首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two series of hybrid analogues were designed, synthesized, and evaluated as a novel class of selective ligands for the dopamine D3 receptor. Binding affinities of target compounds were determined (using the method of radioligand binding assay). Compared to comparator agent BP897, compounds 2a and 2c were found to demonstrate a considerable binding affinity and selectivity for D3 receptor, and especially compound 2h was similarly potent and more selective D3R ligand than BP897, a positive reference. Thus, they may provide valuable information for the discovery and development of highly potent dopamine D3 receptor ligands with outstanding selectivity.  相似文献   

2.
Random screening provided no suitable lead structures in a search for novel inhibitors of the bacterial enzyme DNA gyrase. Therefore, an alternative approach had to be developed. Relying on the detailed 3D structural information of the targeted ATP binding site, our approach combines as key techniques (1) an in silico screening for potential low molecular weight inhibitors, (2) a biased high throughput DNA gyrase screen, (3) validation of the screening hits by biophysical methods, and (4) a 3D guided optimization process. When the in silico screening was performed, the initial data set containing 350 000 compounds could be reduced to 3000 molecules. Testing these 3000 selected compounds in the DNA gyrase assay provided 150 hits clustered in 14 classes. Seven classes could be validated as true, novel DNA gyrase inhibitors that act by binding to the ATP binding site located on subunit B: phenols, 2-amino-triazines, 4-amino-pyrimidines, 2-amino-pyrimidines, pyrrolopyrimidines, indazoles, and 2-hydroxymethyl-indoles. The 3D guided optimization provided highly potent DNA gyrase inhibitors, e. g., the 3,4-disubstituted indazole 23 being a 10 times more potent DNA gyrase inhibitor than novobiocin (3).  相似文献   

3.
Integrin alphavbeta3 has been implicated in multiple aspects of tumor progression and metastasis. Many tumors have high expression of alphavbeta3 that correlates with tumor progression. Therefore, alphavbeta3 receptor is an excellent target for drug design and delivery. We have discovered a series of novel alphavbeta3 antagonists utilizing common feature pharmacophore models. Upon validation using a database of known alphavbeta3 receptor antagonists, a highly discriminative pharmacophore model was used as a 3D query. A search of a database of 600 000 compounds using the pharmacophore Hypo5 yielded 832 compounds. On the basis of structural novelty, 29 compounds were tested in alphavbeta3 receptor specific binding assay and four compounds showed excellent binding affinity. A limited SAR analysis on the active compound 26 resulted in the discovery of two compounds with nanomolar to subnanomolar binding affinity. These small-molecule compounds could be conjugated to paclitaxel for selective delivery to alphavbeta3 positive metastatic cancer cells.  相似文献   

4.
We have utilized a computational structure-based approach to identify nonpeptidic small organic compounds that bind to a human leukocyte antigen (HLA) DR1301 molecule (HLA-DR1301 or DR1301) and block the presentation of myelin basic protein peptide 152-165 (MBP 152-165) to T cells. A three-dimensional (3D) structure of DR1301 was derived by homology modeling followed by extensive molecular dynamics simulation for structural refinement. Computational structure-based database searching was performed to identify nonpeptidic small-molecule candidates from the National Cancer Institute (NCI) database containing over 150 000 compounds that can effectively interact with the peptide-binding groove of the HLA molecule. By in vitro testing of 106 candidate small molecules, two lead compounds were confirmed to specifically block IL-2 secretion by DR1301-restricted T cells in a dose-dependent and reversible manner. The specificity of blocking DR1301-restricted MBP presentation was further validated in a binding assay using an analogue of the most potent lead compound. Computational docking was performed to predict the three-dimensional binding model of these confirmed small molecule blockers to the DR1301 molecule and to gain structural insight into their interactions. Our results suggest that computational structure-based searching is an effective approach to discover nonpeptidic small organic compounds to block the interaction between DR1301 and T cells. The nonpeptidic small organic compounds identified in this study are useful pharmacological tools to study the interactions between HLA molecules and T cells and a starting point for the development of a novel therapeutic strategy for the treatment of multiple sclerosis (MS) or other immune-related disorders.  相似文献   

5.
Kinases have become a major area of drug discovery and structure-based design. Hundreds of 3D structures for more than thirty different kinases are available to the public. High structural and sequence homology within the kinase gene family makes the remaining kinases ideal targets for homology modeling and virtual screening. Somewhat surprisingly, however, the number of publications about virtual screening of kinases is very low. Therefore, rather than reviewing the field of virtual screening for kinases, we attempt here a hybrid approach of presenting what is known and common practice together with new studies on CDK2 and SRC kinase. To illustrate the challenges and pitfalls of virtual screening for kinase targets we focus on the question of how ranking is influenced by the database screened, the docking scheme, the scoring function, the activity of the compounds used for testing, and small changes in the binding pocket. In addition, a case study of finding irreversible inhibitors of ErbB2 through in silico screening is presented.  相似文献   

6.
The synthesis, pharmacological evaluation, and structure-activity relationships (SARs) of a series of novel arylalkylpiperazines structurally related to BP897 (3) are described. In binding studies, the new derivatives were tested against a panel of dopamine, serotonin, and noradrenaline receptor subtypes. Focusing mainly on dopamine D(3) receptors, SAR studies brought to light a number of structural features required for high receptor affinity and selectivity. Several heteroaromatic systems were explored for their dopamine receptor affinities, and combinations of synthesis, biology, and molecular modeling, were used to identify novel structural leads for the development of potent and selective D(3) receptor ligands. Introduction of an indole ring linked to a dichlorophenylpiperazine system provided two of the most potent and selective ligands known to date (D(3) receptor affinity in the picomolar range). The intrinsic pharmacological properties of a subset of potent D(3) receptor ligands were also assessed in [(35)S]-GTPgammaS binding assays. Evidence from animal studies, in particular, has highlighted the dopaminergic system's role in how environmental stimuli induce drug-seeking behavior. We therefore tested two novel D(3) receptor partial agonists and a potent D(3)-selective antagonist in vivo for their effect in the cocaine-seeking behavior induced by reintroduction of cocaine-associated stimuli after a long period of abstinence, and without any further cocaine. Compound 5 g, a nonselective partial D(3) receptor agonist with a pharmacological profile similar to 3, and 5p, a potent and selective D(3) antagonist, reduced the number of active lever presses induced by reintroduction of cocaine-associated stimuli. However, 5q, a highly potent and selective D(3) partial agonist, did not have any effect on cocaine-seeking behavior. Although brain uptake studies are needed to establish whether the compounds achieve brain concentrations comparable to those active in vitro on the D(3) receptor, our experiments suggest that antagonism at D(2) receptors might significantly contribute to the reduction of cocaine craving by partial D(3) agonists.  相似文献   

7.
8.
Starting from the first crystal structure of the extracellular segment of the alpha(v)beta(3) integrin receptor with a cyclic RGD ligand bound to the active site, structural models for the interactions of known ligands with the alpha(v)beta(3) integrin receptor were generated by automated computational docking. The obtained complexes were evaluated for their consistency with structure-activity relationships and site-directed mutagenesis data. A comparison between the calculated interaction free energies and the experimental biological activities was also made. All the possible interactions of the investigated compounds at the active site and the probable ligand binding conformations provide an improved basis for structure-based rational ligand design. Additionally, our docking results allow a further validation and refinement of the pharmacophore model previously postulated by us.  相似文献   

9.
The dopamine D3 receptor subtype has been recently targeted as a potential neurochemical modulator of the behavioral actions of psychomotor stimulants, such as cocaine. However, definitive behavioral investigations have been hampered by the lack of highly selective D3 agonists and antagonists. In an attempt to design a novel class of D3 ligands with which to study this receptor system, a series of chemically divergent compounds that possessed various structural features that exist within several classes of reputed D3 agents was screened and compared to the recently reported NGB 2904 (58b). On the basis of these results, a novel series of compounds was designed that included functional moieties that were required for high-affinity and selective binding to D3 receptors. All the compounds in this series included an aryl-substituted piperazine ring, a varying alkyl chain linker (C3-C5), and a terminal aryl amide. The compounds were synthesized and evaluated in vitro for binding in CHO cells transfected with human D2, D3, or D4 receptor cDNAs. D3 binding affinities ranged from K(i) = 1.4 to 1460 nM. The most potent analogue in this series, 51, demonstrated a D3/D2 selectivity of 64 and a D3/D4 selectivity of 1300. Structure-activity relationships for this class of ligands at D3 receptors will provide new leads toward the development of highly selective and potent molecular probes that will prove useful in the elucidation of the role D3 receptors play in the psychomotor stimulant and reinforcing properties of cocaine.  相似文献   

10.
We report the discovery of a novel, potent, and selective amidosulfonamide nonazapirone 5-HT1A agonist for the treatment of anxiety and depression, which is now in Phase III clinical trials for generalized anxiety disorder (GAD). The discovery of 20m (PRX-00023), N-{3-[4-(4-cyclohexylmethanesulfonylaminobutyl)piperazin-1-yl]phenyl}acetamide, and its backup compounds, followed a new paradigm, driving the entire discovery process with in silico methods and seamlessly integrating computational chemistry with medicinal chemistry, which led to a very rapid discovery timeline. The program reached clinical trials within less than 2 years from initiation, spending less than 6 months in lead optimization with only 31 compounds synthesized. In this paper we detail the entire discovery process, which started with modeling the 3D structure of 5-HT1A using the PREDICT methodology, and then performing in silico screening on that structure leading to the discovery of a 1 nM lead compound (8). The lead compound was optimized following a strategy devised based on in silico 3D models and realized through an in silico-driven optimization process, rapidly overcoming selectivity issues (affinity to 5-HT1A vs alpha1-adrenergic receptor) and potential cardiovascular issues (hERG binding), leading to a clinical compound. Finally we report key in vivo preclinical and Phase I clinical data for 20m tolerability, pharmacokinetics, and pharmacodynamics and show that these favorable results are a direct outcome of the properties that were ascribed to the compound during the rational structure-based discovery process. We believe that this is one of the first examples for a Phase III drug candidate that was discovered and optimized, from start to finish, using in silico model-based methods as the primary tool.  相似文献   

11.
A series of indolebutylamine derivatives were designed, synthesized, and evaluated as a novel class of selective ligands for the dopamine 3 receptor. The most potent compound 11q binds to dopamine 3 receptor with a Ki value of 124 nm and displays excellent selectivity over the dopamine 1 receptor and dopamine 2 receptor. Investigation based on structural information indicates that site S182 located in extracellular loop 2 may account for high selectivity of compounds. Interaction models of the dopamine 3 receptor‐ 11q complex and structure‐activity relationships were discussed by integrating all available experimental and computational data with the eventual aim to discover potent and selective ligands to dopamine 3 receptor.  相似文献   

12.
Protein structure-based molecular design using the computational techniques of protein structure prediction, ligand docking, and virtual screening is an integral part of drug discovery for limiting the application of the structure-based approach to target proteins such as G-protein-coupled receptors (GPCRs). GPCRs play an important role in living organisms and are of major interest to the pharmaceutical industry. However, structural data on ligand-binding forms for GPCRs from experiments to elucidate structural templates for docking simulations are lacking due to the difficulties associated with crystallization and crystallography. Therefore structural prediction of GPCRs in the ligand-bound state using computational methods has been introduced, but the prediction of ligand conformation onto target GPCRs is still constructed manually by human experts. We developed a molecular modeling technique for the prediction of ligand-receptor binding using comparative ligand-binding analysis (CoLBA) that not only considers interaction energy but also the similarity of interaction profiles among ligands. The advantage of CoLBA is that it can facilitate intuitive and flexible screening based on docking results when protein structures with low resolution (or theoretical models) are targeted. We applied CoLBA to ligand-binding prediction in several GPCRs. The predicted ligand-binding models were evaluated in site-directed mutagenesis experiments in collaborative research, and the enrichment rate of activated ligands was compared with random compounds in virtual screening simulations. We propose that CoLBA can be applied in large-scale modeling of ligand-receptor complexes and virtual screening for GPCRs.  相似文献   

13.
14.
Several tertiary 2-phenylethyl, 2-(1-naphthyl)ethyl and 2-(2-naphthyl)ethyl amines were synthesized and their binding affinities for dopamine D(1), D(2) and serotonin 5-HT(1A) receptors evaluated in radioligand binding assays. All compounds were inactive in D(1) dopamine radioligand binding assay. The 2-(1-naphthyl)ethyl analogues expressed a low but significant binding affinity for the D(2) and moderate one for the 5-HT(1A) receptor subtypes. Most of the remaining compounds expressed binding affinity at the 5-HT(1A) receptor subtype but were inactive in D(2) receptor binding assay. Based on these results and considering the chemical characteristics of the compounds synthesized and evaluated for dopaminergic and serotonergic activity throughout the present study it can be concluded that hydrophobic type of interaction (stacking or edge-to-face) plays a significant role in the formation of receptor-ligand complexes of 2-(1-naphthyl)ethyl amines. This structural motive can be applied to design and synthesize new, more potent dopaminergic/serotonergic ligands by slight chemical modifications.  相似文献   

15.
A series of 5-p-substituted phenyl-pyrrole-3-carboxamide derivatives was designed as hybrid analogs of the dopamine D2-like 5-phenyl-pyrrole and heterocyclic carboxamide antipsychotics. The title compounds were synthesized and evaluated for dopamine D2-like receptor by means of [3H]YM-09151-2 receptor binding assay. The compound bearing a 1-ethyl-2-methyl-pyrrolidine moiety as the basic part of 5-phenyl-pyrrole-3-carboxamide derivative 1a together with its 2-chloro analog 1f were found to possess affinity in the low micromolar range. Substituted phenyl-pyrrolecarboxamides containing groups such as F, Cl, NO2, CH3, at the 4-position of the phenyl ring, gave ligands with lower D2-like affinity.  相似文献   

16.
The atomic property fields (APF) concept is introduced as a continuous, multi-component 3D potential that reflects preferences for various atomic properties at each point in space. Atomic property field-based approaches to several key problems in the field of ligand structure-based rational drug discovery and design are investigated. The superposition of ligands on one or multiple molecular templates is performed by Monte-Carlo minimization in the atomic property fields potentials combined with standard force-field energy. The approach is extended to multiple flexible ligand alignments using an iterative procedure, Self-Consistent atomic Property Fields by Optimization (SCAPFOld). The application of atomic property fields and SCAPFOld for virtual ligand screening and 3D Quantitive Structure-Activity Relationship (QSAR) is tested on published benchmarks. The new methods are shown to perform competitively in comparison to current state-of-the-art methods.  相似文献   

17.
We describe the discovery of novel inhibitors of prostaglandin D2 synthase (PGDS) through fragment-based lead generation and structure-based drug design. A library of 2500 low-molecular-weight compounds was screened using 2D nuclear magnetic resonance (NMR), leading to the identification of 24 primary hits. Structure determination of protein-ligand complexes with the hits enabled a hit optimization process, whereby we harvested increasingly more potent inhibitors out of our corporate compound collection. Two iterative cycles were carried out, comprising NMR screening, molecular modeling, X-ray crystallography, and in vitro biochemical testing. Six novel high-resolution PGDS complex structures were determined, and 300 hit analogues were tested. This rational drug design procedure culminated in the discovery of 24 compounds with an IC 50 below 1 microM in the in vitro assay. The best inhibitor (IC 50 = 21 nM) is one of the most potent inhibitors of PGDS to date. As such, it may enable new functional in vivo studies of PGDS and the prostaglandin metabolism pathway.  相似文献   

18.
The dopamine D3 receptor (D3R) has been implicated in substance abuse and other neuropsychiatric disorders. The high sequence homology between the D3R and D2R, especially within the orthosteric binding site (OBS) that binds dopamine, has made the development of D3R-selective compounds challenging. Here, we deconstruct into pharmacophoric elements a series of D3R-selective substituted-4-phenylpiperazine compounds and use computational simulations and binding and activation studies to dissect the structural bases for D3R selectivity and efficacy. We find that selectivity arises from divergent interactions within a second binding pocket (SBP) separate from the OBS, whereas efficacy depends on the binding mode in the OBS. Our findings reveal structural features of the receptor that are critical to selectivity and efficacy that can be used to design highly D3R-selective ligands with targeted efficacies. These findings are generalizable to other GPCRs in which the SBP can be targeted by bitopic or allosteric ligands.  相似文献   

19.
Matriptase, a trypsin-like serine protease, which may be involved in tissue remodeling, cancer invasion, and metastasis. Potent and selective matriptase inhibitors not only would be useful pharmacological tools for further elucidation of the role of matriptase in these processes but also could have therapeutic potential for the treatment and/or prevention of cancers. We report herein the structure-based approach for the discovery of bis-benzamidines as a novel class of potent matriptase inhibitors. The lead compound, hexamidine (1), inhibits not only the proteolytic activity of matriptase, (K(i) = 924 nM) but also of thrombin K(i) = 224 nM). By testing several available analogues, we identified a new analogue (7) that has a K(i) = 208 nM against matriptase and has only weak inhibitory activity against thrombin (K(i) = 2670 nM), thus displaying a 13-fold selectivity toward matriptase. Our results demonstrated that structure-based database screening is effective in the discovery of matriptase inhibitors and that bis-benzamidines represent a class of promising matriptase inhibitors that can be used for further drug design studies. Finally, our study suggested that there is sufficient structural differences between matriptase and its closely related serine proteases, such as thrombin, for the design of potent and selective matriptase inhibitors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号