首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Ssn6-Tup1 regulates multiple genes in yeast, providing a paradigm for corepressor functions. Tup1 interacts directly with histones H3 and H4, and mutation of these histones synergistically compromises Ssn6-Tup1-mediated repression. In vitro, Tup1 interacts preferentially with underacetylated isoforms of H3 and H4, suggesting that histone acetylation may modulate Tup1 functions in vivo. Here we report that histone hyperacetylation caused by combined mutations in genes encoding the histone deacetylases (HDACs) Rpd3, Hos1, and Hos2 abolishes Ssn6-Tup1 repression. Unlike HDAC mutations that do not affect repression, this combination of mutations causes concomitant hyperacetylation of both H3 and H4. Strikingly, two of these class I HDACs interact physically with Ssn6-Tup1. These findings suggest that Ssn6-Tup1 actively recruits deacetylase activities to deacetylate adjacent nucleosomes and promote Tup1-histone interactions.  相似文献   

5.
6.
7.
8.
9.
Lysine ?-acetylation is a post-translational modification that alters the biochemical properties of many proteins. The reaction is catalyzed by histone/protein acetyltransferases (HATs), and is reversed by histone/protein deacetylases (HDACs). As a result, HATs and HDACs constitute an important, though little recognized, set of proteins that control the functions of T-regulatory (Treg) cells. Targeting certain HDACs, especially HDAC6, HDAC9, and Sirtuin-1 (Sirt1), can augment Treg suppressive potency by several distinct and potentially additive mechanisms. These involve promoting Forkhead box p3 (Foxp3) gene expression and preserving Foxp3 lysine ?-acetylation, which infers resistance to ubiquitination and proteasomal degradation, and increases DNA binding. Moreover, depleting certain HDAC can enhance the heat shock response, which increases the tenacity of Treg to survive under stress, and helps preserve a suppressive phenotype. As a result, HDAC inhibitor therapy can be used to enhance Treg functions in vivo and have beneficial effects on allograft survival and autoimmune diseases.  相似文献   

10.
11.
AMPK调节骨骼肌细胞GLUT4基因表达的机制研究   总被引:1,自引:0,他引:1  
腺苷酸活化蛋白激酶(AMPK)能调节运动/肌肉收缩所引起的骨骼肌细胞葡萄糖转运蛋白4(GLUT4)基因的表达,但至今它的调节机制不清.研究显示在非运动刺激引起的细胞信号事件中由组蛋白去乙酰化酶(HDACs)以及组蛋白乙酰化酶(HATs)控制的组蛋白乙酰化状态是调节基因表达的重要机制,所以我们假设AMPK信号途径是通过征用HDACs中的HDAC5(在骨骼肌细胞内高表达)来实现对运动/肌肉收缩引起的GLUT4基因表达控制.细胞分为正常浓度葡萄糖对照组(NGLU组)、正常浓度AICAR组(NGLU AICAR组)、高浓度对照组(HGLU组)、高浓度AICAR组(HGLU AICAR组).用5 mmol/L和20 mmol/L葡萄糖浓度培养骨骼肌细胞后,NGLU AICAR组和HGLU AICAR组与肌肉收缩模拟信号刺激5-氨基-4-甲酰胺咪唑核糖核苷酸(AICAR)孵育.AICAR能激活NGLU组骨骼肌细胞AMPKα2、减少骨骼肌细胞核HDAC5蛋白、促使HDAC5与骨骼肌细胞加强因子(MEF2)蛋白分离和上调GLUT4基因的表达;相反,高浓度葡萄糖延迟由AICAR引起的AMPKα2磷酸化、AMPKα2向细胞核转入、HDAC5向细胞核转出和GLUT4基因的表达.实验结果说明在不同葡萄糖浓度下的骨骼肌细胞GLUT4基因表达变化都对应着上游AMPK蛋白和下游HDAC5蛋白的变化,AMPK可能是征用转录抑制子HDAC5来调节MEF2的活性而达到控制肌肉收缩所引起的GLUT4基因表达.  相似文献   

12.
13.
Accumulated evidence has established that aberrant regulation of histone deacetylases (HDACs) is one of the major causes of the development of human malignancies. Among different iso-enzymes of HDAC and sirtuins grouped as the HDAC super family, little is known as to how histone deacetylase 2 (HDAC2) causes carcinogenesis in solid tumors. Here, in order to investigate the possible role of HDAC2 in gastric carcinogenesis, we analyzed the expression of HDAC2 in 71 gastric adenocarcinomas by immunohistochemistry. Moderate to strong expression of HDAC2 was found in 44 (62%) out of a total of 71 tumors. The majority of positive tumors, which were detected in the nucleus but not in normal gastric epithelium, did not express HDAC2 or showed only weak positive staining. Interestingly, we also noted that HDAC2 expression appeared to be associated with tumor aggressiveness as HDAC2 expression was observed to be statistically significant in advanced gastric cancer (P=0.0023, Chi-square test) and in positive lymph node metastasis (P=0.0713, Chi-square test). Taken together, these results suggest that HDAC2 may play an important role in the aggressiveness of gastric cancer.  相似文献   

14.
Histone deacetylase 3 (HDAC3) is one of four members of the human class I HDACs that regulates gene expression by deacetylation of histones and nonhistone proteins. Early studies have suggested that HDAC3 activity is regulated by association with the corepressors N-CoR and SMRT. Here we demonstrate that, in addition to protein-protein interactions with NCoR/SMRT, the activity of HDAC3 is regulated by both phosphorylation and dephosphorylation. A protein kinase CK2 phosphoacceptor site in the HDAC3 protein was identified at position Ser424, which is a nonconserved residue among the class I HDACs. Mutation of this residue was found to reduce deacetylase activity. Interestingly, unlike other class I HDACs, HDAC3 uniquely copurifies with the catalytic and regulatory subunits of the protein serine/threonine phosphatase 4 complex (PP4c/PP4R1). Furthermore, HDAC3 complexes displayed protein phosphatase activity and a series of subsequent mutational analyses revealed that the N terminus of HDAC3 (residues 1-122) was both necessary and sufficient for HDAC3-PP4c interactions. Significantly, both overexpression and siRNA knock-down approaches, and analysis of cells devoid of PP4c, unequivocally show that HDAC3 activity is inversely proportional to the cellular abundance of PP4(c). These findings therefore further highlight the importance of protein-protein interactions and extend the significance of dephosphorylation in the regulation of HDAC activity, as well as present a novel alternative pathway by which HDAC3 activity is regulated.  相似文献   

15.
16.
Background: Histone deacetylase inhibitors are a new class of drugs used in treatment of malignant tumors. Diffuse large B-cell lymphoma (DLBCL) is the most common type of B-cell lymphoma, and it accounts for more than 40% of all B-cell lymphomas. In this study, we aimed to determine the expression patterns of histone deacetylases (HDACs) in DLBCL, to examine whether HDAC expression patterns differ among cases, and to assess whether these findings have clinical significance.Materials and methods: We selected 91 cases of DLBCL diagnosed at St. Vincent Hospital, The Catholic University of Korea, from 2001-2012. We performed a pathology slide review and collected clinical data including age, sex, tumor site, survival time, and mortality. Immunohistochemical analysis was performed using primary antibodies for HDACs, including HDAC1 and 2 of class I, HDAC4 and 5 of class IIa, and HDAC6 of class IIb. Expression site was determined to be nuclear, cytoplasmic, or both. Staining intensities were graded as low and high. We assessed correlations between HDAC expression levels and clinical data and survival analysis.Results: Of the 91 cases examined, 46 (50.5%) were men and 45 (49.5%) were women. Most of the patients were elderly, and 74 (81.3%) cases were older than 46 y. Forty-six (50.5%) cases showed lymph node involvement, and 45 (49.5%) cases showed lymphoma at extranodal sites. In nodal lymphoma, staining was strongly positive for HDAC2, whereas staining was weak or negative for HDAC4; however, there was no significant correlation with survival. But nodal lymphoma cases with high nuclear expression of HDAC2 and nodal lymphoma cases with high nuclear expression of HDAC2 and low nuclear expression of HDAC4 showed significantly shorter survival times compared with other cases.Conclusions: High nuclear expression of HDAC2 may play an important role in survival of DLBCL patients, especially in those with nodal lymphoma, which is associated with a shorter survival time. Our results may have important implications for treatment of DLBCL by epigenetic regulation.  相似文献   

17.
18.
19.
20.
The performance of yeast is often limited by the constantly changing environmental conditions present during high-gravity fermentation. Poor yeast performance contributes to incomplete and slow utilization of the main fermentable sugars which can lead to flavour problems in beer production. The expression of the FLO and MAL genes, which are important for the performance of yeast during industrial fermentations, is affected by complex proteins associated with Set1 (COMPASS) resulting in the induction of flocculation and improved maltose fermentation capacity during the early stages of high-gravity fermentation. In this study, we investigated a possible role for other histone modifying proteins. To this end, we tested a number of histone deacetylases (HDACs) and histone acetyltransferases and we report that flocculation is induced in absence of the histone deacetylase Hda1 or the histone acetyltransferase Gcn5 during high-gravity fermentation. The absence of Gcn5 protein also improved utilization of high concentrations of maltose. Deletion of SIR2 encoding the HDA of the silent informator regulator complex, did not affect flocculation under high-gravity fermentation conditions. Despite the obvious roles for Hda1 and Gcn5 in flocculation, this work indicates that COMPASS mediated silencing is the most important amongst the histone modifying components to control the expression of the FLO genes during high-gravity fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号