首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tartrate-resistant acid phosphatase (TRACP) is produced by macrophages and other cells of the monohistiocytic lineage. In particular, osteoclasts are characterized for a high expression of this enzyme. Yet, several data suggest that other bone cell types, such as osteocytes and osteoblasts, may also express activity of this enzyme. This is particularly obvious at sites were osteoclasts resorb bone, suggesting that osteoclasts (or their precursors) somehow induce TRACP activity in osteoblasts. In the present study, we investigated this by culturing human osteoblast-like cells with and without conditioned medium (MCM) from human blood monocytes (as a source of osteoclast precursors). High levels of TRACP activity were found in osteoblast-like cells cultured with MCM. Depletion of TRACP from this medium resulted in the absence of its activity in osteoblast-like cells, thus suggesting that the TRACP activity in these cells was the result of endocytosed TRACP that was released by the monocytes in the MCM. Osteoblast-like cells cultured in control (non-conditioned) medium contained very low levels of TRACP-like activity. However, the cells expressed TRACP mRNA and incubation of extracts of these cells with active cathepsin B did induce activity of a TRACP-like enzyme. Inhibition of the activity of cysteine proteinases in general and of cathepsin B in particular, completely blocked TRACP activity of the osteoblast-like cells. This TRACP-like enzyme but not the alleged endocytosed fraction of TRACP was inhibited by fluoride, suggesting that the fractions may be different isoenzymes.

Our data seem to indicate that osteoblast-like cells may contain two different fractions of TRACP, one that is released by monocytes and subsequently endocytosed by osteoblast-like cells and a second endogenous fraction that is present in an inactive proform. We hypothesize that the capacity of osteoblast-like cells to endocytose TRACP is important for the removal of this enzyme during or following the bone resorptive activity of the osteoclast.  相似文献   


2.
Osteoclastic bone degradation involves the activity of cathepsin K. We found that in addition to this enzyme other, yet unknown, cysteine proteinases participate in digestion. The results support the notion that osteoclasts from different bone sites use different enzymes to degrade the collagenous bone matrix. INTRODUCTION: The osteoclast resorbs bone by lowering the pH in the resorption lacuna, which is followed by secretion of proteolytic enzymes. One of the enzymes taken to be essential in resorption is the cysteine proteinase, cathepsin K. Some immunolabeling and enzyme inhibitor data, however, suggest that other cysteine proteinases and/or proteolytic enzymes belonging to the group of matrix metalloproteinases (MMPs) may participate in the degradation. In this study, we investigated whether, in addition to cathepsin K, other enzymes participate in osteoclastic bone degradation. MATERIALS AND METHODS: In bones obtained from mice deficient for cathepsin K, B, or L or a combination of K and L, the bone-resorbing activity of osteoclasts was analyzed at the electron microscopic level. In addition, bone explants were cultured in the presence of different selective cysteine proteinase inhibitors and an MMP inhibitor, and the effect on resorption was assessed. Because previous studies showed differences in resorption by calvarial osteoclasts compared with those present in long bones, in all experiments, the two types of bone were compared. Finally, bone extracts were analyzed for the level of activity of cysteine proteinases and the effect of inhibitors hereupon. RESULTS: The analyses of the cathepsin-deficient bone explants showed that, in addition to cathepsin K, calvarial osteoclasts use other cysteine proteinases to degrade bone matrix. It was also shown that, in the absence of cathepsin K, long bone osteoclasts use MMPs for resorption. Cathepsin L proved to be involved in the MMP-mediated resorption of bone by calvarial osteoclasts; in the absence of this cathepsin, calvarial osteoclasts do not use MMPs for resorption. Selective inhibitors of cathepsin K and other cysteine proteinases showed a stronger effect on calvarial resorption than on long bone resorption. CONCLUSIONS: Our findings suggest that (1) cathepsin K-deficient long bone osteoclasts compensate the lack of this enzyme by using MMPs in the resorption of bone matrix; (2) cathepsin L is involved in MMP-mediated resorption by calvarial osteoclasts; (3) in addition to cathepsin K, other, yet unknown, cysteine proteinases are likely to participate in skull bone degradation; and finally, (4) the data provide strong additional support for the existence of functionally different bone-site specific osteoclasts.  相似文献   

3.
Bone resorption by osteoclasts depends on the activity of various proteolytic enzymes, in particular those belonging to the group of cysteine proteinases. Next to these enzymes, tartrate-resistant acid phosphatase (TRAP) is considered to participate in this process. TRAP is synthesized as an inactive proenzyme, and in vitro studies have shown its activation by cysteine proteinases. In the present study, the possible involvement of the latter enzyme class in the in vivo modulation of TRAP was investigated using mice deficient for cathepsin K and/or L and in bones that express a high (long bone) or low (calvaria) level of cysteine proteinase activity. The results demonstrated, in mice lacking cathepsin K but not in those deficient for cathepsin L, significantly higher levels of TRAP activity in long bone. This higher activity was due to a higher number of osteoclasts. Next, we found considerable differences in TRAP activity between calvarial and long bones. Calvarial bones contained a 25-fold higher level of activity than long bones. This difference was seen in all mice, irrespective of genotype. Osteoclasts isolated from the two types of bone revealed that calvarial osteoclasts expressed higher enzyme activity as well as a higher level of mRNA for the enzyme. Analysis of TRAP-deficient mice revealed higher levels of nondigested bone matrix components in and around calvarial osteoclasts than in long bone osteoclasts. Finally, inhibition of cysteine proteinase activity by specific inhibitors resulted in increased TRAP activity. Our data suggest that neither cathepsin K nor L is essential in activating TRAP. The findings also point to functional differences between osteoclasts from different bone sites in terms of participation of TRAP in degradation of bone matrix. We propose that the higher level of TRAP activity in calvarial osteoclasts compared to that in long bone cells may partially compensate for the lower cysteine proteinase activity found in calvarial osteoclasts and TRAP may contribute to the degradation of noncollagenous proteins during the digestion of this type of bone. An erratum to this article is available at .  相似文献   

4.
Tartrate-resistant acid phosphatase (TRAP) is an enzyme highly expressed in osteoclasts and thought to participate in osteoclast-mediated bone turnover. Cathepsin K (Ctsk) is the major collagenolytic cysteine proteinase expressed in osteoclasts and has recently been shown to be able to proteolytically process and activate TRAP in vitro. In this study, 4-week-old Ctsk(-/-) mice were analysed for TRAP expression at the mRNA, protein and enzyme activity levels to delineate a role of cathepsin K in TRAP processing in osteoclasts in vivo. The absence of cathepsin K in osteoclasts was associated with increased expression of TRAP mRNA, monomeric TRAP protein and total TRAP activity. Proteolytic processing of TRAP was not abolished but prematurely arrested at an intermediate stage without changing enzyme activity, a finding confirmed with RANKL-differentiated osteoclast-like cell line RAW264.7 treated with the cysteine proteinase inhibitor E-64. Thus, the increase in total TRAP activity was mainly due to increased cellular content of monomeric TRAP. The increase in monomeric TRAP expression was more pronounced in osteoclasts of the distal compared to the proximal part of the metaphyseal trabecular bone, suggesting a site-dependent role for cathepsin K in TRAP processing. Moreover, intracellular localization of monomeric TRAP was altered in distal metaphyseal osteoclasts from Ctsk(-/-) mice. Additionally, TRAP was secreted into the ruffled border as the processed form in osteoclasts of Ctsk(-/-) mice, unlike in osteoclasts from wild-type mice which secreted TRAP to the resorption lacuna as the monomeric form. The results demonstrate that cathepsin K is not only involved in proteolytic processing but also affects the intracellular trafficking of TRAP, particularly in osteoclasts of the distal metaphysis. However, contribution by other yet unidentified protease(s) to TRAP processing must also be invoked since proteolytic cleavage of TRAP is not abolished in Ctsk(-/-) mice. Importantly, this study highlights functional differences between bone-resorbing clasts within the trabecular metaphyseal bone, suggesting potentially important differences in the regulation of differentiation and activation depending on the precise anatomical localization of the clast population.  相似文献   

5.
Bone sialoprotein (BSP) and osteopontin (OPN) belong to the small integrin‐binding ligand N‐linked glycoprotein (SIBLING) family, whose members interact with bone cells and bone mineral. Previously, we showed that BSP knockout (BSP?/?) mice have a higher bone mass than wild type (BSP+/+) littermates, with very low bone‐formation activity and reduced osteoclast surfaces and numbers. Here we report that approximately twofold fewer tartrate‐resistant acid phosphatase (TRACP)–positive cells and approximately fourfold fewer osteoclasts form in BSP?/? compared with BSP+/+ spleen cell cultures. BSP?/? preosteoclast cultures display impaired proliferation and enhanced apoptosis. Addition of RGD‐containing proteins restores osteoclast number in BSP?/? cultures to BSP+/+ levels. The expression of osteoclast‐associated genes is markedly altered in BSP?/? osteoclasts, with reduced expression of cell adhesion and migration genes (αV integrin chain and OPN) and increased expression of resorptive enzymes (TRACP and cathepsin K). The migration of preosteoclasts and mature osteoclasts is impaired in the absence of BSP, but resorption pit assays on dentine slices show no significant difference in pit numbers between BSP+/+ and BSP?/? osteoclasts. However, resorption of mineral‐coated slides by BSP?/? osteoclasts is markedly impaired but is fully restored by coating the mineral substrate with hrBSP and partly restored by hrOPN coating. In conclusion, lack of BSP affects both osteoclast formation and activity, which is in accordance with in vivo findings. Our results also suggest at least some functional redundancy between BSP and OPN that remains to be clarified. © 2010 American Society for Bone and Mineral Research.  相似文献   

6.
Cathepsin K is a member of the papain superfamily of cysteine proteases and has been proposed to play a pivotal role in osteoclast-mediated bone resorption. We have developed a sensitive cytochemical assay to localize and quantify osteoclast cathepsin K activity in sections of osteoclastoma and human bone. In tissue sections, osteoclasts that are distant from bone express high levels of cathepsin K messenger RNA (mRNA) and protein. However, the majority of the cathepsin K in these cells is in an inactive zymogen form, as assessed using both the cytochemical assay and specific immunostaining. In contrast, osteoclasts that are closer to bone contain high levels of immunoreactive mature cathepsin K that codistributes with enzyme activity in a polarized fashion toward the bone surface. Polarization of active enzyme was clearly evident in osteoclasts in the vicinity of bone. The osteoclasts apposed to the bone surface were almost exclusively expressing the mature form of cathepsin K. These cells showed intense enzyme activity, which was polarized at the ruffled border. These results suggest that the in vivo activation of cathepsin K occurs intracellularly, before secretion into the resorption lacunae and the onset of bone resorption. The processing of procathepsin K to mature cathepsin K occurs as the osteoclast approaches bone, suggesting that local factors may regulate this process.  相似文献   

7.
Fracture repair provides an interesting model for chondrogenesis and osteogenesis as it recapitulates in an adult organism the same steps encountered during embryonic skeletal development and growth. The fracture callus is not only a site of rapid production of cartilage and bone, but also a site of extensive degradation of their extracellular matrices. The present study was initiated to increase our understanding of the roles of different proteolytic enzymes, cysteine cathepsins B, H, K, L, and S, and matrix metalloproteinases (MMPs) 9 and 13, during fracture repair, as this aspect of bone repair has previously received little attention. Northern analysis revealed marked upregulation of cathepsin K, MMP-9, and MMP-13 mRNAs during the first and second weeks of healing. The expression profiles of these mRNAs were similar with that of osteoclastic marker enzyme tartrate-resistant alkaline phosphatate (TRAP). The changes in the mRNA levels of cathepsins B, H, L, and S were smaller when compared with those of the other enzymes studied. Immunohistochemistry and in situ hybridization confirmed the predominant localization of cathepsin K and MMP-9 and their mRNA in osteoclasts and chondroclasts at the osteochondral junction. MMP-13 was present in osteoblasts and individual hypertrophic chondrocytes near the cartilage-bone interphase. In cartilaginous callus, the expression of cathepsins B, H, L, and S was mainly related to chondrocyte hypertrophy. During bone remodeling both osteoblasts and osteoclasts contained these cathepsins. The present data demonstrate that degradation and remodeling of extracellular matrices during fracture healing involves activation of MMP-13 production in hypertrophic chondrocytes and osteoblasts, and cathepsin K and MMP-9 production in osteoclasts and chondroclasts. Received: 2 February 2000 / Accepted: 25 May 2000 / Online publication: 2 November 2000  相似文献   

8.
Hypophosphatemic transgenic (tg) mice overexpressing FGF23 in osteoblasts display disorganized growth plates and reduced bone mineral density characteristic of rickets/osteomalacia. These FGF23 tg mice were used as an in vivo model to examine the relation between osteoclast polarization, secretion of proteolytic enzymes and resorptive activity. Tg mice had increased mRNA expression levels of the osteoblast differentiation marker Runx2 and mineralization-promoting proteins alkaline phosphatase and bone sialoprotein in the long bones compared to wild type (wt) mice. In contrast, expression of alpha1(I) collagen, osteocalcin, dentin matrix protein 1 and osteopontin was unchanged, indicating selective activation of osteoblasts promoting mineralization. The number of osteoclasts was unchanged in tg compared to wt mice, as determined by histomorphometry, serum levels of TRAP 5b activity as well as mRNA expression levels of TRAP and cathepsin K. However, tg mice displayed elevated serum concentrations of C-terminal telopeptide of collagen I (CTX) indicative of increased bone matrix degradation. The majority of osteoclasts in FGF23 tg mice lacked ultrastructural morphological signs of proper polarization. However, they secreted both cathepsin K and MMP-9 at levels comparable to osteoclasts with ruffled borders. Mineralization of bone matrix thus appears essential for inducing osteoclast polarization but not for secretion of osteoclast proteases. Finally, release of CTX by freshly isolated osteoclasts was increased on demineralized compared to mineralized bovine bone slices, indicating that the mineral component limits collagen degradation. We conclude that ruffled borders are implicated in acidification and subsequent demineralization of the bone matrix, however not required for matrix degradation. The data collectively provide evidence that osteoclasts, despite absence of ruffled borders, effectively participate in the degradation of hypomineralized bone matrix in rachitic FGF23 tg mice.  相似文献   

9.
Tartrate-resistant acid phosphatase (TRACP) is generally used as a marker of osteoclasts. Yet, other bone-associated cells, such as osteoblasts and osteocytes, may also express activity of this enzyme. Osteoblasts containing TRACP activity are seen particularly in the vicinity of areas of bone resorption, suggesting that osteoclasts somehow induce TRACP activity in osteoblasts. In a recent study, we found that osteoblast-like cells appeared to have the capacity to endocytose TRACP released by osteoclast precursors. In the present study, we investigated the endocytosis of TRACP in more detail as well as the fate of the endocytosed enzyme. We found that incubation of osteoblast-like cells with TRACP-coated beads resulted in attachment of a high number of beads to the cells. After culturing osteoblast-like cells with medium conditioned by blood monocytes that contain TRACP, activity of the enzyme was found in the cells. Following replacement of the medium by normal medium that did not contain TRACP, a decrease in the level of TRACP activity in osteoblast-like cells occurred. Our data strongly suggest that osteoblast-like cells recognize TRACP released by osteoclast precursors and that upon endocytosis inactivation of the enzyme occurs. We propose that uptake of the enzyme is important for the control of enzyme activity, thereby preventing degradation of matrix constituents.  相似文献   

10.
TRACP is a lysosomal enzyme found in diverse tissues, where it is expressed in dendritic cells as well as osteoclasts and macrophages. To investigate the function of TRACP in vivo, we have generated mice in which the gene-encoding TRACP has been selectively disrupted by targeted homologous recombination in murine embryonic stem cells. Homozygous TRACP "knockout" mice have progressive foreshortening and deformity of the long bones and axial skeleton suggesting a role for TRACP in endochondral ossification. There is increased mineralization reflecting a mild osteopetrosis caused by reduced osteoclast modeling activity. These knockout mice also display an impairment of macrophage function with abnormal immunomodulatory cytokine responses. Superoxide formation and nitrite production were enhanced in stimulated macrophages lacking TRACP as was the secretion of the proinflammatory cytokines TNF-alpha, interleukin (IL)-1beta, and IL-12. TRACP knockout mice showed delayed clearance of the microbial pathogen Staphylococcus aureus after sublethal intraperitoneal inoculation. The macrophages lacking TRACP showed an increase in tartrate-sensitive lysosomal acid phosphatase activity (LAP). The TRACP knockout mice were bred with mice lacking LAP. Mice lacking both TRACP and LAP had even shorter bones than the TRACP single knockouts. Osteopontin, identical to the T-cell cytokine eta-1, accumulated adjacent to actively resorbing osteoclasts suggesting that both phosphatases are important for processing this protein. We propose that TRACP may be an important regulator of osteopontin/eta-1 activity common to both the immune system and skeleton.  相似文献   

11.
Osteoclasts are thought to belong to a macrophage lineage. However, the nature of common precursors of osteoclasts and macrophages remains to be investigated. We have characterized the differentiation potential of mouse bone marrow macrophages into mature osteoclasts. Monocyte macrophage-colony-stimulating factor (M-CSF) stimulated the proliferation of bone marrow macrophages in a dose-dependent manner and these M-CSF-dependent bone marrow macrophage (MDBM) cells efficiently differentiated into the tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts in the presence of soluble RANKL (sRANKL) and M-CSF in the in vitro culture. The macrophage-like cell line TMC16 was established from tsA58 (temperature-sensitive SV40 large T-antigen) transgenic mice in the same manner to the preparation of MDBM cells and also differentiated into mature osteoclasts. During this differentiation in vitro, the morphology of the cells changed from spindle to round and smaller (termed pOC) on day 2 and to multinuclear (termed multinucleated cells [MNCs]) on day 4. The surface expression of macrophage marker CD14 was down-regulated and that of CD43 was up-regulated on pOC, analyzed by flow cytometry. RNA analysis revealed that osteoclast marker genes such as calcitonin receptor (CTR), carbonic anhydrase II (CAII), cathepsin K (cath K), MMP9, and TRAP were strongly expressed in MNCs and weakly in pOC whereas MDBM cells did not express these genes. However, the osteopontin (OPN) gene was strongly expressed in MDBM cells and this expression became weakened after differentiation into pOC. The TMC16 cell line weakly expressed cath K, TRAP, and OPN, suggesting that the TMC16 cell line is immortalized at a stage slightly differentiated from MDBM cells. Furthermore, cell sorting analysis revealed that osteoclast early progenitors in bone marrow cells are preferentially present in the Mac-1- F4/80dull population, which differentiated into MDBM cells (the osteoclast progenitor) expressing Mac-1+ F4/80int, suggesting that M-CSF plays roles of a differentiation factor as well as a growth factor for osteoclast early progenitors. These results showed the transition of morphology, surface markers, and gene expression from the early to mature stage in osteoclast differentiation. We propose three differentiation stages in the osteoclast lineage: the pro-osteoclast (spindle-shaped macrophage cells), the pre-osteoclast (small round mononucleated TRAP-positive cells), and the mature osteoclast (multinucleated TRAP-positive cells) stage.  相似文献   

12.
Although osteopontin (OPN) is recognized generally as a secreted protein, an intracellular form of osteopontin (iOPN), associated with the CD44 complex, has been identified in migrating fibroblastic cells. Because both OPN and CD44 are expressed at high levels in osteoclasts, we have used double immunofluorescence analysis and confocal microscopy to determine whether colocalization of these proteins has functional significance in the formation and activity of osteoclasts. Analysis of rat bone marrow-derived osteoclasts revealed strong surface staining for CD44 and beta1- and beta3-integrins, whereas little or no staining for OPN or bone sialoprotein (BSP) was observed in nonpermeabilized cells. In permeabilized perfusion osteoclasts and multinucleated osteoclasts, staining for OPN and CD44 was prominent in cell processes, including filopodia and pseudopodia. Confocal microscopy revealed a high degree of colocalization of OPN with CD44 in motile osteoclasts. In cells treated with cycloheximide (CHX), perinuclear staining for OPN and BSP was lost, but iOPN staining was retained within cell processes. In osteoclasts generated from the OPN-null and CD44-null mice, cell spreading and protrusion of pseudopodia were reduced and cell fusion was impaired. Moreover, osteoclast motility and resorptive activity were significantly compromised. Although the area resorbed by OPN-null osteoclasts could be rescued partially by exogenous OPN, the resorption depth was not affected. These studies have identified an intracellular form of OPN, colocalizing with CD44 in cell processes, that appears to function in the formation and activity of osteoclasts.  相似文献   

13.
High-turnover osteoporosis is induced by cyclosporin A in rats   总被引:2,自引:0,他引:2  
Cyclosporin A (CsA) is used widely as an immunosuppressive agent, but it induces osteoporosis as a prominent side effect. To elucidate the mechanisms involved in CsA-induced osteoporosis, the effects of CsA on bone metabolism were investigated in a rat experimental model. Fifteen-day-old rats were fed a powdered diet containing or lacking CsA for 8–30 days. Analysis was performed by micro-computed tomography (μCT) and light microscopy to examine histomorphometric changes in rat tibiae on days 8, 16, and 30. Plasma parathyroid hormone (PTH) and osteocalcin (OCN) levels were determined by enzyme-linked immunosorbent assay (ELISA) on days 8, 16, and 30. The expression of OCN, osteopontin (OPN), and cathepsin K mRNAs in tibial bone marrow was examined by Northern blot analysis on days 8 and 16. Although no significant differences were observed in tibial length during the experimental periods, or in histomorphometric parameters on day 8, an apparent decrease in bone volume was observed in the CsA-treated group after day 16. Histologic analysis showed that the number of osteoblasts and osteoclasts on the surface of trabecular bone in the CsA-treated group had increased significantly on day 16. Plasma PTH and OCN levels in CsA-treated rats were significantly higher than those in control animals on day 8. Northern blot analysis revealed that the CsA-treated group showed an increase in the expression of OCN, OPN, and cathepsin K mRNAs on day 8 compared with the controls. These findings suggest that bone resorption in CsA-treated rats is induced by high-turnover osteoporosis and that bone remodeling activity may be activated by PTH.  相似文献   

14.
Cathepsin K is a lysosomal cysteine proteinase (LCP) predominantly expressed in osteoclasts. This study was conducted to evaluate the improtance of human cathepsin K for osteoclastic bone resorption relative to that of other LCPs. To accomplish this, we quantitatively determined the expression levels of major LCPs (cathepsins B, K, L, and S) in human osteoclastic cells by using competitive RT-PCR. Giant cell tumor of bone (GCT) was used as a source of human osteoclastic cells, since the tissue was shown to contain a large number of cells satisfying the criteria for typical osteoclasts. The involvement of LCPs in the bone-resorption process by the GCT cells was confirmed by showing thattrans-epoxysucciny-l-leucylamido-(4-guanidino) butane (E-64), a nonselective cysteine proteinase inhibitor, exerted an inhibitory effect on the pit formation. We isolated osteoclast-like cells (OLCs) positive for tartrate-resistant acid phosphatase (TRAP) and cathepsin K from the GCT tissue to a degree of almost 95% purity. In these cells, the expression of cathepsin K was shown to be approximately 20-, 130-, and 410-fold stronger than that of cathepsins B, L, and S, respectively. A similar result was obtained when human bone marrow cells in culture were used as another source of OLCs. Further, we found that cathepsin K was expressed in OLCs far more strongly than in several human nonosteoclastic cells including osteoblastic cell lines. The abundant and selective expression of cathepsin K in OLCs relative to that of other LCPs suggests that cathepsin K is mainly responsible for osteoclastic degradation of human bone matrix.  相似文献   

15.
In the present study, we examined the in vitro and in vivo pharmacological effects of ONO-5334, a novel inhibitor of cathepsin K, on bone metabolism. In vitro experiments indicated that ONO-5334 is a potent inhibitor of cathepsin K with Ki value of 0.1 nM. Although this compound inhibited other cysteine proteases, such as cathepsin S, L and B, its inhibitory activity for these enzymes was 8 to 320 fold lower than that for cathepsin K. ONO-5334 also inhibited human osteoclasts bone resorption in vitro at a concentration more than 100 fold lower than that of alendronate, a bisphosphonate. While alendronate disrupted actin ring and induced pyknotic nuclei in osteoclasts, ONO-5334 did not have such effects, suggesting that this compound does not affect osteoclasts viability. In in vivo experiments, oral administration of ONO-5334 dose-dependently reduced plasma calcium level increased by parathyroid hormone related peptide in thyroparathyroidectomized rats. Furthermore, in vivo experiment using normal monkeys demonstrated that ONO-5334 decreases serum and urine C-telopeptide of type I collagen level, a bone resorption marker, soon after oral dosing. These levels were consistently decreased below pre-dose levels by repeated oral dosing with ONO-5334 for 7 days. ONO-5334 on the other hand did not affect bone formation markers, serum osteocalcin and bone specific alkaline phosphatase. These findings indicate that ONO-5334 is a specific inhibitor for cathepsin K and thus may be a novel therapeutic agent for metabolic bone diseases.  相似文献   

16.
Cathepsin K is a cysteine protease that plays an essential role in osteoclast-mediated degradation of the organic matrix of bone. Knockout of the enzyme in mice, as well as lack of functional enzyme in the human condition pycnodysostosis, results in osteopetrosis. These results suggests that inhibition of the human enzyme may provide protection from bone loss in states of elevated bone turnover, such as postmenopausal osteoporosis. To test this theory, we have produced a small molecule inhibitor of human cathepsin K, SB-357114, that potently and selectively inhibits this enzyme (Ki = 0.16 nM). This compound potently inhibited cathepsin activity in situ, in human osteoclasts (inhibitor concentration [IC]50 = 70 nM) as well as bone resorption mediated by human osteoclasts in vitro (IC50 = 29 nM). Using SB-357114, we evaluated the effect of inhibition of cathepsin K on bone resorption in vivo using a nonhuman primate model of postmenopausal bone loss in which the active form of cathepsin K is identical to the human orthologue. A gonadotropin-releasing hormone agonist (GnRHa) was used to render cynomolgus monkeys estrogen deficient, which led to an increase in bone turnover. Treatment with SB-357114 (12 mg/kg subcutaneously) resulted in a significant reduction in serum markers of bone resorption relative to untreated controls. The effect was observed 1.5 h after the first dose and was maintained for 24 h. After 5 days of dosing, the reductions in N-terminal telopeptides (NTx) and C-terminal telopeptides (CTx) of type I collagen were 61% and 67%, respectively. A decrease in serum osteocalcin of 22% was also observed. These data show that inhibition of cathepsin K results in a significant reduction of bone resorption in vivo and provide further evidence that this may be a viable approach to the treatment of postmenopausal osteoporosis.  相似文献   

17.
Inhibition of the cyteine proteinase, cathepsin K (E.C. 3.4.22.38) has been postulated as a means to control osteoclast-mediated bone resorption. The preferred animal models for evaluation of antiresorptive activity are in the rat. However, the development of compounds that inhibit rat cathepsin K has proven difficult because the human and rat enzymes differ in key residues in the active site. In this study, a potent, nonpeptide inhibitor of rat cathepsin K (K(i) = 4.7 nmol/L), 5-(2-morpholin-4-yl-ethoxy)-benzofuran-2-carboxylic acid ((S)-3-methyl-1-(3-oxo-1-[2-(3-pyridin-2-yl-phenyl)-ethenoyl]-azepan-4-ylcarbanoyl)-butyl)-amide (SB 331750), is described, which is efficacious in rat models of bone resorption. SB 331750 potently inhibited human cathepsin K activity in vitro (K(i) = 0.0048 nmol/L) and was selective for human cathepsin K vs. cathepsins B (K(i) = 100 nmol/L), L (0.48 nmol/L), or S (K(i) = 14.3 nmol/L). In an in situ enzyme assay, SB 331750 inhibited osteoclast-associated cathepsin activity in tissue sections containing human osteoclasts (IC(50) approximately 60 nmol/L) and this translated into potent inhibition of human osteoclast-mediated bone resorption in vitro (IC(50) approximately 30 nmol/L). In vitro, SB 331750 partially, but dose-dependently, prevented the parathyroid hormone-induced hypercalcemia in an acute rat model of bone resorption. To evaluate the ability of SB 331750 to inhibit bone matrix degradation in vivo, it was administered for 4 weeks at 3, 10, or 30 mg/kg, intraperitoneally (i.p.), u.i.d. in the ovariectomized (ovx) rat. Both 10 and 30 mg/kg doses of compound prevented the ovx-induced elevation in urinary deoxypyridinoline and prevented the ovx-induced increase in percent eroded perimeter. Histological evaluation of the bones from compound-treated animals indicated that SB 331750 retarded bone matrix degradation in vivo at all three doses. The inhibition of bone resorption at the 10 and 30 mg/kg doses resulted in prevention of the ovx-induced reduction in percent trabecular area, trabecular number, and increase in trabecular spacing. These effects on bone resorption were also reflected in inhibition of the ovx-induced loss in trabecular bone volume as assessed using microcomputerized tomography (microCT; approximately 60% at 30 mg/kg). Together, these data indicate that the cathepsin K inhibitor, SB 331750, prevented bone resorption in vivo and this inhibition resulted in prevention of ovariectomy-induced loss in trabecular structure.  相似文献   

18.
Previous reports indicate that mice deficient for cathepsin K (Ctsk), a key protease in osteoclastic bone resorption, develop osteopetrosis due to their inability to properly degrade organic bone matrix. Some features of the phenotype of Ctsk knockout mice, however, suggest the presence of mechanisms by which Ctsk-deficient mice compensate for the lack of cathepsin K. To study these mechanisms in detail, we generated Ctsk-deficient (Ctsk-/-) mice and analyzed them at the age of 2, 7, and 12 months using peripheral quantitative computed tomography, histomorphometry, resorption marker measurements, osteoclast and osteoblast differentiation cultures, and gene expression analyses. The present study verified the previously published osteopetrotic features of Ctsk-deficient mice. However, these changes did not exacerbate during aging indicating the absence of Ctsk to have its most severe effects during the rapid growth period. Resorption markers ICTP and CTX were decreased in the media of Ctsk-/- osteoclasts cultured on bone slices indicating impaired bone resorption. Ctsk-/- mice exhibited several mechanisms attempting to compensate for Ctsk deficiency. The number of osteoclasts in trabecular bone was significantly increased in Ctsk-/- mice compared to controls, as was the number of osteoclast precursors in bone marrow. The mRNA levels for receptor activator of nuclear factor (kappa)B ligand (RANKL) in Ctsk-/- bones were increased resulting in increased RANKL/OPG ratio favoring osteoclastogenesis. In addition, expression of mRNAs of osteoclastic enzymes (MMP-9, TRACP) and for osteoblastic proteases (MMP-13, MMP-14) were increased in Ctsk-/- mice compared to controls. Impaired osteoclastic bone resorption in Ctsk-/- mice results in activation of osteoblastic cells to produce increased amounts of other proteolytic enzymes and RANKL in vivo. We suggest that increased RANKL expression mediates enhanced osteoclastogenesis and increased protease expression by osteoclasts. These observations underline the important role of osteoblastic cells in regulation of osteoclast activity and bone turnover.  相似文献   

19.
Cathepsin K is a cystein protease that displays a proteolytic activity against Type I collagen and is abundantly and selectively expressed in osteoclasts where it plays a critical role in bone degradation. Its direct role in bone tissue has been defined by knock-out mice studies and inhibiting strategies in animals models. However, direct proof of cathepsin K function in human osteoclast model in vitro is lacking. The aim of this study is to analyze cathepsin K expression and localization in human osteoclasts obtained from peripheral blood and to examine cathepsin K function in these cells by antisense oligodeoxynucleotide (AS-ODN) strategy. AS-ODN was added to the culture of osteoclast precursors induced to differentiate by RANKL and M-CSF. AS-ODN treatment produced a significant down-regulation of cathepsin K mRNA (>80%) and protein expression, as verified respectively by Real-time PCR and by immunocytochemistry or Western blot. The cathepsin K inhibition caused an impairment of resorption activity as evaluated by a pit formation assay ( p = 0.045) and by electron microscopy, while the acidification process was unaffected. We demonstrated that antisense strategies against cathepsin K are selectively effective to inhibit resorption activity in human osteoclasts, like in animal models.  相似文献   

20.
Role of osteopontin in bone remodeling caused by mechanical stress.   总被引:9,自引:0,他引:9  
Changes in the number and proportion of osteopontin mRNA (Opn) expressing osteocytes and osteoclasts caused by the mechanical stress applied during experimental tooth movement were examined in the present study. Opn expression was detected in the osteocytes on the pressure side at the early stage, and gradually spread to those on the tension side and also to the osteoblasts and bone-lining cells in the alveolar bone. Only 3.3% of the osteocytes located on the pressure side expressed Opn in the interradicular septum of control rats; in contrast, the value was increased to 87.5% at 48 h after the initiation of tooth movement. These results indicate that these cells responded to mechanical stress loaded on the bone with expression of the osteopontin gene. Following the increased expression of Opn in these cells, a 17-fold greater number of osteoclasts compared with the control and numerous resorption pits were observed on the pressure side of the alveolar bone. Injection of arginine-glycine-aspartic acid-serine peptide but not that of arginine-glycine-glutamic acid-serine peptide strongly inhibited the increase in the number of osteoclasts. Furthermore, an in vitro migration assay demonstrated the chemotactic activity of osteopontin (OPN) on the precursor of osteoclasts. Our study strongly suggests that OPN is an important factor triggering bone remodeling caused by mechanical stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号