首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 800 毫秒
1.
The present study aimed to analyse the frequencies of human leukocyte antigen HLA‐ABCDQB1 and HLA‐DRB1 alleles and haplotypes in a subset of 3,732 Han population from Hubei of China. All samples were typed in the HLA‐ABCDQB1 and HLA‐DRB1 loci using the sequence‐based typing method; subsequently, the HLA polymorphisms were analysed. A total of 47 HLA‐A, 89 HLA‐B, 43 HLA‐C, 49 HLA‐DRB1 and 24 HLA‐DQB1 alleles were identified in the Hubei Han population. The top three most frequent alleles in the HLA‐ABCDQB1 and HLA‐DRB1 were A*11:01 (0.2617), A*24:02 (0.1590), A*02:07 (0.1281); B*46:01 (0.1502), B*40:01 (0.1409) and B*58:01 (0.0616); C*01:02 (0.2023), C*07:02 (0.1691) and C*03:04 (0.1175); and DQB1*03:01 (0.2000), DQB1*03:03 (0.1900), DQB1*06:01 (0.1187); DRB1*09:01 (0.1790), DRB1*15:01 (0.1062) and DRB1*12:02 (0.0841), respectively. Meanwhile, the three most frequent two‐loci haplotypes were A*02:07‐C*01:02 (0.0929), B*46:01‐C*01:02 (0.1366) and DQB1*03:03‐DRB1*09:01 (0.1766). The three most frequent three‐loci haplotypes were A*02:07‐B*46:01‐C*01:02 (0.0883), B*46:01‐DQB1*03:03‐DRB1*09:01 (0.0808) and C*01:02‐DQB1*03:03‐DRB1*09:01 (0.0837). The three most frequent four‐loci haplotypes were A*02:07‐B*46:01‐C*01:02‐DQB1*03:03 (0.0494), B*46:01‐DRB1*09:01‐C*01:02‐DQB1*03:03 (0.0729) and A*02:07‐B*46:01‐DQB1*03:03‐DRB1*09:01 (0.0501). The most frequent five‐loci haplotype was A*02:07‐B*46:01‐C*01:02‐DQB1*03:03‐DRB1*09:01 (0.0487). Heat maps and multiple correspondence analysis based on the frequencies of HLA specificity indicated that the Hubei Han population might be described into Southern Chinese populations. Our results lay a certain foundation for future population studies, disease association studies and donor recruitment strategies.  相似文献   

2.
《Human immunology》2020,81(8):437-444
HLA genotyping by next-generation sequencing (NGS) has evolved with significant advancements in the last decade. Here we describe full-length HLA genotyping of 11 loci in 612 individuals comprising a dengue vaccine cohort from Cebu province in the Philippines. The multi-locus individual tagging NGS (MIT-NGS) method that we developed initially for genotyping 4–6 loci in one MiSeq run was expanded to 11 loci including HLA-A, B, C, DPA1, DPB1, DQA1, DQB1, DRB1, and DRB3/4/5. This change did not affect the overall coverage or depth of the sequencing reads. HLA alleles with frequencies greater than 10% were A*11:01:01, A*24:02:01, A*24:07:01, A*34:01:01, B*38:02:01, B*15:35, B*35:05:01, C*07:02:01, C*04:01:01, DPA1*02:02:02, DPB1*05:01:01, DPB1*01:01:01, DQA1*01:02:01, DQA1*06:01:01, DQB1*05:02:01, DQB1*03:01:01, DRB1*15:02:01, DRB1*12:02:01, DRB3*03:01:03, DRB4*01:03:01, and DRB5*01:01:01. Improvements in sequencing library preparation provide uniform and even coverage across all exons and introns. This has led to a marked reduction in allele imbalance and dropout. Furthermore, including more loci, such as DRB3/4/5, decreases cross-mapping and incorrect allele assignment at the DRB1 locus. The increased number of loci sequenced for each sample does not reduce the number of samples that can be multiplexed on a single MiSeq run and is therefore more cost-efficient. We believe that such improvements will help HLA genotyping by NGS to gain momentum over other conventional methods by increasing confidence in the calls.  相似文献   

3.
《Human immunology》2019,80(11):943-947
Chronic kidney disease (CKD) is becoming a global public health problem and usually cause End-Stage Renal Disease (ESRD) in the end of progression. To analyze the associations of HLA-A, -B, -C, -DRB1 and -DQB1 alleles at high resolution with ESRD in Jiangsu province of China, a total of 499 unrelated patients with ESRD from the First Affiliated Hospital with Nanjing Medical University and 1584 healthy controls from Jiangsu Branch of Chinese Marrow Donor Program (CMDP) were genotyped at HLA-A, -B, -C, -DRB1 and -DQB1 loci. Statistical analysis was applied to compare the differences of HLA allele frequencies between patients with ESRD and healthy controls. As results, no protective allele at A locus was found and the susceptible alleles were A*11:01 and A*31:01. At B locus, B*15:01, B*55:02 and B*39:05 emerged as susceptible alleles, whereas no protective allele was found. At C locus, C*06:02 and C*07:01 emerged as protective alleles and no susceptible allele was found. At DRB1 locus, six alleles including DRB1*03:01, DRB1*04:03, DRB1*04:04, DRB1*04:05, DRB1*11:01 and DRB1*12:02 emerged as susceptible alleles, while DRB1*15:01 emerged as a protective allele. At DQB1 locus, DQB1*02:01, DQB1*03:01, DQB1*03:02 and DQB1*04:01 emerged as susceptible alleles, while DQB1*06:02 and DQB1*06:09 emerged as protective alleles. Haplotype A*11:01-C*03:03-B*15:01-DRB1*11:01-DQB1*03:01 containing four susceptible alleles was regarded as the most susceptible haplotype. The susceptible alleles and haplotypes might be used as some important risk classification markers. Besides, in the consanguineous renal transplantation, it would be very beneficial for the long-term survival of renal transplant patients to avoid the susceptible alleles and haplotypes in selecting optimal donors.  相似文献   

4.
The distributions of HLA allele and haplotype are variable in different ethnic populations and the data for some populations have been published. However, the data on HLA‐C and HLA‐DQB1 loci and the haplotype of HLA‐A, HLA‐B, HLA‐C, HLA‐DRB1 and HLA‐DQB1 loci at a high‐resolution level are limited in Zhejiang Han population, China. In this study, the frequencies of the HLA‐A, HLA‐B, HLA‐C, HLA‐DRB1 and HLA‐DQB1 loci and haplotypes were analysed among 3,548 volunteers from the Zhejiang Han population using polymerase chain reaction sequencing‐based typing method. Totals of 51 HLA‐A, 97 HLA‐B, 45 HLA‐C, 53 HLA‐DRB1 and 27 HLA‐DQB1 alleles were observed. The top three frequent alleles of HLA‐A, HLA‐B, HLA‐C, HLA‐DRB1 and HLA‐DQB1 loci were A*11:01 (23.83%), A*24:02 (17.16%), A*02:01 (11.36%); B*40:01 (14.08%), B*46:01 (12.20%), B*58:01 (8.50%); C*07:02 (18.25%), C*01:02:01G (18.15%), C*03:04 (9.88%); DRB1*09:01 (17.52%), DRB1*12:02 (10.57%), DRB1*15:01 (9.70%); DQB1*03:01 (22.63%), DQB1*03:03 (18.26%) and DQB1*06:01 (10.88%), respectively. A total of 141 HLA‐A‐C‐B‐DRB1‐DQB1 haplotypes with a frequency of ≥0.1% were found and the haplotypes with frequency greater than 3% were A*02:07‐C*01:02:01G‐B*46:01‐DRB1*09:01‐DQB1*03:03 (4.20%), A*33:03‐C*03:02‐B*58:01‐DRB1*03:01‐DQB1*02:01 (4.15%), A*30:01‐C*06:02‐B*13:02‐DRB1*07:01‐DQB1*02:02 (3.20%). The likelihood ratios test for the linkage disequilibrium of two loci haplotypes was revealed that the majority of the pairwise associations were statistically significant. The data presented in this study will be useful for searching unrelated HLA‐matched donor, planning donor registry and for anthropology studies in China.  相似文献   

5.
Three novel HLA‐Class II alleles, DRB1*03:112, DQB1*03:02:16 and DQB1*03:139, are described with predicted bearing haplotypes of A*02:01, B*40:01, C*03:04, DRB1*03:112, DQB1*02:01; A*23:01, B*15:01, C*03:03, DRB1*04:01, DQB1*03:02:16 and A*01:01, B*44:02, C*05:01/03, DRB1*04:01, DQB1*03:139. Serological tests showed that the DRB1*03:112 and DQB1*03:139 specificities failed to react as expected with some well‐documented monoclonal antibodies. Subsequent examination of published HLA‐Class II epitopes and inspection of amino acid motifs suggested that epitopes exist that include the positions of their single substitutions (F31C between DRB1*03:01:01:01 and DRB1*03:112, and R48P between DQB1*03:01:01:01 and DQB1*03:139 specificities). This suggests that the reactivity of the monoclonal antibodies used was dependent on these epitopes and that their loss from these rare allele products resulted in their aberrant serology. The new alleles were found after the sequence‐based typing of 32 530 random UK European routine blood donors suggesting that each has a maximum carriage frequency of 0.0031% in the blood donor population resident in Wales.  相似文献   

6.
Although the HLA region contributes to one-third of the genetic factors affecting rheumatoid arthritis (RA), there are few reports on the association of the disease with any of the HLA loci other than the DRB1. In this study we examined the association between RA and the alleles of the six classical HLA loci including DRB1. Six HLA loci (HLA-A, -B, -C, -DRB1, -DQB1 and -DPB1) of 1659 Japanese subjects (622 cases; 488 anti-cyclic citrullinated peptides (CCP) antibody (Ab) positive (82.6%); 103 anti-CCP Ab negative (17.4%); 31 not known and 1037 controls) were genotyped. Disease types and positivity/negativity for CCP autoantibodies were used to stratify the cases. Statistical and genetic assessments were performed by Fisher's exact tests, odds ratio, trend tests and haplotype estimation. None of the HLA loci were significantly associated with CCP sero-negative cases after Bonferroni correction and we therefore limited further analyses to using only the anti CCP-positive RA cases and both anti-CCP positive and anti-CCP negative controls. Some alleles of the non-DRB1 HLA loci showed significant association with RA, which could be explained by linkage disequilibrium with DRB1 alleles. However, DPB1*02:01, DPB1*04:01 and DPB1*09:01 conferred RA risk/protection independently from DRB1. DPB1*02:01 was significantly associated with the highly erosive disease type. The odds ratio of the four HLA-loci haplotypes with DRB1*04:05 and DQB1*04:01, which were the high-risk HLA alleles in Japanese, varied from 1.01 to 5.58. C*07:04, and B*15:18 showed similar P-values and odds ratios to DRB1*04:01, which was located on the same haplotype. This haplotype analysis showed that the DRB1 gene as well as five other HLA loci is required for a more comprehensive understanding of the genetic association between HLA and RA than analyzing DRB1 alone.  相似文献   

7.
DNA sequence-based typing at the HLA-A, -B, -C, -DPB1, -DQA1, -DQB1, and -DRB1 loci was performed on 496 healthy adult donors from San Diego, California, to characterize allele frequencies in support of studies of T cell responses to common allergens. Deviations from Hardy Weinberg proportions were detected at each locus except A and C. Several alleles were found in more than 15% of individuals, including the class II alleles DPB1102:01, DPB1104:01, DQA1101:02, DQA1105:01, DQB1103:01, and the class I allele A102:01. Genotype data will be available in the Allele Frequencies Net Database (AFND 3562).  相似文献   

8.
We studied HLA class I (HLA-A, -B) and class II (HLA-DRB1, -DQB1) alleles by PCR-SSP based typing in a total of 1101 Ecuadorian individuals from three regions of the country, the Coastal region, the Andean region, and the Amazonian region, to obtain information regarding allelic and haplotypic frequencies and their linkage disequilibrium. We find that the most frequent HLA haplotypes with significant linkage disequilibrium in those populations are HLA-A*24~B*35~DRB1*04~DQB1*03:02, A*02~B*35~DRB1*04~DQB1*03:02, A*24~B*35~DRB1*14~DQB1*03:01, A*02~B*35~DRB1*14~DQB1*03:01 and A*02~B*40:02~DRB1*04~DQB1*03:02. The only non-Native American haplotype with frequency >1% shared by all groups was A*29~B*44~DRB1*07~DQB1*02. Admixture estimates obtained by a maximum likelihood method using HLA-B as genetic estimator revealed that the main genetic components for this sample of mixed-ancestry Ecuadorians are Native American (ranging from 52.86% to 63.83%) and European (from 28.95% to 46.54%), while an African genetic component was only apparent in the Coastal region (18.19%). Our findings provide a starting point for the study of population immunogenetics of Ecuadorian populations.  相似文献   

9.
Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are represented by rare but life-threatening cutaneous adverse reactions to different drugs. Previous studies have found that in a Han Chinese population from Taiwan and other Asian Countries, a strong genetic association between HLA-class I alleles (B*15:02, B*58:01) and SJS and TEN was induced by carbamazepine and allopurinol, respectively. To identify genetic markers that covered the MHC region, we carried out a case-control association enrolling 20 Caucasian patients with SJS/TEN. Our patient series included 10 cases related to paracetamol, 7 to allopurinol and 3 to different drugs (plaquenil, itraconazol, nabumetone). Healthy controls were represented by 115 Caucasian bone marrow or stem cell donors. The HLA-A*, B*, C*, DRB1*, DQB1*, DQA1* and DPB1* genotyping were determined. The frequencies of HLA-A*33:03 as well as C*03:02 and C*08:01 were significantly higher in SJS/TEN patient subgroup showing allopurinol drug-induced severe cutaneous adverse reactions (SCAR) as compared to controls (28.6% vs 0%, P=0.00002, Pc=0.0011; 28.6% vs 0%, P=0.00002, Pc=0.001; 28.6% vs 0%, P=0.00002, Pc=0.001, respectively). In the same subgroup the frequencies of B*58:01, DRB1*15:02 and DRB1*13:02 alleles, although considerably higher than in control group (42.8% vs 5.2%, P=0.003; 28.6% vs 1.7%, P=0.005; 28.6% vs 3.5%, P=0.037, respectively), appeared no more statistically different after P correction (Pc=0.248; Pc=0.29; Pc=1.00, respectively). In addition, in 10 of the 20 SJS/TEN patient subgroup with paracetamol-induced SCAR no statistically significant association with HLA alleles could be found. However, in the same SJS/TEN patient subgroup showing allopurinol drug-induced SCAR, haplotype analysis indicated that B*58:01, DRB1*13:02 and DRB1*15:02 alleles, that in a single allele analysis lost statistical significance after P correction, may still confer susceptibility, because the B*58:01-DRB1*13:02 and DRB1*15:02-DQB1*05:02 are positively associated with the disease (14.2% vs 0.43%, P= 0.00001, Pc=0.00028; 14.2% vs 0.43%, P=0.00001, Pc=0.00028, respectively). Our results show that in contrast to SCAR-related to paracetamol, where HLA alleles do not appear to be involved, HLA molecules behave as a strong risk factor for SCAR-related to allopurinol even when a limited number of patients are considered.  相似文献   

10.
He J  Li Y  Bao X  Qiu Q  Yuan X  Xu C  Shen J  Hou J 《Human immunology》2012,73(1):61-66
Human leukocyte antigen (HLA), which is extremely polymorphic, plays an important role in stem cell transplantation. The Chinese Han comprise a large population of approximately 1.3 billion with diverse HLA alleles that need to be characterized. Data from 3,296 independent, unrelated Chinese Han individuals (1,457 recipients and 1,839 donors) were provided by the China Marrow Donor Program (CMDP) for donor-recipient confirmatory typing. Sequence-based typing, sequence-specific oligonucleotide probe (SSOP)/High Definition-SSOP, and sequence-specific primer methods were used to obtain 4-digit alleles. A total of 49, 86, 50, 63, and 24 HLA-A, -B, -C, -DRB1, and -DQB1 alleles were observed. Following American Society for Histocompatibility and Immunogenetics (ASHI) common and well-documented (CWD) criteria, CWD alleles for Chinese Han in our laboratory test and other laboratory reports do not quite correlate with the ASHI CWD alleles: A*11:53, A*02:34, A*02:53N, B*27:24, B*46:02, B*55:12, C*01:06, C*03:17, C*06:06, C*07:66, C*07:67, C*08:22, DRB1*12:10, DQB1*03:13, and DQB1*06:05 are CWD, but are not included in the ASHI CWD list. A series of alleles are well-documented alleles and are listed in the ASHI CWD list. Conversely, A*26:03, B*51:03, C*12:05, C*15:09, C*15:11, C*17:03, DRB1*11:07, DRB1*11:11, DRB1*13:05, DRB1*13:13, DRB1*14:06, DRB1*14:12, DRB1*14:22, DRB1*14:25, and DQB1*06:11 are rare alleles, but are included in the ASHI CWD list. HLA ethnic diversity is the main reason for the differences in HLA alleles worldwide. The ASHI HLA CWD alleles help reduce the workload and expenses in high-resolution donor registries and the HLA allele frequencies provide a basis from which to predict the chances of finding HLA matching donors. Our data will be meaningful for the CMDP, for other worldwide donor registries, and for an updated ASHI CWD allele list.  相似文献   

11.
In the present study, DNA typing for HLA-A, C, B, DRB1, DRB3, DRB4, DRB5, DQA1, DQB1, and DPB1 was performed for 246 healthy, unrelated Greek volunteers of 20-59 years of age. Phenotype, genotype frequencies, Hardy-Weinberg equilibrium fit, and 3-locus haplotype frequencies for HLA-A, C, B, HLA-A, B, DRB1, HLA-DRB1, DQA1, DQB1, and HLA-DRB1, DQB1, DPB1 were calculated. Furthermore, linkage disequilibrium, deltas, relative deltas and p-values for significance of the deltas were defined. The population studied is in Hardy-Weinberg equilibrium, and many MHC haplotypes are in linkage disequilibrium. The most frequent specificities were HLA-A*02 (phenotype frequency = 44.3%) followed by HLA-A*24 (27.2%), HLA-B*51 (28.5%), HLA-B*18 (26.8%) and HLA-B*35 (26.4%) and HLA-Cw*04 (30.1%) and HLA-Cw*12 (26.8%). The most frequent MHC class II alleles were HLA-DRB1*1104 (34.1%), HLA-DQB1*0301 (54.5%) and HLA-DPB1*0401 with a phenotype frequency of 59.8%. The most prominent HLA-A, C, B haplotypes were HLA-A*24, Cw*04, B*35, and HLA-A*02, Cw*04, B*35, each of them observed in 21/246 individuals. The most frequent HLA-A, B, DRB1 haplotype was HLA-A*02, B*18, DRB1*1104 seen in 20/246 individuals, while the haplotype HLA-DRB1*1104, DQB1*0301, DPB1*0401 was found in 49/246 individuals. Finally, the haplotype DRB1*1104, DQA1*0501, DQB1*0301 was observed in 83/246 individuals. These results can be used for the estimation of the probability of finding a suitable haplotypically identical related or unrelated stem cell donor for patients of Greek ancestry. In addition, they can be used for HLA and disease association studies, genetic distance studies in the Balkan and Mediterranean area, paternity cases, and matching probability calculations for the optimal allocation of kidneys in Greece.  相似文献   

12.
DNA sequence-based typing at the HLA-A, -B, -C, -DPB1, -DQA1, -DQB1, and -DRB1 loci was performed on 714 healthy adult blood bank donors from Colombo, Sri Lanka, to characterize allele frequencies in support of studies on T cell immunity against pathogens, including Dengue virus. Deviations from Hardy Weinberg proportions were not detected at any locus. Several alleles were found in >30% of individuals, including the class II alleles DPB1?*?04:01, DPB1?*?02:01, DQB1?*?06:01 and DRB1?*?07:01, and the class I alleles A?*?33:03 and A?*?24:02. Genotype data will be available in the Allele Frequencies Net Database.  相似文献   

13.
This study aimed to determine the HLA‐DRB1/HLA‐DQB1 susceptibility and protection pattern for type 1 diabetes (T1D) in a population from Hamadan, north‐west of Iran. A total of 133 patients with T1D were tested for HLA‐DRB1 and HLA‐DQB1 alleles using PCR‐SSP compared to 100 ethnic‐matched healthy controls. Alleles and haplotypes frequencies were compared between both groups. The most susceptible alleles for disease were HLA‐DRB1*03:01, DRB1*04:02, DQB1*02:01 and DQB1*03:02, and protective alleles were HLA‐DRB1*07:01, *11:01, *13:01, *14:01 and DRB1*15 and HLA‐DQB1*06:01, *06:02 and *06:03. Haplotype analysis revealed that patients with T1D had higher frequencies of DRB1*03:01–DQB1*02:01 (OR = 4.86, < 10?7) and DRB1*04:02–DQB1*03:02 (OR = 9.93, < 10?7) and lower frequencies of DRB1*07:01–DQB1*02:01 (P = 0.0005), DRB1*11:01–DQB1*03:01 (P = 0.001), DRB1*13:01–DQB1*06:03 (P = 0.002) and DRB1*15–DQB1*06:01 (P = 0.001) haplotypes compared to healthy controls. Heterozygote combination of both susceptible haplotypes (DR3/DR4) confers the highest risk for T1D (RR = 18.80, P = 4 × 10?5). Additionally, patients with homozygote diplotype, DR3/DR3 and DR4/DR4, showed a similar risk with less extent to heterozygote combination (P = 0.0004 and P = 0.01, respectively). Our findings not only confirm earlier reports from Iranians but also are in line with Caucasians and partly with Asians and some African patients with T1D. Remarkable differences were the identification of DRB1*04:01–DQB1*03:02, DRB1*07:01–DQB1*03:03 and DRB1*16–DQB1*05:02 as neutral and DRB1*13:01–DQB1*06:03 as the most protective haplotypes in this study.  相似文献   

14.
《Human immunology》2020,81(9):496-498
We studied HLA class I (HLA-A, -B) and class II (HLA-DRB1, -DQB1) alleles by PCR-SSP based typing in 453 Mexicans from the state of Zacatecas living in Zacatecas city (N = 84), Fresnillo (N = 103) and rural communities (N = 266) to obtain information regarding allelic and haplotypic frequencies and their linkage disequilibrium. We find that the most frequent haplotypes for the state of Zacatecas include seven Native American most probable ancestry (A*02 ∼ B*39 ∼ DRB1*04 ∼ DQB1*03:02; A*02 ∼ B*35 ∼ DRB1*08 ∼ DQB1*04; A*24 ∼ B*39 ∼ DRB1*14 ∼ DQB1*03:01; A*02 ∼ B*35 ∼ DRB1*04 ∼ DQB1*03:02; A*24 ∼ B*35 ∼ DRB1*04 ∼ DQB1*03:02; A*68 ∼ B*35 ∼ DRB1*04 ∼ DQB1*03:02 and A*24 ∼ B*35 ∼ DRB1*08 ∼ DQB1*04) and two European MPA haplotypes (HLA ∼ A*01 ∼ B*08 ∼ DRB1*03:01 ∼ DQB1*02 and A*29 ∼ B*44 ∼ DRB1*07 ∼ DQB1*02). Admixture estimates revealed that the main genetic components in the state of Zacatecas are European (47.61 ± 1.85%) and Native American (44.74 ± 1.12%), while the African genetic component was less apparent (7.65 ± 1.12%). Our findings provide a starting point for the study of population immunogenetics of urban and rural populations from the state of Zacatecas and add to the growing knowledge on the population genetics of Northern Mexico.  相似文献   

15.
A total of 1075 Russians from the Russian part of Karelia were genotyped at high-resolution for the human leukocyte antigen loci HLA-A, -B, -C, -DRB1, -DQB1, and -DPB1 using next generation sequencing methods. The haplotypic and allelic profiles as well as Hardy-Weinberg proportions of this population sample were evaluated. As the most frequent 6-locus haplotype, A*03:01 g ~ B*07:02 g ~ C*07:02 g ~ DRB1*15:01 g ~ DQB1*06:02 g ~ DPB1*04:01 g was identified with an estimated frequency of 3.5%. No deviation from Hardy-Weinberg Equilibrium was detected at any of the loci studied. The HLA genotypic data of the population sample reported here are available publicly in the Allele Frequencies Net Database under the population name “Russia Karelia” and the identifier AFN3430.  相似文献   

16.
Type 1 Diabetes mellitus (T1D) is an autoimmune and multifactorial disease. HLA-DRB1 and DQB1 loci have the strongest association with T1D. This study aimed at investigating (i) susceptibility or protection of alleles, genotypes and haplotypes of HLA-DRB1 and DQB1 loci; and (ii) highly polymorphic amino acid residues of HLA-DRβ1 and DQβ1 in 105 Iranian T1D patients and 100 controls. The results indicated that DRB1*04:01, 03:01, DQB1*03:02, 02:01 alleles, DRB1*03:01/04:01, 03:01/13:03, DQB1*02:01/03:02 genotypes, DRB1*04:01-DQB1*03:02, DRB1*03:01-DQB1*02:01, DRB1*07:01-DQB1*03:03 haplotypes had positive association with T1D. In contrast, HLA-DRB1*15:01, 13:01, DQB1*03:01, 06:01 alleles, DRB1*11:01/15:01, DQB1*03:01/06:01, 03:01/05:01 genotypes and DRB1*15:01-DQB1*06:01, DRB1*11:01-DQB1*03:01 haplotypes had negative association with T1D. Analysis of amino acid sequence of HLA-DRβ1 and DQβ1 revealed that DRβ1(Lys71+) and DQβ1(Asp57-) were significantly more frequent in patients than in controls and had a positive effect in the development of T1D. Haplotype analysis demonstrated that HLA-DRB1(Lys71+) allele provided major susceptibility for T1D, and DQβ1(Asp57-) had an additive effect. We designed an allele-specific primer to develop an easy, quick and cost-benefit method to detect the DRβ1(Lys71+) . This method can identify all 114 DRB1 alleles encoding DRβ1(Lys71+) by three PCR reactions. The PcPPV and PcNPV were also calculated to determine the impact of HLA genotype testing at amino acid positions. It showed that the DRβ1(Lys71+/+) genotype carrier had 1% absolute risk of developing T1D.  相似文献   

17.
The development of next-generation sequencing (NGS) methods for HLA genotyping has already had an impact on the scope and precision of HLA research. In this study, allelic resolution HLA typing was obtained for 402 individuals from Cape Town, South Africa. The data were produced by high-throughput NGS sequencing as part of a study of T-cell responses to Mycobacterium tuberculosis in collaboration with the University of Cape Town and Stanford University. All samples were genotyped for 11 HLA loci, namely HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRB1, -DRB3, -DRB4, and -DRB5. NGS HLA typing of samples from Cape Town inhabitants revealed a unique cohort, including unusual haplotypes, and 22 novel alleles not previously reported in the IPD-IMGT/HLA Database. Eight novel alleles were in Class I loci and 14 were in Class II. There were 62 different alleles of HLA-A, 72 of HLA-B, and 47 of HLA-C. Alleles A123:17, A143:01, A129:11, A168:27:01, A101:23, B114:01:01, B115:10:01, B139:10:01, B145:07, B182:02:01 and C108:04:01 were notably more frequent in Cape Town compared to other populations reported in the literature. Class II loci had 21 different alleles of DPA1, 46 of DPB1, 27 of DQA1, 26 of DQB1, 41 of DRB1, 5 of DRB3, 4 of DRB4 and 6 of DRB5. The Cape Town cohort exhibited high degrees of HLA diversity and relatively high heterozygosity at most loci. Genetic distances between Cape Town and five other sub-Saharan African populations were also calculated and compared to European Americans.  相似文献   

18.
The current work describes an association between pemphigus vulgaris (PV) and class II HLA alleles in the Slovak population, the first such study in Slovakia on the ‘high‐resolution level’. This work takes into account the new HLA allele nomenclature, officially adopted in 2010. In particular, we have focused on the associations between PV and DRB1*14:54 and DRB1*14:01. This case–control study was performed in a cohort of 43 PV Caucasian patients and 113 Caucasian control subjects from Slovakia. HLA typing was performed using PCR‐SSP (polymerase chain reaction with sequence‐specific primers). We found significantly positive associations between PV and the HLA alleles DRB1*04:02, DRB1*04:04, DRB1*14:54, DRB1*14:04, DRB1*14:05, DQB1*03:02 and DQB1*05:03. In contrast, HLA‐DQB1*06, DRB1*07 and DRB1*13 were negatively associated with PV. Importantly, 93% of PV patients possessed at least one of two HLA haplotypes, DRB1*04–DQB1*03 or HLA‐DRB1*14–DQB1*05. We confirmed the previously reported associations between HLA class II alleles and PV and described a new association between PV and DRB1*14:54. This allele was first described in 2005, and there has been only one report of its association with PV to date.  相似文献   

19.
Population studies represent an integral part and link in understanding the complex chain of host-pathogen interactions, disease pathogenesis, and MHC gene polymorphisms. Genes of Mongoloid, Caucasoid, and Negroid populations have created a distinctive HLA genetic profile in the Venezuelan population. Our objective was to determine the predominant HLA class I and II alleles and haplotype frequencies in the hybrid population of Venezuela. The study population consisted of 486 healthy unrelated native Venezuelans and 180 families. We examined the frequency of HLA A-B-C, HLA-DQ and HLA-DR genes by polymerase chain reaction and subsequent hybridization with sequence-specific oligonucleotide probes. Phenotypic, allelic and haplotype frequencies were estimated by direct counting and using the maximum-likelihood method. The predominant HLA class I alleles were A*02, A*24, A*68, B*35, B*44, B*51, B*07, B*15 and Cw*07. Regarding HLA class II, the most frequent alleles were DQB1*03 and DRB1*04, DRB1*15, DRB1*13, DRB1*07. The prevailing haplotype was HLA-A*02B*35 DQB1*03 DRB1*04. Some of these alleles and haplotype frequencies were predominantly present in Amerindians (A*02, A*24, B*35, Cw*07, DRB1*04, A*24 B*35). Previous reports have shown high incidence of A*02, B*44, B*51, DRB1*15, DRB1*13, DRB1*07 alleles in several European populations and A*68, B*07, B*15 alleles in African Americans, which could have contributed to the ethnic admixture of the Venezuelan population. We conclude that our results provide strong evidence that Venezuela's population represents an admixture of the primitive Mongoloid Aborigines, Caucasoid Europeans and Western African Negroid migrants.  相似文献   

20.
The B*51:79 allele displays a conserved haplotype association with HLA-A*68:01, C*01:02, DRB1*14:01 and DQB1*05:03.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号