首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
L-lactic acid transport plays an important role in the regulation of L-lactic acid circulation into and out of muscle. To clarify the transport mechanism of L-lactic acid in skeletal muscle, L-lactic acid uptake was investigated using a L6 cell line. mRNAs of monocarboxylate transporter (MCT) 1, 2 and 4 were found to be expressed in L6 cells. The [(14)C] L-lactic acid uptake by L6 cells increased up to pH of 6.0. The [(14)C] L-lactic acid uptake at pH 6.0 was concentration-dependent with a K(m) of 3.7 mM. This process was reduced by alpha-cyano-4-hydroxycinnamate, a typical MCT1, 2 and 4 inhibitor. These results suggest that an MCT participates in the uptake of L-lactic acid by L6 cells. [(14)C] L-lactic acid uptake was markedly inhibited by monocarboxylic acids and monocarboxylate drugs but not by dicarboxylic acids and amino acids. Moreover, benzoic acid, a substrate for MCT1, competitively inhibited this process with K(i) of 1.7 mM. [(14)C] L-lactic acid efflux in L6 cells was inhibited by alpha-cyano-4-hydroxycinnamate but not by benzoic acid. These results suggest that [(14)C] L-lactic acid efflux in L6 cells is mediated by MCT other than MCT1.  相似文献   

2.
3.
Human MCT4 (SLC16A3) is responsible for the efflux of L-lactic acid from skeletal muscle cells and is essential for muscle homeostasis. However, the effects of monocarboxylate drugs, such as statins on the MCT4-mediated transport of L-lactic acid have not been elucidated. Inhibition of L-lactic acid transport mediated by MCT4 might to lead to collapse of muscle homeostasis. The aim of this study was to establish an MCT4 transfected cell line and to clarify the transport mechanism of L-lactic acid and the effects of statins on this transport system. Results of Western blot analyses and immunohistochemistry studies indicated that the expression of CD147 and MCT4-FLAG protein were observed and was displayed clear plasma membrane localization in CD147 and MCT4-FLAG co-transfected cell line (cm cells). Uptake of L-lactic acid in cm cells was significantly greater than that in cells transfected with a vector alone. L-lactic acid uptake was concentration-dependent with a K(m) value of 28.43+/-3.87 mM. The results of a previous study showing a K(m) value of 28.5 mM in hMCT4-expressed oocytes. Lipophilic statins significantly inhibited [(14)C] L-lactic acid uptake in a concentration-dependent manner. In contrast, the inhibitory effects of hydrophilic statins were very weak.  相似文献   

4.
The objective of this study was to investigate the presence of a large neutral amino acid transporter on the ARPE-19 cell line. ARPE-19 cells were grown on 24-well plates for uptake studies. Uptake characteristics of [3H]L-phenylalanine (L-Phe) were determined at various concentrations and pH at 37 degrees C. Inhibition studies were conducted in presence of L- and D-amino acids, metabolic inhibitors, like ouabain, sodium azide, and in presence of sodium-free medium, to delineate the mechanism of uptake. RT-PCR was carried out on total RNA isolated from the ARPE-19 cells. Presence of Na(+)-free buffer did reduce the uptake rate. Hence, all experiments were carried out in Na(+)-free medium to delineate the sodium-independent uptake mechanism. Uptake of L-Phe on ARPE cells was found to be saturable with a Km = 89.35 +/- 14 microM, Vmax = 58.9 +/- 2.5 pmol min(-1) mg protein(-1), and Kd = 0.108 +/- 0.04 microl min(-1) mg protein(-1). Dose-dependent inhibition was observed with increasing concentrations of unlabeled L-Phe. Uptake also was found to be energy independent. Significant inhibition of [3H]L-Phe was observed with large neutral aromatic and aliphatic amino acids as well as small neutral amino acids. System L-specific inhibitor BCH produced partial inhibition of uptake. Neither acidic nor basic amino acids altered the uptake rate. Results obtained were predominantly characteristic of LAT2, particularly with respect to substrate selectivity and pH dependence. Bands for LAT2 were detected by RT-PCR in the ARPE cell line. This study provides biochemical evidence of the presence of a Na(+)-independent, facilitative transport system, LAT2, on the ARPE-19 cells.  相似文献   

5.
1 Nateglinide, a novel oral hypoglycemic agent, rapidly reaches the maximum serum concentration after oral administration, suggesting that it is rapidly absorbed in the gastrointestinal tract. The aim of this work is to clarify the intestinal absorption mechanism of nateglinide by means of in vitro studies. 2 We examined the transcellular transport and the apical uptake of [(14)C]nateglinide in a human colon carcinoma cell line (Caco-2). We also examined whether nateglinide is transported via monocarboxylate transport-1 (MCT1) by means of an uptake study using MCT1-expressing Xenopus laevis oocytes. 3 In Caco-2 cells, the transcellular transport of [(14)C]nateglinide from the apical to basolateral side was greater than that in the opposite direction. The uptake of [(14)C]nateglinide from the apical side was concentration-dependent, H(+)-dependent, and Na(+)-independent. Kinetic analysis revealed that the Kt and Jmax values of the initial uptake rate of [(14)C]nateglinide were 448 micro M and 43.2 nmol mg protein(-1) 5 min(-1), respectively. Various monocarboxylates, including salicylic acid and valproic acid, and glibenclamide significantly inhibited the uptake of [(14)C]nateglinide. 4 The uptake study using MCT1-expressing oocytes showed that nateglinide inhibits the MCT1-mediated uptake of [(14)C]L-lactic acid, though nateglinide itself is not transported by MCT1. 5 Taken together, these results suggest that the uptake of nateglinide from the apical membranes of Caco-2 cells is, at least in part, mediated by a proton-dependent transport system(s) distinct from MCT1.  相似文献   

6.
We previously indicated that lovastatin acid, a 3-hydroxyl-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, was transported by a monocarboxylate transporter (MCT) in cultured rat mesangial cells. In this study, to identify the MCT isoform(s) responsible for the lovastatin acid uptake, the transport mechanism was investigated using bovine kidney NBL-1 cells, which have been reported to express only MCT4 at the protein level. On RT-PCR analysis, the message of mRNAs for MCT1 and MCT4 was detected in the NBL-1 cells used in this study, which was confirmed by kinetic analysis of [14C]L-lactic acid uptake, consisting of high- and low-affinity components corresponding to MCT1 and MCT4, respectively. The lovastatin acid uptake depended on an inwardly directed H+-gradient, and was inhibited by representative monocarboxylates, but not by inhibitors/substrates for organic anion transporting polypeptides and organic anion transporters. In addition, L-lactic acid competitively inhibited the uptake of lovastatin acid and lovastatin acid inhibited the low affinity component of [14C]L-lactic acid uptake dose dependently. The inhibition constant of L-lactic acid for lovastatin acid uptake was almost the same as the Michaelis constant for [14C]L-lactic acid uptake by the low-affinity component. These kinetic evidences imply that lovastatin acid was taken up into NBL-1 cells via MCT4.  相似文献   

7.
Monocarboxylate transporter (MCT), which cotransport L-lactic acid and protons across cell membranes, are important for regulation of muscle pH. However, it has not been demonstrated in detail whether MCT isoform contribute to the transport of L-lactic acid in skeletal muscle. The aim of this study was to characterize L-lactic acid transport using an human rhabdomyosarcoma (RD) cell line as a model of human skeletal muscle. mRNAs of MCT 1, 2 and 4 were found to be expressed in RD cells. The [14C] L-lactic acid uptake was concentration-dependent with a Km of 1.19 mM. This Km value was comparable to its Km values for MCT1 or MCT2. MCT1 mRNA was found to be present markedly greater than that MCT2. Therefore, MCT1 most probably acts on L-lactic acid uptake at RD cells. [14C] L-Lactic acid efflux in RD cells was inhibited by alpha-cyano-4-hydroxycinnamate (CHC) but not by butyric acid, a substrate of MCT1. Accordingly, MCT2 or MCT4 is responsible for L-lactic acid efflux by RD cells. MCT4 mRNA was found to be present significantly greater than that MCT2. We conclude that MCT1 is responsible for L-lactic acid uptake and L-lactic acid efflux is mediated by MCT4 in RD cells.  相似文献   

8.
This study aimed to investigate the inhibition effect of flavonoids on monocarboxylate transporter 1 (MCT1) in Caco-2 cells. The cellular uptake of benzoic acid was examined in the presence and the absence of naringin, naringenin, morin, silybin and quercetin in Caco-2 cells. All the tested flavonoids except naringin significantly inhibited (P<0.05) the cellular uptake of [(14)C]-benzoic acid. Particularly, naringenin and silybin exhibited strong inhibition effects with IC50 values of 23.4 and 30.2 microM, respectively. Kinetic analysis indicated that the inhibition mode of naringenin and silybin on MCT1 activity was competitive with a Ki of 15-20 microM. The effect of flavonoids on the gene expression of MCT1 was also examined by using RT-PCR and western blot analysis. Results indicated that the expression level of MCT1 was not affected by the treatment with naringenin or silybin. The cellular accumulation of naringenin in Caco-2 cells was not changed in the presence of benzoic acid or L-lactic acid, implying that naringenin might not be a substrate of MCT1. In conclusion, some flavonoids appeared to be competitive inhibitors of MCT1, suggesting the potential for diet-drug interactions between flavonoids and MCT1 substrates.  相似文献   

9.
Human monocarboxylate transporter 6 (MCT6) has recently been isolated, and its tissue distribution has been established at the mRNA level, but its functional properties remain unknown. The aim of this study is to investigate the transport properties of MCT6. When expressed in Xenopus laevis oocytes, MCT6 transported [3H]bumetanide in a pH- and membrane potential-sensitive but not proton gradient-dependent manner, with the K(t) value of 84 microM. Furthermore, MCT6 transported various drugs such as probenecid and nateglinide. Neither [14C]L-lactic acid nor [3H]L-tryptophan, typical substrates of other MCT isoforms, was transported by MCT6. Four loop diuretics, i.e., furosemide, piretanide, azosemide, and torasemide, thiazides, probenecid, glibenclamide, and nateglinide inhibited the MCT6-mediated uptake of [3H]bumetanide. In contrast, short-chain carboxylic acids, such as L-lactic acid and succinic acid did not inhibit the MCT6-mediated uptake of bumetanide. These results suggest that the substrate specificity of MCT6 is distinct from those of other MCTs. Bumetanide would be a good tool for investigating the functional properties of MCT6. It is probable that MCT6 is involved in the disposition of various drugs, including bumetanide.  相似文献   

10.
Purpose. To determine the expression and functional activity of proton-coupled oligopeptide transporters (POT) in retinal pigment epithelial (RPE) cells. Methods. RT-PCR was used to probe the presence of POT mRNA in freshly isolated bovine RPE (BRPE) and human RPE (HRPE) cells, a human RPE cell line (ARPE-19), and human and bovine neural retina. [14C]GlySar uptake was used to characterize POT activity in cultured ARPE-19 cells and freshly isolated BRPE cell sheet suspensions. Results. PHT1 mRNA was expressed in BRPE, HRPE, ARPE-19, and bovine and human neural retina. In contrast, PEPT2 and PHT2 were expressed only in bovine and human retina, and PEPT1 could not be detected. GlySar exhibited a linear uptake over 6 h at pH values of 6.0 and 7.4, with greater uptake at pH 7.4 (p < 0.01). GlySar uptake did not exhibit saturability (5-2000 M) and was unchanged when studied in the presence of 1 mM L-histidine. In contrast, GlySar uptake was significantly decreased when studied at 4°C or in the presence of endocytic inhibitors at 37°C (p < 0.01). Studies in BRPE cell sheet suspensions validated the results obtained in ARPE-19 cells and strongly suggested the absence of POT on the apical and basolateral membranes of RPE. Conclusions. PHT1 mRNA is present in native bovine and human RPE and a human RPE cell line. However, the data argue against PHT1 being expressed on plasma membranes of RPE. Overall, GlySar appears to be taken up by RPE cells via a low-affinity, endocytic process.  相似文献   

11.
The present study investigated the cellular uptake mechanism of non-steroidal anti-inflammatory drugs (NSAIDs) in Caco-2 cells. Diflunisal, diclofenac, ketoprofen and naproxen exhibited a strong inhibition effect on the cellular uptake of [14C]-benzoic acid in Caco-2 cells with IC50 values of 0.05-0.44 mM. The inhibition of naproxen and ketoprofen against the membrane transport of [14C]-benzoic acid appeared to be competitive, with Ki values of 0.22 and 0.38 mM, respectively. The membrane permeability of naproxen and ketoprofen was concentration dependent, implying that the cellular uptake pathway of ketoprofen and naproxen was saturable at the higher concentration. Furthermore, the cellular accumulation of ketoprofen was significantly reduced in the presence of benzoic acid and L-lactic acid, two known substrates of monocarboxylic acid transporter 1 (MCT1). These results suggest that MCT1 contributes at least in part to the carrier-mediated transport of NSAIDs containing a carboxylic acid moiety across the apical membrane in Caco-2 cells.  相似文献   

12.
To clarify the uptake mechanism(s) for statins, we examined whether monocarboxylate transporter (MCT) contributed to the uptake of lovastatin acid by rat cultured mesangial cells. Expression of mRNAs for MCT1, 2, and 4 was confirmed in mesangial cells. The uptake of lovastatin acid by mesangial cells increased with decreasing extracellular pH. There was clear overshooting in lovastatin acid uptake by the ATP-depleted cells in the presence, but not in the absence, of an inwardly directed H(+)-gradient. The representative MCT substrates/inhibitors inhibited the lovastatin acid uptake. In particular, the inhibition of lovastatin acid uptake by L-lactic acid at the concentration of 80 mM reached 70%, and L-lactic acid and valproic acid inhibited the uptake competitively. On preloading of mesangial cells with L-lactic acid or valproic acid, the lovastatin acid uptake was significantly stimulated. The inhibition constant of L-lactic acid for the lovastatin acid uptake was 32 mM, and this value is comparable to the Michaelis constant (>20 mM) of L-lactic acid for MCT4 described elsewhere. These results demonstrate that lovastatin acid was largely taken up by mesangial cells via MCT, and suggest that MCT4 might contribute to lovastatin acid uptake in the cells.  相似文献   

13.
The objective of this research was to functionally characterize sodium-dependent vitamin C transporter (SVCT) in MDCK-MDR1 cells and to study the effect of substituted benzene derivatives on the intracellular accumulation of ascorbic acid (AA). Mechanism of AA uptake and transport was delineated. Uptake of [(14)C]ascorbic acid ([(14)C]AA) was studied in the absence and presence of excess unlabelled AA, anion transporter inhibitors, and a series of mono- and di-substituted benzenes. Transepithelial transport of [(14)C]AA across polarized cell membrane has been studied for the first time. Role of cellular protein kinase-mediated pathways on the regulation of AA uptake has been investigated. The cellular localizations of SVCTs were observed using confocal microscopy. Uptake of AA was found to be saturable with a K(m) of 83.2muM and V(max) of 94.2pmol/min/mg protein for SVCT1. The process was pH, sodium, temperature, and energy-dependent. It was under the regulation of cellular protein kinase C (PKC) and Ca(2+)/CaM mediated pathways. [(14)C]AA uptake was significantly inhibited in the presence of excess unlabelled AA and a series of electron-withdrawing group, i.e., halogen- and nitro-substituted benzene derivatives. AA appears to translocate across polarized cell membrane from apical to basal side (A-B) as well as basal to apical side (B-A) at a similar permeability. It appears that SVCT1 was mainly expressed on the apical side and SVCT2 may be located on both apical and basal sides. In conclusion, SVCT has been functionally characterized in MDCK-MDR1 cells. The interference of a series of electrophile-substituted benzenes on the AA uptake process may be explained by their structural similarity. SVCT may be targeted to facilitate the delivery of drugs with low bioavailability by conjugating with AA and its structural analogs. MDCK-MDR1 cell line may be utilized as an in vitro model to study the permeability of AA conjugated prodrugs.  相似文献   

14.
To investigate the transport function of the blood-brain barrier (BBB), we employed an in vitro model of the BBB, consisting of a co-culture of porcine brain capillary endothelial cells (BCECs) with rat astrocytes. Porcine BCECs were cultured on a filter insert with rat astrocytes on the underlying plastic well. Rat astrocytes induced characteristic BBB properties of porcine BCECs, such as gamma-glutamyl-transpeptidase activity and intercellular adhesion of porcine BCECs. Next, the transport properties of P-glycoprotein (P-gp) substrate and several anionic compounds across the co-cultured porcine BCECs were characterized. Expression of P-gp was detected by immunocytochemistry, and efflux-directed transport of the P-gp substrate [(3)H]daunomycin was observed. Luminal-to-abluminal transport of the monocarboxylic acid transporter 1 (MCT1) substrate [(14)C]benzoic acid was saturable, and the K(m) value (3.05 mM) was similar to that for brain uptake observed in vivo. Abluminal-to-luminal transport of [(14)C]benzoic acid was also saturable, indicating that the monocarboxylic acid transporter of the BBB contributes to the efflux from the brain as well as to blood-to-brain influx. Abluminal-to-luminal transport of organic anions, [(3)H]dehydroepiandrosterone sulfate, [(3)H]estrone sulfate and [(3)H]estradiol 17beta-D-glucuronide was significantly higher than the corresponding luminal-to-abluminal transport. These results demonstrate the presence of multiple efflux transport pathways in this in vitro model.  相似文献   

15.
The participation of the monocarboxylic acid transporter MCT1 in the intestinal absorption of weak organic acids has been clarified by functional characterization, by use of stably transfected cells, and by immunohistochemical location of the transporter in intestinal tissues. Immunohistochemical analysis by use of the anti-MCT1 antibody showed that MCT1 is distributed throughout the upper and lower intestines, especially in the basolateral membrane and, to a lesser extent, in the brush-border membrane. When the transporter gene rat MCT1 was transfected into MDA-MB231 cells, transport of benzoic acid, a model weak organic acid that has been generally believed to be transported across the cell membranes by passive diffusion, and lactic acid in rat MCT1-transfected cells was significantly increased compared with transport in cells transfected with the expression vector pRc-CMV alone (mock cells). The observed transport was pH-dependent and activity increased between pH 7.5 and pH 5.5, whereas pH-dependence in mock cells was moderate. Rat MCT1-mediated benzoic acid uptake was saturable, with an apparent Km value of 3.05 mM. In addition, MCT1 increased the efflux of [14C]benzoic acid from the cells. Several weak organic acids were also transported by rat MCT1. These results show that pH-dependent intestinal absorption of weak organic acids, previously explained in terms of passive diffusion according to the pH-partition hypothesis, is at least partially accounted for by MCT1-mediated transport energized at acidic pH by utilization of the proton gradient as a driving force.  相似文献   

16.
Inorganic mercury (Hg(2+)) is a prevalent environmental contaminant to which exposure to can damage rod photoreceptor cells and compromise scotopic vision. The retinal pigment epithelium (RPE) likely plays a role in the ocular toxicity associated with Hg(2+) exposure in that it mediates transport of substances to the photoreceptor cells. In order for Hg(2+) to access photoreceptor cells, it must first be taken up by the RPE, possibly by mechanisms involving transporters of essential nutrients. In other epithelia, Hg(2+), when conjugated to cysteine (Cys) or homocysteine (Hcy), gains access to the intracellular compartment of the target cells via amino acid and organic anion transporters. Accordingly, the purpose of the current study was to test the hypothesis that Cys and Hcy S-conjugates of Hg(2+) utilize amino acid transporters to gain access into RPE cells. Time- and temperature-dependence, saturation kinetics, and substrate-specificity of the transport of Hg(2+), was assessed in ARPE-19 cells exposed to the following S-conjugates of Hg(2+): Cys (Cys-S-Hg-S-Cys), Hcy (Hcy-S-Hg-S-Hcy), N-acetylcysteine (NAC-S-Hg-S-NAC) or glutathione (GSH-S-Hg-S-GSH). We discovered that only Cys-S-Hg-S-Cys and Hcy-S-Hg-S-Hcy were taken up by these cells. This transport was Na(+)-dependent and was inhibited by neutral and cationic amino acids. RT-PCR analyses identified systems B(0,+) and ASC in ARPE-19 cells. Overall, our data suggest that Cys-S-Hg-S-Cys and Hcy-S-Hg-S-Hcy are taken up into ARPE-19 cells by Na-dependent amino acid transporters, possibly systems B(0,+) and ASC. These amino acid transporters may play a role in the retinal toxicity observed following exposure to mercury.  相似文献   

17.
Sartans are very effective drugs for treatment of hypertension, heart failure, and other cardiovascular disorders. They antagonize the effects of angiotensin II at the AT(1) receptor and display p.o. bioavailability rates of 13 to 80%. Because some sartans sterically resemble dipeptide derivatives, we investigated whether they are transported by peptide transporters. We first assessed the effects of sartans on [(14)C]glycylsarcosine uptake into Caco-2 cells expressing H(+)/peptide transporter (PEPT) 1 and into SKPT cells expressing PEPT2. Losartan, irbesartan, valsartan, and eprosartan inhibited [glycine-1-(14)C]glycylsarcosine ([(14)C]Gly-Sar) uptake into Caco-2 cells in a competitive manner with K(i) values of 24, 230, 390, and >1000 microM. Losartan and valsartan also strongly inhibited the total transepithelial flux of [(14)C]Gly-Sar across Caco-2 cell monolayers. In SKPT cells, [(14)C]Gly-Sar uptake was inhibited with K(i) values of 2.2 microM (losartan), 65 microM (irbesartan), 260 microM (valsartan), and 490 microM (eprosartan). We determined by the two-electrode voltage-clamp technique whether the compounds elicited transport currents by PEPT1 or PEPT2 when expressed in Xenopus laevis oocytes. No currents were observed for any of the sartans, but the compounds strongly and reversibly inhibited peptide-induced currents. Uptake of valsartan, losartan, and cefadroxil was quantified in HeLa cells after heterologous expression of human PEPT1 (hPEPT1). In contrast to cefadroxil, no PEPT1-specific uptake of valsartan and losartan was found. We conclude that the sartans tested in this study display high-affinity interaction with PEPTs but are not transported themselves. However, they strongly inhibit hPEPT1-mediated uptake of dipeptides and cefadroxil.  相似文献   

18.
Information on the intestinal transport of L-3,4-dihydroxyphenylalanine (L-DOPA) is scarce. We present here the functional characteristics and regulation of the apical inward L-DOPA transport in two intestinal epithelial cell lines (human Caco-2 and rat IEC-6). The inward transfer of L-DOPA and L-leucine was promoted through an energy-driven system but with different sensitivity to extracellular Na(+) concentration: a minor component of L-leucine uptake (approximately 25%) was found to require extracellular Na(+) in comparison with L-DOPA transport which was Na(+)-independent. L-DOPA and L-leucine uptake was insensitive to N-(methylamino)-isobutyric acid, but competitively inhibited by 2-aminobicyclo(2,2,1)-heptane-2-carboxylic acid (BCH). L- and D-neutral amino acids, but not acidic and basic amino acids, markedly inhibited L-DOPA and [(14)C]L-leucine accumulation in both cell lines. The [(14)C]L-DOPA and [14C]L-leucine outward were markedly increased by L-leucine and BCH present in extracellular medium, but not by L-arginine. In both cell lines, L-DOPA transport was stimulated by acidic pH in comparison with [(14)C]L-leucine inward which was pH-independent. In conclusion, it is likely that system B(0) might be responsible for the Na(+)-dependent uptake of L-leucine in Caco-2 and IEC-6 cells, whereas sodium-independent uptake of L-leucine and L-DOPA may include system type 1 and type 2 L-amino acid transporter (LAT1 and LAT2), the activation of which results in trans-stimulation of substrates outward transfer.  相似文献   

19.
In the skin, taurine acts as an important osmolyte required for keratinocyte hydration. It has antioxidant effects, protects cells from UV-induced stress and has effects on cell proliferation, inflammation and collagenogenesis. This study was performed to find and characterize functionally a taurine transport system in keratinocytes and to establish a cell culture model for skin taurine transport studies. Uptake of [(3)H]taurine was studied both in the human adult low calcium high temperature (HaCaT) cell line and in human native epidermal keratinocytes. Uptake of [(3)H]taurine in HaCaT cells was strictly dependent on extracellular sodium and chloride. The taurine uptake rate was saturable and indicated participation of a single transport system with kinetic parameters of Kt = 5.1 +/- 0.2 microm and Vmax = 320.5 +/- 2.8 pmol/10 min per mg of protein. Uptake was strongly inhibited by beta-amino acids (taurine, beta-alanine, hypotaurine, beta-guanidinopropionic acid), whereas alpha- and gamma-amino acids had little or no effect. Taurine uptake in normal keratinocytes was very similar to that in HaCaT cells with respect to substrate specificity and affinity. We conclude that keratinocytes express the Na(+) and Cl(-) dependent, high-affinity taurine transporter. This system accepts beta- and certain gamma-amino acids as substrates.  相似文献   

20.
System L, which is encoded by LAT1 and LAT2, is an amino acid transport system that transports neutral amino acids, including several essential amino acids in an Na+-independent manner. Due to its broad substrate selectivity, system L has been proposed to mediate the transport of amino-acid-related drugs across the blood–tissue barriers. We characterized L-leucine transport and its corresponding transporter in a human retinal pigment epithelial cell line (ARPE-19 cells) as an in vitro model of the outer blood–retinal barrier. [3H]L-leucine uptake by ARPE-19 cells took place in an Na+-, Cl?-independent and saturable manner with Km values of 8.71 and 220 µM. This process was more potently cis-inhibited by substrates of LAT1 than those of LAT2. [3H]L-leucine efflux from ARPE-19 cells was trans-stimulated by substrates of LAT1 and LAT2 through the obligatory exchange mechanism of system L. Although RT-PCR analysis demonstrated that LAT1 and LAT2 mRNA are expressed in ARPE-19 cells, the LAT1 mRNA concentration is 42-fold higher than that of LAT2. Moreover, immunoblot analysis demonstrated that LAT1 is expressed in ARPE-19 cells. In conclusion, although the transport function of LAT1 is greater than that of LAT2, LAT1 and LAT2 are involved in L-leucine transport in ARPE-19 cells. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99: 2475–2482, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号