首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three group B Neisseria meningitidis isolates, recovered from meningococcal disease cases in Canada and typed as B:2c:P1.5, were characterized. Multilocus sequence typing showed that all three isolates were related because of an identical sequence type (ST) 573. Isolates typed as 2c:P1.5 are common in serogroup Y meningococci but rare in isolates from serogroups B or C. Although no serogroup Y isolates have been typed as ST-573, eight isolates showed five to six housekeeping gene alleles that were identical to that of ST-573. This suggested that the B:2c:P1.5 isolates may have originated from serogroup Y organisms, possibly by capsule switching.Key Words: Capsule switching, Neisseria meningitidis, Serogroup YNeisseria meningitidis is a significant pathogen that causes invasive meningococcal disease (IMD). The average case fatality rate of 9% to 12% remains high despite the availability of effective antibiotics and vaccines (1). Laboratory study and surveillance of N meningitidis involves the characterization of a number of surface markers of the bacterium, including its capsule and outer membrane proteins (OMPs). Most epidemiological studies of meningococcal disease rely on differentiating meningococcal isolates based on their serogroup, serotype and serosubtype. Serogrouping is determined by the demonstration of serologically distinct epitopes present on chemically and structurally different capsules. Serotyping and serosubtyping rely on the detection of distinct epitopes present on three of five different classes of OMPs of N meningitidis. Serotyping epitopes are found on the class 2 or class 3 OMP (also called PorB) of N meningitidis; these OMPs are expressed in a mutually exclusively manner (ie, a strain will only express either a class 2 or class 3 OMP but not both). Serosubtyping epitopes are present on the class 1 OMP (also called PorA). Based on this nomenclature scheme, a strain can therefore be characterized by its antigenic formula; for example, B:15:P1.7,16 refers to serogroup B, serotype 15 and serosubtype P1.7,16.One of the most important virulence factors of meningococci is the capsular polysaccharide antigen, which is also the basis for serogrouping and is the target antigen for the currently licensed vaccines against A, C, Y and W135 organisms. Of the 13 known serogroups, five (serogroups A, B, C, Y and W135) are responsible for most of the meningococcal disease worldwide (2). In North America, most endemic and epidemic strains belong to serogroups B, C, Y and W135 (3,4). Capsules of serogroups B, C, Y and W135 meningococci contain sialic acid, either as a homopolymer of sialic acids assembled by alpha-2,8 linkages (serogroup B) or alpha-2,9 linkages (serogroup C), or as a heteropolymer of sialic acids with glucose (serogroup Y) or galactose (serogroup W135). Besides demonstrating structural similarities, these four serogroups of meningococci also have very similar capsule polysaccharide synthesis (cps) gene loci (5). Because of this similarity, capsule switching has been demonstrated in vivo and in vitro by specific gene replacement within the cps loci between different serogroups. To date, a number of IMD cases have been described in the literature to be caused by organisms in which capsule switching between serogroup B and C meningococci occurred (6-8).In the present paper, the authors describe three unusual serogroup B meningococci isolated from separate IMD cases in Nanaimo, British Columbia, that presented with the OMP antigens 2c:P1.5, characteristic of serogroup Y strains found in Canada (4). This antigenic profile prompted the authors to examine the relationship of these three serogroup B strains with antigenically similar serogroup Y organisms isolated in Canada. The authors describe the characterization of these antigenically similar isolates and postulate that the B:2c:P1.5 isolates arose by capsule switching from serogroup Y organisms.  相似文献   

2.
BACKGROUND: The incidence of serogroup C and Y meningococcal disease increased in the United States during the 1990s. The cyclical nature of endemic meningococcal disease remains unexplained. The purpose of this study was to investigate the mechanisms associated with the increase in the incidence of meningococcal disease. METHODS: We characterized an increasing incidence of invasive serogroup C and Y meningococcal disease using population-based surveillance from 1992 through 2001. Isolates were characterized by multilocus sequence typing and antigen sequence typing of 3 outer membrane protein (OMP) genes: porA variable regions (VRs) 1 and 2, porB, and fetA VR. RESULTS: For both serogroups, OMP antigenic shifts were associated with increased incidence of meningococcal disease. For serogroup Y, antigenic shift occurred through amino acid substitutions at all 3 OMPs--PorA VR 1 and 2, PorB, and FetA VR. For serogroup C, antigenic shift involved amino acid substitutions at FetA VR and, in some cases, deletion of the porA gene. On the basis of deduced amino acid sequences, the antigenic changes likely occurred by horizontal gene transfer. CONCLUSIONS: Antigenic shifts were associated with increased incidence of serogroup C and serogroup Y meningococcal disease. For serogroup Y, the changes involved all OMP genes that were studied. Increases in the incidence of meningococcal disease may be caused, in part, by antigenic shift.  相似文献   

3.
The relative frequency of serogroups of Neisseria meningitidis associated with meningococcal disease in Canada during the period January 1, 1999 to June 30, 2001 was examined. Of the 552 strains of N meningitidis collected from clinical specimens of normally sterile sites, 191 (34.6%), 276 (50.0%), 61 (11.1%) and 23 (4.2%) were identified by serological and molecular methods as serogroups B, C, Y and W135, respectively. About half (50.8%) of the serogroup Y isolates were isolated in the province of Ontario. The two most common serotypes found were 2c and 14. Most of the serogroup Y strains isolated from patients in Ontario were serotype 2c, while serotype 14 was the most common serotype associated with disease in the province of Quebec. The two most common serosubtypes found among the serogroup Y meningococci were P1.5 and P1.2,5. Laboratory findings, based on antigenic analysis, did not suggest that these serogroup Y strains arise by capsule switching from serogroups B and C strains. This study documented a higher incidence of finding serogroup Y meningococci in clinical specimens from patients in Ontario compared to the rest of Canada, and parallels the increase in serogroup Y meningococcal disease reported in some parts of the United States.Key Words: Meningococcal disease, Neisseria meningitidis, SerogroupsInvasive meningococcal disease (IMD) is a notifiable communicable disease that is monitored by a national surveillance program coordinated by the Division of Disease Surveillance and the Division of Respiratory Diseases, Centre for Infectious Disease Prevention and Control, Health Canada. Starting in 1971 and with the help of provincial public health officials, Health Canada began to collect data on the serogroup information on IMD cases. Also, isolates of meningococci collected from patients are routinely sent to Health Canada''s National Microbiology Laboratory (NML) in Winnipeg for further antigenic and genetic analyses.IMD is a serious disease globally but the serogroups of meningococci causing diseases in various countries may vary in frequency. For example, serogroup A is a major cause of disease in Africa and China (1), while serogroups B and C meningococci are the most frequent cause of IMD in Western countries (2). In Canada, most IMD cases are caused by meningococci belonging to serogroups B, C, Y and W135. Serogroups B and C account for over 75% of the isolates collected from patients (3).In the past decade, Neisseria meningitidis serogroup Y has emerged as a frequent cause of IMD in the United States (4,5). In view of these findings, it is important to monitor the incidence of serogroup Y disease. This report presents the frequency of isolation of serogroups of meningococci in normally sterile clinical specimens collected from patients (likely to be presented as IMD) in various parts of Canada and describes the distribution of serotypes and serosubtypes found among the serogroup Y isolates.  相似文献   

4.
Outbreaks of serogroup X meningococcal meningitis in Niger 1995-2000   总被引:1,自引:0,他引:1  
In the African meningitis belt, the recurrent meningococcal meningitis epidemics are generally caused by serogroup A. In the past 20 years, other serogroups have been detected, such as X or W135, which have caused sporadic cases or clusters. We report here 134 meningitis cases caused by Neisseria meningitidis serogroup X that occurred in Niamey between 1995 and 2000. They represented 3.91% of the meningococcal isolates from all CSF samples, whereas 94.4% were of serogroup A. Meningococcal meningitis cases were detected using the framework of the routine surveillance system for reportable diseases organized by the Ministry of Public Health of Niger. The strains were isolated and determined by the reference laboratory for meningitis in Niamey (CERMES) and further typed at the WHO collaborating center of the Pharo in Marseille and at the National Reference Center for the Meningococci at the Institut Pasteur. Reference laboratories in Marseille and Paris characterized 47 isolates having the antigenic formula (serogroup:serotype:sero-subtype) X:NT:P1.5. Meningitis cases due to meningococcus serogroup X did not present any clinical or epidemiological differences to those due to serogroup A. The seasonal incidence was classical; 93.3% of the cases were recorded during the dry season. The mean age of patients was 9.2 years (+/- 6 years). The sex ratio M/F was 1.3. Case fatality rate was 11.9% without any difference related to age or sex. The increasing incidence of the serogroup X was not related to the decrease of serogroup A, but seemed cyclic, and evolved independently of the recurrence of both serogroups A and C.  相似文献   

5.
ABSTRACT: BACKGROUND: Neisseria meningitidis serogroup C has emerged as a cause of epidemic disease in Hefei. The establishment of serogroup C as the predominant cause of endemic disease has not been described. METHODS: We conducted national laboratory-based surveillance for invasive meningococcal disease during 2000--2010. Isolates were characterized by pulsed-field gel electrophoresis and multilocus sequence typing. RESULTS: A total of 845 cases of invasive meningococcal disease were reported. The incidence increased from 1.25 cases per 100,000 population in 2000 to 3.14 cases per 100,000 in 2003 (p < 0.001), and peaked at 8.43 cases per 100,000 in 2005. The increase was mainly the result of an increase in the incidence of serogroup C disease. Serogroup C disease increased from 2/23 (9%) meningococcal cases and 0.11 cases per 100,000 in 2000 to 33/58 (57%) cases and 1.76 cases per 100,000 in 2003 (p < 0.01). Patients infected with serogroup C had serious complications more frequently than those infected with other serogroups. Specifically, 161/493 (32.7%) cases infected with serogroup C had at least one complication. The case-fatality rate of serogroup C meningitis was 11.4%, significantly higher than for serogroup A meningitis (5.3%, p = 0.021). Among patients with meningococcal disease, factors associated with death in univariate analysis were age of 15--24 years, infection with serogroup C, and meningococcemia. CONCLUSIONS: The incidence of meningococcal disease has substantially increased and serogroup C has become endemic in Hefei. The serogroup C strain has caused more severe disease than the previously predominant serogroup A strain.  相似文献   

6.
The different sialic acid (serogroups B, C, Y, and W-135) and nonsialic acid (serogroup A) capsular polysaccharides expressed by Neisseria meningitidis are major virulence factors and are used as epidemiologic markers and vaccine targets. However, the identification of meningococcal isolates with similar genetic markers but expressing different capsular polysaccharides suggests that meningococcal clones can switch the type of capsule they express. We identified, except for capsule, isogenic serogroups B [(α2→8)-linked polysialic acid] and C [(α2→9)-linked polysialic acid] meningococcal isolates from an outbreak of meningococcal disease in the U. S. Pacific Northwest. We used these isolates and prototype serogroup A, B, C, Y, and W-135 strains to define the capsular biosynthetic and transport operons of the major meningococcal serogroups and to show that switching from the B to C capsule in the outbreak strain was the result of allelic exchange of the polysialyltransferase. Capsule switching was probably the result of transformation and horizontal DNA exchange in vivo of a serogroup C capsule biosynthetic operon. These findings indicate that closely related virulent meningococcal clones may not be recognized by traditional serogroup-based surveillance and can escape vaccine-induced or natural protective immunity by capsule switching. Capsule switching may be an important virulence mechanism of meningococci and other encapsulated bacterial pathogens. As vaccine development progresses and broader immunization with capsular polysaccharide conjugate vaccines becomes a reality, the ability to switch capsular types may have important implications for the impact of these vaccines.  相似文献   

7.
ABSTRACT: BACKGROUND: Invasive meningococcal disease (IMD) caused by serogroup B is the last major serogroup in Canada to become vaccine-preventable. The anticipated availability of vaccines targeting this serogroup prompted an assessment of the epidemiology of serogroup B disease in Ontario, Canada. METHODS: We retrieved information on confirmed IMD cases reported to Ontario's reportable disease database between January 1, 2000 and December 31, 2010 and probabilistically-linked these cases to Public Health Ontario Laboratory records. Rates were calculated with denominator data obtained from Statistics Canada. We calculated a crude number needed to vaccinate (NNV) using the inverse of the infant (<1 year) age-specific incidence multiplied by expected vaccine efficacies between 70 % and 80 %, and assuming only direct protection (no herd effects). RESULTS: A total of 259 serogroup B IMD cases were identified in Ontario over the 11-year period. Serogroup B was the most common cause of IMD. Incidence ranged from 0.11 to 0.27/100,000/year, and fluctuated over time. Cases ranged in age from 13 days to 101 years; 21.4 % occurred in infants, of which 72.7 % were <6 months. Infants had the highest incidence (3.70/100,000). Case-fatality ratio was 10.7 % overall. If we assume that all infant cases would be preventable by vaccination, we would need to vaccinate between 33,784 and 38,610 infants to prevent one case of disease. CONCLUSIONS: Although rare, the proportion of IMD caused by serogroup B has increased and currently causes most IMD in Ontario, with infants having the highest risk of disease. Although serogroup B meningococcal vaccines are highly anticipated, our findings suggest that decisions regarding publicly funding serogroup B meningococcal vaccines will be difficult and may not be based on disease burden alone.  相似文献   

8.
Carriage of Neisseria meningitidis in a Georgia county with hypersporadic incidence of meningococcal disease ("hypersporadic county") and in a county with no cases of meningococcal disease was determined by a cross-sectional pharyngeal culture study of high school students. Among 2730 students from whom culture samples were obtained, meningococcal carriage was 7.7% (140/1818) in the hypersporadic county and 6.1% (56/912) in the comparison county. Carriage rates by serogroup and genetic type (i.e., electrophoretic type [ET]) did not differ significantly between counties, but apartment or mobile home residency was a risk factor for carriage in the hypersporadic county. Although most cases of meningococcal disease in the hypersporadic county were caused by members of the serogroup C ET-37 clonal group, no ET-37 meningococcal isolates were recovered from carriers in this county. However, 38% of all meningococcal isolates recovered from carriers in both counties were members of the serogroup Y ET-508 clonal group, an emerging cause of meningococcal disease in Georgia and throughout the United States during 1996-2001. Shifts in carriage and transmission of meningococcal strains with different pathogenic potential are important determinants of meningococcal disease incidence.  相似文献   

9.
The relative frequency of serogroups of Neisseria meningitidis associated with meningococcal disease in Canada during the period January 1, 1999 to June 30, 2001 was examined. Of the 552 strains of N meningitidis collected from clinical specimens of normally sterile sites, 191 (34.6%), 276 (50.0%), 61 (11.1%) and 23 (4.2%) were identified by serological and molecular methods as serogroups B, C, Y and W135, respectively. About half (50.8%) of the serogroup Y isolates were isolated in the province of Ontario. The two most common serotypes found were 2c and 14. Most of the serogroup Y strains isolated from patients in Ontario were serotype 2c, while serotype 14 was the most common serotype associated with disease in the province of Quebec. The two most common serosubtypes found among the serogroup Y meningococci were P1.5 and P1.2,5. Laboratory findings, based on antigenic analysis, did not suggest that these serogroup Y strains arise by capsule switching from serogroups B and C strains. This study documented a higher incidence of finding serogroup Y meningococci in clinical specimens from patients in Ontario compared to the rest of Canada, and parallels the increase in serogroup Y meningococcal disease reported in some parts of the United States.  相似文献   

10.
The new meningococcal C conjugate vaccine became available in Spain and was included in the infant vaccination schedule in 2000. A catch-up campaign was carried out in children under six years of age. As a consequence, the incidence of meningococcal disease caused by serogroup C has fallen sharply during the last three epidemiological years in Spain. The risk of contracting serogroup C disease in 2002/2003 fell by 58% when compared with the season before the conjugate vaccine was introduced. There was also an important decrease in mortality. Three deaths due to serogroup C occurred in the age groups targeted for vaccination in 2002/2003, compared with 30 deaths in the same age groups in the season before the launch of the vaccine campaign. In the catch-up campaign the vaccine coverage reached values above 92%. For the 2001, 2002 and 2003 routine childhood immunisation programme coverage values ranged from 90% to 95%. During the past three years a total of 111 cases of serogroup C disease have been reported in patients in the vaccine target group. Most of the vaccination failures occurred during the epidemiological year 2002/2003. Eight (53%) vaccine failures occurred in children who had been routinely immunised in infancy, and could be related to a lost of protection with time since vaccination. The isolation of several B:2a:P1.5 strains (ST-11 lineage) is noteworthy. These may have their origin in C:2a:P1.5 strains which, after undergoing genetic recombination at the capsular operon level, express serogroup B. These strains could have relevant epidemic potential.  相似文献   

11.

Background  

Meningococcal disease is infrequently found in Taiwan, a country with 23 million people. Between 1996 and 2002, 17 to 81 clinical cases of the disease were reported annually. Reported cases dramatically increased in 2001–2002. Our record shows that only serogroup B and W135 meningococci have been isolated from patients with meningococcal disease until 2000. However, serogroup A, C and Y meningococci were detected for the first time in 2001 and continued to cause disease through 2002. Most of serogroup Y meningococcus infections localized in Central Taiwan in 2001, indicating that a small-scale outbreak of meningococcal disease had occurred. The occurrence of a meningococcal disease outbreak and the emergence of new meningococcal strains are of public health concern.  相似文献   

12.
Meningococcal disease in Italy   总被引:2,自引:0,他引:2  
In 1985, nationwide surveillance of meningococcal disease aimed at establishing appropriate guidelines for prophylaxis started in Italy. The incidence of disease was 1.1/100,000 in 1985 and 0.6/100,000 in 1987. This decreasing trend was particularly evident among military recruits (from 17.3/100,000 in 1985 to 5/100,000 in 1987), reflecting the use of bivalent serogroup (A + C) meningococcal polysaccharide vaccine in all new recruits since January 1987. The age distribution of cases was statistically different from that observed during the 1970s (P less than 0.001), with a shift towards older age groups. Men have been in the majority (516 vs. 358, P less than 0.0000001). Group C has been the most common serogroup encountered (72.2%), while only 18% of the isolates belonged to serogroup B. Among military recruits, serogroup C accounted for 92% (81/88) of the cases. The proportion of strains resistant to sulphonamides was 67%, while only 3% strains were resistant to rifampicin and to minocycline. Reduced susceptibility to ampicillin and to penicillin was observed in 3 and 4% strains respectively. Nine secondary cases were all due to failure in the administration of chemoprophylaxis (sulphonamide given in seven cases, prophylaxis not attempted in two cases). Immunisation of all new military recruits and effective chemoprophylaxis of close contacts of cases are the major guidelines provided by the National Meningitis Surveillance Programme.  相似文献   

13.
Objective  To describe the epidemiology of meningococcal disease (MD) in southern Brazil.
Methods  Retrospective cohort study among 2215 MD cases reported from 1995 to 2003 in Rio Grande do Sul (RS) State.
Results  The overall incidence fell by 50%; the case-fatality rate during this period was 22%. Even so, the incidence of MD remained high after the epidemic period ended in 1999. Together, the age groups of 1–4 years and infants accounted for 54.1% of reported cases with incidences of 11.3/100 000 and 31.3/100 000, respectively; 69.8% of cases were caused by Neisseria meningitidis serogroup B, which increased significantly. There was a significant decrease in serogroup C cases in the whole period. The phenotypes B:4,7:P1.19,15, B:15:P1.7,16 and B:NT:P1.3 caused almost 50% of all serotyped cases. Fifty-six isolates obtained from RS patients during the first non-epidemic year 2000 plus 20 isolates from other southern Brazilian states (Santa Catarina and Paraná), Denmark and France were typed by multilocus sequence typing. Twenty sequence types (STs) were identified, eight of them found only in RS. ST-33 (27%) and ST-259 (18%) were the most frequent; both belong to the ST-32/ET-5 complex. ST-259 cases showed a trend towards higher risk of fatal outcome. ST-259 isolates were not detected among geographic controls or in other studies in Brazil.
Conclusion  Our data suggest that ST-33 and ST-259 clones and the emergence of the ST-103 isolates contributed to the continued high incidence of MD in RS.  相似文献   

14.
15.
Due to a high complication and case fatality rate, meningococcal diseases are important health problems both in tropical countries experiencing severe epidemics as well as in countries of moderate climate zones. Worldwide N. meningitidis of sero-groups A, B, and C are predominant and to a lesser extent serogroups W (135) and Y play a role, whereas in Europe more than 90 % of meningococcal diseases are caused by serogroups B and C of N. meningitidis. In Germany and other developed countries the majority of cases occur in very young children and adolescents. Since many years, meningococcal polysaccharide vaccines against diseases due to N.meningitidis serogroup A, C, Y and W (135) are commercially available. Unfortunately, a vaccine against diseases caused by N. meningitidis serogroup B is still under development. The recently developed and licensed conjugated meningococcal vaccines against N. meningitidis serogroup C are also protective against disease in very young children. Eight countries in Western Europe as well as Australia have already established country-wide immunization programs for children and adolescents. Within only 2 to 3 years, well managed programs have achieved far-reaching control of meningococcal C disease in UK and the Netherlands. In Germany, the Advisory Committee on Immunization (STIKO recommends immunization for selected risk groups. The current increase of the percentage of meningococcal C diseases to 28 - 30 % gives reason for further discussion regarding immunization strategies. How-ever, the STIKO expressively declares, that in addition to the recommendation for risk groups, the physician can use all vaccines licensed in Germany without any restriction. It is his/her responsibility to advice the patients regarding immunization possibilities against the life-threatening meningococcal disease, particularly if cases are occurring.  相似文献   

16.
BACKGROUND: In the African meningitis belt, Neisseria meningitidis serogroup W135 has emerged as a cause of epidemic disease. The establishment of W135 as the predominant cause of endemic disease has not been described. METHODS: We conducted national laboratory-based surveillance for invasive meningococcal disease during 2000-2005. The system was enhanced in 2003 to include clinical data collection of cases from sentinel sites. Isolates were characterized by pulsed-field gel electrophoresis and multilocus sequence typing. RESULTS: A total of 2135 cases of invasive meningococcal disease were reported, of which 1113 (52%) occurred in Gauteng Province, South Africa. In this province, rates of disease increased from 0.8 cases per 100,000 persons in 2000 to 4.0 cases per 100,000 persons in 2005; the percentage due to serogroup W135 increased from 7% (4 of 54 cases) to 75% (221 of 295 cases). The median age of patients infected with serogroup W135 was 5 years (interquartile range, 2-23 years), compared with 21 years (range, 8-26 years) for those infected with serogroup A (P<.001). The incidence of W135 disease increased in all age groups. Rates were highest among infants (age, <1 year), increasing from 5.1 cases per 100,000 persons in 2003 to 21.5 cases per 100,000 persons in 2005. Overall case-fatality rates doubled, from 11% in 2003 to 22% in 2005. Serogroup W135 was more likely to cause meningococcemia than was serogroup A (82 [28%] of 297 cases vs. 11 [8%] of 141 cases; odds ratio, 8.9, 95% confidence interval, 2.2-36.3). A total of 285 (95%) of 301 serogroup W135 isolates were identified as 1 clone by pulsed-field gel electrophoresis; 7 representative strains belonged to the ST-11/ET-37 complex. CONCLUSIONS: Serogroup W135 has become endemic in Gauteng, South Africa, causing disease of greater severity than did the previous predominant serogroup A strain.  相似文献   

17.
Nongroupable Neisseria meningitidis may constitute one-third or more of meningococcal isolates recovered from the nasopharynx of human carriers. The genetic basis for nongroupability was determined in isolates obtained from a population-based study in which 60 (30.9%) of 194 meningococcal isolates from asymptomatic carriers were not groupable. Forty-two percent of nongroupable isolates were related to serogroup Y ET-508/ST-23 clonal complex strains, the most common groupable carrier isolate from the study population. Nongroupable isolates were all rapidly killed by 10% normal human serum. The capsule loci of 6 of the ET-508/ST-23 complex strains and of 25 other genetically diverse nongroupable meningococci were studied in detail. Serogroup A or novel capsule biosynthesis genes were not found. Nongroupable isolates were genetically serogroup Y, B, or C isolates that did not express capsule but were related to groupable isolates found in the population (class I); capsule deficient because of insertion element-associated deletions of capsule biosynthesis genes (class II); or isolates that lacked all capsule genes and formed a distinct genetic cluster not associated with meningococcal disease (class III).  相似文献   

18.
Background: There has been a sustained increase in incidence of meningococcal disease throughout Australia since 1987. In south western Sydney the incidence is higher than the national rate and a cluster of cases occurred in 1991 resulting in a widespread vaccination programme. Aims: To investigate the clinical demographics of patients with meningococcal disease treated in south western Sydney, and to differentiate meningococcal strains to understand better the epidemiology in this urban setting. In addition, to investigate whether delays in diagnosis of meningococcal disease and institution of appropriate treatment were occurring. Methods: Retrospective classification of notified cases as meningitis, septicaemia, meningitis/septicaemia, and other syndromes. Clinical information recorded to establish patterns of disease, delays in diagnosis and appropriate treatment, and outcome. Microbiological classification of organisms isolated by serogroup, serotype and subtype. Results: Meningococcal disease primarily affects young children in winter months in south western Sydney, with a secondary peak of incidence in the 15–20 year old age group. 20.7% presented with meningitis only, 22.4% with septicaemia only, and 53.4% with meningitis/septicaemia. There was a delay in diagnosis and institution of appropriate treatment of more than two hours in 21/58 (36.2%) patients including three of the six who died. No patient had received a parenteral antibiotic prior to coming to hospital - 18.9% had received an oral antibiotic. The use of antibiotics before diagnostic lumbar puncture decreased the number of positive CSF cultures. However, in all but one patient with negative cultures there was other microbiological evidence of meningococcal disease. The mortality rate was highest (30.8%) in patients with septicaemia only, 6.5% in patients with meningitis/septicaemia and 0% in patients with meningitis only. Serogroup C was the predominant organism in all age groups. The predominant serotype was 2b (80% of serogroup C isolates). Subtypes were more variable but P1.2 occurred in 66.7% of serogroup C strains. Conclusions: There is a need for more education in our Health Area to improve the time taken to diagnose and institute appropriate treatment. The predominance of serogroup C is unusual in urban Australia where national data show serogroup B organisms predominate. Meningococci of phenotype C:2b:Pl.2 have continued to cause disease in our Health Area for the past five years. This phenotype is uncommon in other areas of Australia.  相似文献   

19.
Epidemiology of meningococcal disease in Denmark 1980-1988.   总被引:1,自引:0,他引:1  
Based on epidemiological data of notified cases of meningococcal disease (MD) in Denmark during the period 1980-88 the recommendations for prophylaxis are evaluated. In 1986 the incidence of MD increased about 60% to 5.5 per 100,000 population. The clinical diagnosis of MD was verified by culture of Neisseria meningitidis in 79% of notified cases. About 40% of all patients were less than 4 years of age. The mortality in 1988 was found to be 10%. Serogroup B disease accounted for about 80% of the cases. Two co-primary and 28 secondary cases were registered. Two major outbreaks of serogroup C disease occurred in 1984 and 1986, respectively. In small clusters of 2-3 cases within socially well-defined groups the recommendations for prophylaxis are sufficient. But for the new pattern of clusters spread over months to years in certain geographical areas or open social groups, especially among teenagers, the existing recommendations are insufficient. The occurrence of localized clusters of serogroup B disease emphasises the need for a vaccine against serogroup B disease.  相似文献   

20.
The objective of this study was to define the epidemiological pattern of meningococcal disease in the autonomous region of Valencia, Spain, and the impact of a mass immunization campaign against serogroup C meningococcus. Data were obtained from a prospective surveillance program for invasive bacterial diseases in children < 15 y of age that began in the Valencia region on 1 December, 1995. During the period 1996-98, 213 cases of meningococcal disease were detected, representing an annual incidence of 11.3/100,000 children < 15 y. Serogroup C accounted for 31% and 38.5% of cases in 1996 and 1997, respectively (annual incidences of 2.9 and 5.4 cases/100,000 children < 15 y). An immunization campaign with the meningococcal C polysaccharide vaccine, which included all persons between 18 months and 19 y of age, began in late 1997 (vaccination coverage of 86%). In 1998, the annual incidence of meningococcal C disease fell to 1.4 cases per 100,000 children < 15 y of age. These results mirror the increase in the reported incidence of serogroup C meningococcal disease in Spain in the 1990s, a trend that was reversed after the introduction of the mass vaccination campaign. Meningococcal polysaccharide vaccine seems to be an effective public health tool for the management of this serious communicable disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号