominata, and endopiriform nuclei of the basal forebrain; 2) the medial, basomedial, central, and cortical nuclei of amygdala; 3) the dorsomedial, lateral, perifornical, posterior, and supramammillary nuclei of hypothalamus; and 4) the parabrachial and solitary nuclei of the brainstem. By contrast, PL projects at best sparingly to each of these structures. Main projection sites of PL are: the agranular insular cortex, claustrum, nucleus accumbens, olfactory tubercle, the paraventricular, mediodorsal, and reuniens nuclei of thalamus, the capsular part of the central nucleus and the basolateral nucleus of amygdala, and the dorsal and median raphe nuclei of the brainstem. As discussed herein, the pattern of IL projections is consistent with a role for IL in the control of visceral/autonomic activity homologous to the orbitomedial prefrontal cortex of primates, whereas those of PL are consistent with a role for PL in limbic-cognitive functions homologous to the dorsolateral prefrontal cortex of primates.  相似文献   

10.
An experiment was performed to determine the origin of the projection from the hippocampus to the septal area in the subrimate mammalian nervous system. Lesions were made by aspiration or by radio frequency in 4 gerbils, 17 rats, 8 rabbits, and 7 cats. Survival times varied from 2–5 days. Tissues were stained principally with the Fink Heimer I method for identification of degenerating axons and their terminals. Following lesions destroying any one or more of the fields of the dorsal hippocampus of the gerbil, rat, rabbit, or cat, terminal degeneration was observed only in the medial septal area, olfactory tubercle, and adjacent portions of the diagonal band. In addition, lesions producing total destruction of all dorsal hippocampal fields also resulted in the presence of terminal degeneration restricted to the medial septal area. In contrast, superficial lesions of field CA1 of the ventral hippocampus produced terminal degeneration in the lateral septal area, nucleus accumbens, olfactory tubercle, and adjacent portions of the diagonal band. Similar findings were also observed following more widespread lesions of the ventral hippocampus which produced damage to other CA fields as well. Superficial lesions of the posterior crus of the hippocampus (i.e., a position midway between dorsal and ventral hippocampus) resulted in terminal degeneration localized to an intermediolateral region of the septum. Combined lesions of the dorsal hippocampus and fimbria produced widespread terminal degeneration in both the lateral and medial septum indicating that the axons contained within the fimbria arise only from the ventral hippocampus. Finally, lesions of the medial and lateral segments of the fornix of the cat produced terminal degeneration in the medial and lateral regions of the septum, respectively. These findings, collectively, indicate that the origin of the topographical projection to the medial and lateral septum are the dorsal and ventral hippocampus, respectively. This projection is unrelated to cytoarchitectonic fields within the hippocampus and is also invariant among the species considered in this study.  相似文献   

11.
The connectivity and cytoarchitecture of telencephalic centers except dorsal and medial pallium were studied in the fire-bellied toad Bombina orientalis by anterograde and retrograde biocytin labeling and intracellular biocytin injection (total of 148 intracellularly labeled neurons or neuron clusters). Our findings suggest the following telencephalic divisions: (1) a central amygdala-bed nucleus of the stria terminalis in the caudal midventral telencephalon, connected to visceral-autonomic centers; (2) a vomeronasal amygdala in the caudolateral ventral telencephalon receiving input from the accessory olfactory bulb and projecting mainly to the preoptic region/hypothalamus; (3) an olfactory amygdala in the caudal pole of the telencephalon lateral to the vomeronasal amygdala receiving input from the main olfactory bulb and projecting to the hypothalamus; (4) a medial amygdala receiving input from the anterior dorsal thalamus and projecting to the medial pallium, septum, and hypothalamus; (5) a ventromedial column formed by a nucleus accumbens and a ventral pallidum projecting to the central amygdala, hypothalamus, and posterior tubercle; (6) a lateral column constituting the dorsal striatum proper rostrally and the dorsal pallidum caudally, and a ventrolateral column constituting the ventral striatum. We conclude that the caudal mediolateral complex consisting of the extended central, vomeronasal, and olfactory amygdala of anurans represents the ancestral condition of the amygdaloid complex. During the evolution of the mammalian telencephalon this complex was shifted medially and involuted. The mammalian basolateral amygdala apparently is an evolutionary new structure, but the medial portion of the amygdalar complex of anurans reveals similarities in input and output with this structure and may serve similar functions.  相似文献   

12.
The binding sites of nociceptin (also named orphanin FQ), the endogenous ligand of ORL1 (opiate receptor like 1), were localized in rat brain, using an autoradiographic procedure. High levels of binding were observed in the cingulate, retrosplenial, perirhinal, insular and occipital cortex, anterior and posteromedial cortical amygdaloid nuclei, basolateral amygdaloid nucleus, amygdaloid complex, posterior hippocampus, dorsal endopiriform, central medial thalamic, paraventricular, rhomboid thalamic, suprachiasmatic, ventromedial hypothalamic nuclei, mammillary complex, superficial gray layer of the superior colliculus, locus coeruleus, dorsal raphe nucleus. More moderate labelling was observed in the prefrontal, fronto–parietal, temporal, piriform cortex, dentate gyrus, anterior olfactory nucleus, olfactory tubercle, shell of nucleus accumbens, claustrum, lateral septum, laterodorsal thalamic, medial habenular, subthalamic, reuniens thalamic nuclei, subiculum, periaqueductal grey matter and pons. A lower binding site density was observed in the anterior and medial hippocampus, olfactory bulb, caudate putamen, the core of the nucleus accumbens, medial septum, ventrolateral, ventroposterolateral and mediodorsal thalamic nuclei, lateral and medial geniculate nuclei, hypothalamic area, substantia nigra, ventral tegmentum area and interpedoncular nucleus. A moderate and similar labelling was found in the dorsal and ventral horn of the spinal cord. No labelling was apparent in the corpus callosum. Thus, it appears that the ORL1 receptor is particularly abundant in the cerebral cortex, limbic system of the rat brain and some areas involved in pain perception.  相似文献   

13.
Prokineticins are a pair of regulatory peptides that have been shown to play important roles in gastrointestinal motility, angiogenesis, circadian rhythms, and, recently, olfactory bulb neurogenesis. Prokineticins exert their functions via activation of two closely related G-protein-coupled receptors. Here we report a comprehensive mRNA distribution for both prokineticins (PK1 and PK2) and their receptors (PKR1 and PKR2) in the adult mouse brain with the use of in situ hybridization. PK2 mRNA is expressed in discrete regions of the brain, including suprachiasmatic nucleus, islands of Calleja and medial preoptic area, olfactory bulb, nucleus accumbens shell, hypothalamic arcuate nucleus, and amygdala. PK1 mRNA is expressed exclusively in the brainstem, with high abundance in the nucleus tractus solitarius. PKR2 mRNA is detected throughout the brain, with prominent expression in olfactory regions, cortex, thalamus and hypothalamus, septum and hippocampus, habenula, amygdala, nucleus tractus solitarius, and circumventricular organs such as subfornical organ, median eminence, and area postrema. PKR2 mRNA is also detected in mammillary nuclei, periaqueductal gray, and dorsal raphe. In contrast, PKR1 mRNA is found in fewer brain regions, with moderate expression in the olfactory regions, dentate gyrus, zona incerta, and dorsal motor vagal nucleus. Both PKR1 and PKR2 are also detected in olfactory ventricle and subventricular zone of the lateral ventricle, both of which are rich sources of neuronal precursors. These extensive expression patterns suggest that prokineticins may have a broad array of functions in the central nervous system, including circadian rhythm, neurogenesis, ingestive behavior, reproduction, and autonomic function.  相似文献   

14.
The efferent projections of the infralimbic region (IL) of the medial prefrontal cortex of the rat were examined by using the anterograde transport of Phaseolus vulgaris leucoagglutinin (PHA-L). Major targets of the IL were found to include the agranular insular cortex, olfactory tubercle, perirhinal cortex, the whole amygdaloid complex, caudate putamen, accumbens nucleus, bed nucleus of the stria terminalis, midline thalamic nuclei, the lateral preoptic nucleus, paraventricular nucleus, supramammillary nucleus, medial mammillary nucleus, dorsal and posterior areas of the hypothalamus, ventral tegmental area, central gray, interpeduncular nucleus, dorsal raphe, lateral parabrachial nucleus and locus coeruleus. Previously unreported projections of the IL to the anterior olfactory nucleus, piriform cortex, anterior hypothalamic area and lateroanterior hypothalamic nucleus were observed. The density of labeled terminals was especially high in the agranular insular cortex, olfactory tubercle, medial division of the mediodorsal nucleus of the thalamus, dorsal hypothalamic area and the lateral division of the central amygdaloid nucleus. Several physiological and pharmacological studies have suggested that the IL functions as the 'visceral motor' cortex, involved in autonomic integration with behavioral and emotional events. The present investigation is the first comprehensive study of the IL efferent projections to support this concept.  相似文献   

15.
The efferents and the afferents of the VMT-A10 region were studied by using anterograde ([3H]leucine) and retrograde (HRP) tracing techniques. In order to produce very small injections in various parts of the VMT-A10 region, a slow diffusion technique for [3H]leucine labelling and a microiontophoretic injection for horseradish peroxidase labelling were developed. According to the histochemical and biochemical data, the [3H]leucine anterograde results were separated into three main types of projections.
(1) Projections to regions rich in DA terminals. These projections certainly correspond to the efferents of the dopaminergic A10 neurones. According to various injection sites, we have been able to identify mesolimbic projections originating from the VMT-A10, pars medialis and mesostriatal-mesolimbic projections originating from the VMT-A10, pars lateralis.
The mesolimbic projections include the prefrontal cortex, the medial part of the lateral septum, the interstitial nucleus of the stria terminalis, the accumbens nucleus and the olfactory tubercle. The mesostriatal-mesolimbic projections include the anteromedial part of the caudate nucleus, the cingular cortex, the entorhinal cortex, the amygdaloid complex, the accumbens nucleus, the olfactory tubercle and the piriform cortex to a lesser extent.
(2) Projections to regions suspected of containing DA terminals. These ascending and descending projections which could represent the dopaminergic efferents of the VMT-A10 neurones have been demonstrated. Ascending projections originating either from the VMT-A10 pars medialis or pars lateralis region were found in the claustrum, the nucleus of the tractus diagonalis, the olfactory nuclei, the lateral habenula, the medial hypothalamus and the median eminence. The projections observed in the medial hypothalamus included the periventricular region, the arcuate nucleus, the ventral part of the ventromedial nucleus and the dorsomedial nucleus. The labelling of the anteromedial part of the dorsal hippocampus appeared to originate from the VMT-A10, pars posterior. The projections to the medial hypothalamus, median eminence and hippocampus may have a great functional significance, but further proof of their dopaminergic nature is needed. Descending projections were found ipsilateally to the dorsal raphe and to the cerebellum, and bilaterally to the locus coeruleus. The projections to the cerebellum are distributed to the nuclei interpositus and dentatus and to the Purkinje cell layer and granular layer of the cortex. These results raise the problem of descending dopaminergic projections from the A10 neurones.
(3) Projections to regions not known to contain DA terminals. Anterior projections were found ipsilaterally to the supraoptic nucleus and bilaterally to the anterodorsal thalamic nucleus. Posterior projections were traced ipsilaterally to the limbic midbrain area, including the median raphe, the ventral and dorsal tegmental nucleus and the central gray.
The horseradish peroxidase experiment supplied some clues as to the posterior afferents of the VMT-A10 region. Some labelled cells were found ipsilaterally in the substantia nigra, the medain raphe and the ventral tegmental nucleus. Numerous cells were labelled ipsilaterally in the dorsal raphe nucleus, and nuclei interpositus and dentatus of the cerebellum, and contralaterally in the locus coeruleus. These structures are likely to play an important role in the modulation of the activity of VMT-A10 neurones.
The results of [3H]leucine and HRP experiments permitted us to demonstrate reciprocal connections between VMT-A10 region and anterior raphe nuclei, locus coeruleus and cerebellum.
Keywords: ventral tegmental area; dopaminergic A10 neurones; anterograde transport method; retrograde transport method  相似文献   

16.
The medial orbital (MO) and ventral orbital (VO) cortices are prominent divisions of the orbitomedial prefrontal cortex. To our knowledge, no previous report in the rat has comprehensively described the projections of MO and VO. By using the anterograde tracer Phaseolus vulgaris leucoagglutinin and the retrograde tracer Fluoro-Gold, we examined the efferent projections of MO and VO in the rat. Although MO and VO projections overlap, MO distributes more widely throughout the brain, particularly to limbic structures, than does VO. The main cortical targets of MO were the orbital, ventral medial prefrontal (mPFC), agranular insular, piriform, retrosplenial, and parahippocampal cortices. The main subcortical targets of MO were the medial striatum, olfactory tubercle, claustrum, nucleus accumbens, septum, substantia innominata, lateral preoptic area, and diagonal band nuclei of the basal forebrain; central, medial, cortical, and basal nuclei of amygdala; paratenial, mediodorsal, and reuniens nuclei of the thalamus; posterior, supramammillary, and lateral nuclei of the hypothalamus; and periaqueductal gray, ventral tegmental area, substantia nigra, dorsal and median raphe, laterodorsal tegmental, and incertus nuclei of the brainstem. By comparison, VO distributes to some of these same sites, notably to the striatum, but lacks projections to parts of limbic cortex, to nucleus accumbens, and to the amygdala. VO distributes much more strongly, however, than MO to the medial (frontal) agranular, anterior cingulate, sensorimotor, posterior parietal, lateral agranular retrosplenial, and temporal association cortices. The patterns of MO projections are similar to those of the mPFC, whereas the projections of VO overlap with those of the ventrolateral orbital cortex (VLO). This suggests that MO serves functions comparable to those of the mPFC, such as goal-directed behavior, and VO performs functions similar to VLO such as directed attention. MO/VO may also serve as a link between lateral orbital and medial prefrontal cortices.  相似文献   

17.
18.
Adult male Wezob-rats were bilaterally lesioned in either the medial anterior hypothalamic area or the mammillary bodies. The behaviour of these animals when confronted with a male intruder within their own territory, was observed and recorded before and after lesioning and compared with the behaviour of sham-operated animals.Anterior hypothalamic lesions, including large parts of the anterior hypothalamus, the rostral part of the ventromedial hypothalamic nucleus and smaller caudal parts of the preoptic area, led to strong increases in defensive behaviour. This included a decreased tendency to investigate the intruder and an exaggerated defensive reaction when approached by the intruder. Ingestive behaviour and bodyweight were enhanced.Mammillary body lesions, including large parts of the ventral and dorsal premammillary nucleus, the caudal part of the arcuate nucleus, the medial mammillary nucleus, the posterior mammillary nucleus, the supramammillary peduncle and closely surrounding areas, led to a marked increase in offensive behaviour. This was characterized by high levels of initatives and aggression towards an intruder.It is suggested that two distinct neural substrates exist in the medial hypothalamus, which normally modulate defensive (anterior medial hypothalamus) or offensive (posterior medial hypothalamus) aspects of intermale aggression.  相似文献   

19.
Afferent and efferent connections of the medial preoptic area including medial preoptic nucleus (MP) and periventricular area at the MP level were examined using WGA-HRP as a marker. Injections were performed by insertion of micropipette containing (1) small amount of HRP powder or (2) dryed HRP solution for 24 to 48 hr until the fixation or for 5 min respectively. Dorsal and ventral approaches of injection micropipettes were performed and the results were compared. Previously reported reciprocal connections with lateral septum, bed nucleus of the stria terminalis, medial amygdaloid nucleus, lateral hypothalamic nucleus, paraventricular hypothalamic nucleus, ventromedial hypothalamic nucleus, arcuate nucleus, supramammillary nucleus, central gray at the mesencephalon, raphe dorsalis, raphe medianus, and lateral parabrachial nucleus have been confirmed. In addition, we found reciprocal connections with septo-hypothalamic nucleus, amygdalo-hipocampal nucleus, subiculum, parafascicular thalamic nucleus, posterior thalamic nucleus at the caudo-ventral subdivision, median preoptic nucleus, lateral preoptic nucleus, anterior hypothalamic nucleus, periventricular area at the caudal hypothalamic level, dorsomedial hypothalamic nucleus, posterior hypothalamic nucleus, dorsal and ventral premammillary nucleus, lateral mammillary nucleus, peripeduncular nucleus, periventricular gray, ventral tegmental area, interpeduncular nucleus, nucleus raphe pontis, nucleus raphe magnus, pedunculo-pontine tegmental nucleus, gigantocellular reticular nucleus and solitary tract nucleus. The areas which had only efferent connections from MP were accumbens, caudate putamen, ventral pallidum, substantia innominata, lateral habenular nucleus, paratenial thalamic nucleus, paraventricular thalamic nucleus, mediodorsal thalamic nucleus, reuniens thalamic nucleus, median eminence, medial mammillary nucleus, subthalamic nucleus, pars compacta of substantia nigra, oculomotor nucleus, red nucleus, laterodorsal tegmental nucleus, reticular tegmental nucleus, cuneiform nucleus, nucleus locus coeruleus, and dorsal motor nucleus of vagus among which substantia innominata and median eminence were previously reported. Efferent connections to the nucleus of Darkschewitsch, interstitial nucleus of Cajal, dorsal tegmental nucleus, ventral tegmental nucleus, vestibular nuclei, nucleus raphe obsculus were very weak or abscent in the ventral approach while they were observed in dorsal approach. Previously reported afferent connections from dorsal tegmental nucleus, cuneiform nucleus, and nucleus locus ceruleus were not detected in this study.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Site-, context- and dose-dependent actions of intrahypothalamic cortisol administration on the agonistic behaviors of adult male golden hamsters (n = 128 dyads) were examined. When cortisol-treated animals were tested in paired encounters with aggressive cholesterol-treated opponents, chronic (≥ 24 h) cortisol treatment (1 mm implants) induced significant (P < 0.05) submission in three medial hypothalamic areas (anterior hypothalamic area > medial preoptic area > ventromedial hypothalamus), but aggression in the paraventricular nucleus or third ventricle. In contrast, chronic cortisol treatment in the anterior hypothalamic area resulted in high levels of aggression during paired encounters with submissive opponents, and during territorial aggression tests with juvenile male intruders. Acute (≥ 20 min) cortisol treatment in the anterior hypothalamic area (100 nl injections) induced significant submission after 10?2 M, but significant aggression after 10?6 M microinjections in paired encounters with aggressive vehicle-injected opponents. These findings suggest glucocorticoid-sensitive mechanisms within the anterior hypothalamus modulate aggressive responding during intrasexual social encounters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号