首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pathophysiology of exercise related haemolysis is not thoroughly understood. We investigated whether exercise related haemolysis (1) is associated with alterations of red blood cell (RBC) membrane proteins similar to those found in inherited anaemic diseases, (2) can be induced with a non-running exercise mode, (3) is related to exercise intensity, and (4) coincides with indicators of oxidative stress. In ten triathletes [median (P25/P75-percentiles) age: 28.0 (26.3/28.5) years, height: 1.84 (1.78/1.87) m, body mass: 78.5 (74.8/80.8) kg, maximal oxygen uptake: 60.0 (57.3/64.8) ml kg−1 min−1], haptoglobin, α- and β-spectrin bands, malondialdehyde (MDA) and H2O2-induced chemiluminescence (H2O2-Chem) were determined immediately pre- and post-both, a 35 min low intensity and a high intensity cycling exercise [240 (218/253) vs 290 (270/300) W, P<0.05) requiring similar amounts of metabolic energy [28.3 (25.9/29.9) vs 24.9 (18.4/30.5) kJ kg−1, P>0.05]. At high exercise intensity haptoglobin [1.10 (0.81/2.53) vs 1.01 (0.75/2.00) g l−1] decreased (P<0.05) whilst MDA [2.80 (2.65/3.20) vs 3.13 (2.78/3.31) nmol ml−1] and H2O2-Chem [29.70 (22.55/37.10) vs 37.25 (35.20/52.63) rel. U min] increased (P<0.05), coinciding with the disappearance of the spectrin bands in six out of ten gels. No corresponding changes were found at low intensity exercise. Ten to 35 min of non-running exercise in a regularly used intensity domain causes intra-vascular haemolysis associated with alterations in the RBC membrane proteins similar to those found after in vitro oxidative stress and in inherited anaemic diseases like Sphaerocytosis and Fanconi’s anaemia.  相似文献   

2.
To evaluate the relationship between lactate release and [lac]art and to investigate the influence of the catecholamines on the lactate release, 14 healthy men [age 25±3 (SE) year] were studied by superimposing cycle on forearm exercise, both at 65% of their maximal power reached in respective incremental tests. Handgrip exercise was performed for 30 min at 65% of peak power. In addition, between the tenth and the 22nd minute, cycling with the same intensity was superimposed. The increase in venous lactate concentration ([lac]ven) (rest: 1.3±0.4 mmol·l−1; 3rd min: 3.9±0.8 mmol·l−1) begins with the forearm exercise, whereas arterial lactate concentration ([lac]art) remains almost unchanged. Once cycling has been added to forearm exercise (COMB), [lac]art increases with a concomitant increase in [lac]ven (12th min: [lac]art, 3.2±1.3 mmol·l−1; [lac]ven, 5.7±2.2 mmol·l−1). A correlation between oxygen tension (PvO2) and [lac]ven cannot be detected. There is a significant correlation between [lac]art and norepinephrine ([NE]) (y=0.25x+1.2; r=0.815; p<0.01) but no correlation between lactate release and epinephrine ([EPI]) at moderate intensity. Our main conclusion is that lactate release from exercising muscles at moderate intensities is neither dependent on PvO2 nor on [EPI] in the blood.  相似文献   

3.
Defense of extracellular pH constancy against lactic acidosis can be estimated from changes (Δ) in lactic acid ([La]), [HCO3], pH and PCO2 in blood plasma because it is equilibrated with the interstitial fluid. These quantities were measured in earlobe blood during and after incremental bicycle exercise in 13 untrained (UT) and 21 endurance-trained (TR) males to find out if acute and chronic exercise influence the defense. During exercise the capacity of non-bicarbonate buffers (βnbi = −Δ[La] · ΔpH−1 − Δ[HCO3] · ΔpH−1) available for the extracellular fluid (mainly hemoglobin, dissolved proteins and phosphates) amounted to 32 ± 2(SEM) and 20 ± 2 mmol l−1 in UT and TR, respectively (P < 0.02). During recovery βnbi decreased to 14 (UT) and 12 (TR) mmol l−1 (both P < 0.001) corresponding to values previously found at rest by in vivo CO2 titration. Bicarbonate buffering (βbi) amounted to 44–48 mmol l−1 during and after exercise. The large exercise βnbi seems to be mainly caused by an increasing concentration of all buffers due to shrinking of the extracellular volume, exchange of small amounts of HCO3 or H+ with cells and delayed HCO3equilibration between plasma and interstitial fluid. Increase of [HCO3] during titration by these mechanisms augments total β and thus the calculated βnbi more than βbi because it reduces ΔpH and Δ[HCO3] at constant Δ[La]. The smaller rise in exercise βnbi in TR than UT may be caused by an increased extracellular volume and an improved exchange of La, HCO3and H+ between trained muscles and blood.  相似文献   

4.
Ventilatory work during heavy endurance exercise has not been thought to influence systemic lactate concentration. We evaluated the effect of maximal isocapnic volitional hyperpnoea upon arterialised venous blood lactate concentration ([lac]B) during leg cycling exercise at maximum lactate steady state (MLSS). Seven healthy males performed a lactate minimum test to estimate MLSS, which was then resolved using separate 30 min constant power tests (MLSS=207±8 W, mean ± SEM). Thereafter, a 30 min control trial at MLSS was performed. In a further experimental trial, the control trial was mimicked except that from 20 to 28 min maximal isocapnic volitional hyperpnoea was superimposed on exercise. Over 20–28 min minute ventilation, oxygen uptake, and heart rate during the control and experimental trials were 87.3±2.4 and 168.3±7.0 l min−1 (P<0.01), the latter being comparable to that achieved in the maximal phase of the lactate minimum test (171.9±6.8 l min−1), 3.46±0.20 and 3.83 ± 0.20 l min−1 (P<0.01), and 158.5±2.7 and 166.8±2.7 beats min−1 (P<0.05), respectively. From 20 to 30 min of the experimental trial [lac]B increased from 3.7±0.2 to 4.7±0.3 mmol l−1 (P<0.05). The partial pressure of carbon dioxide in arterialised venous blood increased approximately 3 mmHg during volitional hyperpnoea, which may have attenuated the [lac]B increase. These results show that, during heavy exercise, respiratory muscle work may affect [lac]B. We speculate that the changes observed were related to the altered lactate turnover in respiratory muscles, locomotor muscles, or both.  相似文献   

5.
The assumption that buffering at altitude is deteriorated by bicarbonate (bi) reduction was investigated. Extracellular pH defense against lactic acidosis was estimated from changes (Δ) in lactic acid ([La]), [HCO3 ], pH and PCO2 in plasma, which equilibrates with interstitial fluid. These quantities were measured in earlobe blood during and after incremental bicycle exercise in 10 untrained (UT) and 11 endurance-trained (TR) highlanders (2,600 m). During exercise the capacity of non-bicarbonate buffers (β nbi = −Δ[La] · ΔpH−1 − Δ[HCO3 ] · ΔpH−1) amounted to 40 ± 2 (SEM) and 28 ± 2 mmol l−1 in UT and TR, respectively (P < 0.01). During recovery β nbi decreased to 20 (UT) and 16 (TR) mmol l−1 (P < 0.001) corresponding to values expected from hemoglobin, dissolved protein and phosphate concentrations related to extracellular fluid (ecf). This was accompanied by a larger decrease of base excess after than during exercise for a given Δ[La]. β bi amounted to 37–41 mmol l−1 being lower than at sea level. The large exercise β nbi was mainly caused by increasing concentrations of buffers due to temporary shrinking of ecf. Tr has lower β nbi in spite of an increased Hb mass mainly because of an expanded ecf compared to UT. In highlanders β nbi is higher than in lowlanders because of larger Hb mass and reduced ecf and counteracts the decrease in [HCO3 ]. The amount of bicarbonate is probably reduced by reduction of the ecf at altitude but this is compensated by lower maximal [La] and more effective hyperventilation resulting in attenuated exercise acidosis at exhaustion.  相似文献   

6.
We have previously shown that post-exercise inspiratory resistive loading (IRL) reduces blood lactate ([Lacb]). In this study, we tested the hypothesis that IRL during recovery could improve subsequent exercise performance. Eight healthy men underwent, on different days, two sequential 30-s, cycle ergometer Wingate tests. During the 10-min recovery period from test 1, subjects breathed freely or through an inspiratory resistance (15 cm H2O) with passive leg recovery. Arterialized [Lacb] values, perceptual scores (Borg), cardiac output by impedance cardiography (QT), and changes in the deoxygenation status of the M. vastus lateralis by near-infrared spectroscopy (ΔHHb), were recorded. [Lacb] was significantly reduced after 4 min of recovery with IRL (peak [Lacb] 12.5 ± 2.3 mmol l−1 with free-breathing vs. 9.8 ± 1.5 mmol l−1 with IRL). Effort perception was reduced during late recovery with IRL compared with free-breathing. Cardiac work was increased with IRL, since heart rate and QT were elevated during late recovery. Peripheral muscle reoxygenation, however, was significantly impaired with IRL, suggesting that post-exercise convective O2 delivery to the lower limbs was reduced. Importantly, IRL had a dual effect on subsequent performance, i.e., improvement in peak and mean power, but increased fatigue index (P < 0.05). Our data demonstrate that IRL after a Wingate test reduces post-exercise effort perception and improves peak power on subsequent all-out maximal-intensity exercise.  相似文献   

7.
Eight female games players (GP) and eight female endurance athletes (EA) ran intermittently at high-intensity and for prolonged periods in hot (30°C) and moderate (16°C) ambient temperatures. The subjects performed a two-part (A, B) test based on repeated 20-m shuttle runs. Part A comprised 60 m of walking, a maximal 15-m sprint, 60 m of cruising (90% maximal oxygen uptake, O2max) and 60 m of jogging (45% O2max) repeated for 75 min with a 3-min rest every 15 min. Part B involved an exercise and rest pattern of 60-s running at 100% O2max and 60-s rest which was continued until fatigue. Although the GP and EA did not respond differently in terms of distances completed, performance was 25 (SEM 4)% less (main effect trial, P < 0.01) in the hot (HT) compared with the moderate trial (MT). Sprints of 15 m took longer to complete in the heat (main effect, trial, P < 0.01), and sprint performance declined during HT but not MT (interaction, trial × time, P < 0.01). A very high correlation was found between the rate of rise in rectal temperature in HT and the distance completed [GP, r =−0.94, P < 0.01; EA (n = 7), r = −0.93, P < 0.01]. Blood lactate [La ]b and plasma ammonia [NH3]p1 concentrations were higher for GP than EA, but were similar in HT and MT [La ]b, HT: GP vs EA, 8.0 (SEM 0.9) vs 4.9 (SEM 1.1) mmol · l−1; MT: GP vs EA, 8.0 (SEM 1.3) vs 4.4 (SEM 1.2) mmol · l−1; interaction, group × time, P < 0.01; [NH3]p1, HT: GP vs EA, 70.1 (SEM 12.7) vs 43.2 (SEM 6.1) mmol · l−1; MT: GP vs EA, 76.8 (SEM 8.8) vs 32.5 (SEM 3.8) μmol · l−1; interaction, group × time, P < 0.01. Ad libitum water consumption was higher in HT [HT: GP vs EA, 18.9 (SEM 2.9) vs 13.5 (SEM 1.7) ml · kg−1 · h−1; MT: GP vs EA, 12.7 (SEM 3.7) vs 8.5 (SEM 1.5) ml · kg−1 · h−1; main effect, group, n.s.; main effect, trial, P < 0.01]. These results would suggest that elevated body temperature is probably the key factor limiting performance of prolonged, intermittent, high-intensity running when the ambient temperature is high, but not because of its effect on the metabolic responses to exercise. Accepted: 19 July 1999  相似文献   

8.
The extracellular pH defense against the lactic acidosis resulting from exercise can be estimated from the ratios −Δ[La] · ΔpH−1 (where Δ[La] is change in lactic acid concentration and ΔpH is change in pH) and Δ[HCO3 ] · ΔpH−1 (where Δ[HCO3 ] is change in bicarbonate concentration) in blood plasma. The difference between −Δ[La] · ΔpH−1 and Δ[HCO3 ] · ΔpH−1 yields the capacity of available non-bicarbonate buffers (mainly hemoglobin). In turn, Δ[HCO3 ] · ΔpH−1 can be separated into a pure bicarbonate buffering (as calculated at constant carbon dioxide tension) and a hyperventilation effect. These quantities were measured in 12 mountaineers during incremental exercise tests before, and 7–8 days (group 1) or 11–12 days (group 2) after their return from a Himalayan expedition (2800–7600 m altitude) under conditions of normoxia and acute hypoxia. In normoxia −Δ[La] · ΔpH−1 amounted to [mean (SEM)] 92 (6) mmol · l−1 before altitude, of which 19 (4), 48 (1) and 25 (3) mmol · l−1 were due to hyperventilation, bicarbonate and non-bicarbonate buffering, respectively. After altitude −Δ[La] · ΔpH−1 was increased to 128 (12) mmol · l−1 (P < 0.01) in group 1 and decreased to 72 (5) mmol · l−1 in group 2 (P < 0.05), resulting mainly from apparent large changes of non-bicarbonate buffer capacity, which amounted to 49 (14) mmol · l−1 in group 1 and to 10 (2) mmol · l−1 in group 2. In acute hypoxia the apparent increase in non-bicarbonate buffers of group 1 was even larger [140 (18) mmol · l−1]. Since the hemoglobin mass was only modestly elevated after descent, other factors must play a role. It is proposed here that the transport of La and H+ across cell membranes is differently influenced by high-altitude acclimatization. Accepted: 14 September 2000  相似文献   

9.
The objective of this study was to determine whether walking and running at different treadmill speeds resulted in different metabolic and cardiovascular responses in the vastus lateralis (VL) and lateral gastrocnemius (LG) by examining metabolite accumulation and tissue oxygen saturation. Ten healthy subjects (6 males, 4 females) completed a submaximal treadmill exercise test, beginning at 3.2 km h−1 and increasing by 1.6 km h−1 increments every 3 min until reaching 85% of age-predicted maximal heart rate. Muscle tissue oxygenation (SO2), total hemoglobin (HbT) and interstitial hydrogen ion concentration ([H+]) were calculated from near infrared spectra collected from VL and LG. The [H+] threshold for each muscle was determined using a simultaneous bilinear regression. Muscle and treadmill speed effects were analyzed using a linear mixed model analysis. Paired t-tests were used to test for differences between muscles in the [H+] threshold. SO2 decreased (P = 0.001) during running in the VL and LG, but the SO2 response across treadmill speeds was different between muscles (P = 0.047). In both muscles, HbT and [H+] increased as treadmill speed increased (P < 0.001), but the response to exercise was not different between muscles. The [H+] threshold occurred at a lower whole-body VO2 in the LG (1.22 ± 0.63 L min−1) than in the VL (1.46 ± 0.58 L min−1, P = 0.01). In conclusion, interstitial [H+] and SO2 are aggregate measures of local metabolite production and the cardiovascular response. Inferred from simultaneous SO2 and [H+] measures in the VL and LG muscles, muscle perfusion is well matched to VL and LG work during walking, but not running.  相似文献   

10.
This study compares two different sport events (orienteering = OTC; tennis = TEC) with discontinuous load profiles and different activity/recovery patterns by means of blood lactate (LA), heart rate (HR), and respiratory gas exchange measures (RGME) determined via a portable respiratory system. During the TEC, 20 tennis-ranked male subjects [age: 26.0 (3.7) years; height: 181.0 (5.7) cm; weight: 73.2 (6.8) kg; maximal oxygen consumption (O2max): 57.3 (5.1) ml·kg−1·min−1] played ten matches of 50 min. During the OTC, 11 male members of the Austrian National Team [age: 23.5 (3.9) years; height: 183.6 (6.8) cm; weight: 72.4 (3.9) kg;O2max: 67.9 (3.8) ml·kg−1·min−1] performed a simulated OTC (six sections; average length: 10.090 m). In both studies data from the maximal treadmill tests (TT) were used as reference values for the comparison of energy expenditure of OTC and TEC. During TEC, the averageO2 was considerably lower [29.1 (5.6) ml·kg−1·min−1] or 51.1 (10.9)% of VO2max and 64.8.0 (13.3)% ofO2 determined at the individual anaerobic threshold (IAT) on the TT. The short high-intensity periods (activity/recovery = 1/6) did not result in higher LA levels [average LA of games: 2.07 (0.9) mmol·l−1]. The highest averageO2 value for a whole game was 47.8 ml·kg−1·min−1 and may provide a reference for energy demands required to sustain high-intensity periods of tennis predominately via aerobic mechanism of energy delivery. During OTC, we found an averageO2 of 56.4 (4.5) ml·kg−1·min−1 or 83.0 (3.8)% ofO2max and 94.6 (5.2)% ofO2 at IAT. In contrast to TEC, LA were relatively high [5.16 (1.5) mmol·l−1) although the averageO2 was significantly lower thanO2 at IAT. Our data suggest that portable RGEM provides valuable information concerning the energy expenditure in sports that cannot be interpreted from LA or HR measures alone. Portable RGEM systems provide valuable assessment of under- or over-estimation of requirements of sports and assist in the optimization and interpretation of training in athletes. Electronic Publication  相似文献   

11.
Oxidative stress is postulated to be responsible for the postprandial impairments in vascular function. The purpose of this study was to measure pulse wave velocity (PWV) and markers of postprandial oxidative stress before and after an acute bout of moderate exercise. Ten trained male subjects (age 21.5 ± 2.5 years, VO2 max 58.5 ± 7.1 ml kg−1 min−1) participated in a randomised crossover design: (1) high-fat meal alone (2) high-fat meal followed 2 h later by a bout of 1 h moderate (60% max HR) exercise. PWV was examined at baseline, 1, 2, 3, and 4 h postprandially. Blood Lipid hydroperoxides (LOOHs), Superoxide dismutase (SOD) and other biochemical markers were measured. PWV increased at 1 h (6.49 ± 2.1 m s−1), 2 h (6.94 ± 2.4 m s−1), 3 h (7.25 ± 2.1 m s−1) and 4 h (7.41 ± 2.5 m s−1) respectively, in the control trial (P < 0.05). There was no change in PWV at 3 h (5.36 ± 1.1 m s−1) or 4 h (5.95 ± 2.3 m s−1) post ingestion in the exercise trial (P > 0.05). LOOH levels decreased at 3 h post ingestion in the exercise trial compared to levels at 3 h (P < 0.05) in the control trial. SOD levels were lower at 3 h post ingestion in the control trial compared to 3 h in the exercise trial (0.52 ± 0.05 vs. 0.41 ± 0.1 units μl−1; P < 0.05). These findings suggest that a single session of aerobic exercise can ameliorate the postprandial impairments in arterial function by possibly reducing oxidative stress levels.  相似文献   

12.
13.
We examined the effect of an acute bout of resistance exercise on fractional muscle protein synthesis rates in human type I and type II muscle fibres. After a standardised breakfast (31 ± 1 kJ kg−1 body weight, consisting of 52 Energy% (En%) carbohydrate, 34 En% protein and 14 En% fat), 9 untrained men completed a lower-limb resistance exercise bout (8 sets of 10 repetitions leg press and leg extension at 70% 1RM). A primed, continuous infusion of l-[ring-13C6]phenylalanine was combined with muscle biopsies collected from both legs immediately after exercise and after 6 h of post-exercise recovery. Single muscle fibres were dissected from freeze-dried biopsies and stained for ATPase activity with pre-incubation at a pH of 4.3. Type I and II fibres were separated under a light microscope and analysed for protein-bound l-[ring-13C6]phenylalanine labelling. Baseline (post-exercise) l-[ring-13C6]phenylalanine muscle tissue labelling, expressed as (∂13C/12C), averaged −32.09 ± 0.28, −32.53 ± 0.10 and −32.02 ± 0.16 in the type I and II muscle fibres and mixed muscle, respectively (P = 0.14). During post-exercise recovery, muscle protein synthesis rates were marginally (8 ± 2%) higher in the type I than type II muscle fibres, at 0.100 ± 0.005 versus 0.094 ± 0.005%/h, respectively (P < 0.05), whereby rates of mixed muscle protein were 0.091 ± 0.005%/h. Muscle protein synthesis rates following resistance-type exercise are only marginally higher in type I compared with type II muscle fibres.  相似文献   

14.
We attempted to test whether the balance between muscular metabolic capacity and oxygen supply capacity in endurance-trained athletes (ET) differs from that in a control group of normal physically active subjects by using exercises with different muscle masses. We compared maximal exercise in nine ET subjects [Maximal oxygen uptake (VO2max) 64 ml kg−1 min−1 ± SD 4] and eight controls (VO2max 46 ± 4 ml kg−1 min−1) during one-legged knee extensions (1-KE), two-legged knee extensions (2-KE) and bicycling. Maximal values for power output (P), VO2max, concentration of blood lactate ([La]), ventilation (VE), heart rate (HR), and arterial oxygen saturation of haemoglobin (SpO2) were registered. P was 43 (2), 89 (3) and 298 (7) W (mean ± SE); and VO2max: 1,387 (80), 2,234 (113) and 4,115 (150) ml min−1) for controls in 1-KE, 2-KE and bicycling, respectively. The ET subjects achieved 126, 121 and 126% of the P of controls (p < 0.05) and 127, 124, and 117% of their VO2max (p < 0.05). HR and [La] were similar for both groups during all modes of exercise, while VE in ET was 147 and 114% of controls during 1-KE and bicycling, respectively. For mass-specific VO2max (VO2max divided by the calculated active muscle mass) during the different exercises, ET achieved 148, 141, and 150% of the controls’ values, respectively (p < 0.05). During bicycling, both groups achieved 37% of their mass-specific VO2 during 1-KE. Finally we conclude that ET subjects have the same utilization of the muscular metabolic capacity during whole body exercise as active control subjects.  相似文献   

15.
Insulin resistance and anemia secondary to erythropoietin deficiency characterize patients with end-stage kidney disease. In a cross-sectional analysis, we examined the relationship between erythropoietin-mediated correction of anemia and insulin sensitivity in nondiabetic hemodialysis patients. Insulin sensitivity (euglycemic-hyperinsulinemic clamp) and endogenous glucose production (primed-continuous infusion of [6,6-2H2]glucose) were determined in two groups of patients with normal hemoglobin (n:8; mean hemoglobin: 14.0 ± 0.3 g/dl) or with mild anemia (n:10; mean hemoglobin: 12.1 ± 0.9 g/dl). The patients with normal hemoglobin were receiving higher (P < 0.05) erythropoietin doses than those with mild anemia (171 ± 73 and 91 ± 39 U kg−1 wk−1, respectively). The two groups were matched for all other potential determinants of insulin resistance. Endogenous glucose production was similar in the two groups of patients in the postabsorptive state and was completely suppressed by insulin infusion. During the hyperinsulinemic clamp, the rate of glucose infusion to maintain euglycemia was significantly lower (P < 0.01) in the patients with normal hemoglobin levels [166 ± 31 mg (m2)−1 min−1] than in those with mild anemia [251 ± 49 mg (m2)−1 min−1] and in a group of matched controls [275 ± 68 mg (m2)−1 min−1]. In pooled patients, individual values of hemoglobin concentrations inversely correlated with the rates of insulin-mediated glucose infusion, both as absolute values (r = −0.58; P < 0.05) and as values normalized by steady-state plasma insulin concentration (r = −0.74; P < 0.001). In conclusion, this exploratory study indicates that complete correction of anemia by erythropoietin treatment in patients with end-stage kidney disease on hemodialysis is associated with impaired insulin sensitivity.  相似文献   

16.
Summary Seven trained male cyclists ( =4.42±0.23 l·min−1; weight 71.7±2.7 kg, mean ± SE) completed two incremental cycling tests on the cycle ergometer for the estimation of the “individual anaerobic threshold” (IAT). The cyclists completed three more exercises in which the work rate incremented by the same protocol, but upon reaching selected work rates of approximately 40, 60 and 80% , the subjects cycled for 60 min or until exhaustion. In these constant load studies, blood lactate concentration was determined on arterialized venous ([La]av) and deep venous blood ([La]v) of the resting forearm. The av-v lactate gradient across the inactive forearm muscle was −0.08 mmol·l−1 at rest. After 3 min at each of the constant load work rates, the gradients were +0.05, +0.65* and +1.60* mmol·l−1 (*P<0.05). The gradients after 10 min at these same work rates were −0.09, +0.24 and +1.03* mmol·l−1. For the two highest work rates taken together, the lactate gradient was less at 10 min than 3 min constant load exercise (P<0.05). The [La]av was consistently higher during prolonged exercise at both 60 and 80% than that observed at the same work rate during progressive exercise. At the highest work rate (at or above the IAT), time to exhaustion ranged from 3 to 36 min in the different subjects. These data showed that [La] uptake across resting muscle continued to increase to work rates above the IAT. Further, the greater av-v lactate gradient at 3 min than 10 min constant load exercise supports the concept that inactive muscle might act as a passive sink for lactate in addition to a metabolic site.  相似文献   

17.
The purpose of the present study was to determine whether 12 months of endurance training reduced [Ca2+]i in T helper (CD4+) lymphocytes in trained (TR) men compared to untrained (UT). Fourteen trained (Ironman triathletes) and nine untrained (sedentary) men volunteered for the study. The TR group averaged 12 km of swimming, 300 km of cycling and 60 km of running per week during the year. Resting blood samples were taken from TR (VO2peak 64 ± 2 ml kg−1 min−1) and UT (VO2peak 42 ± 2 ml kg−1 min−1) subjects every 4 weeks for 52 weeks (October 1, 1999–October 1, 2000). Leukocyte concentration was measured using a full blood count. Unstimulated CD4+ lymphocytes were separated and analysed for changes in free ([Ca2+]i) and total ([Ca2+]t) calcium using flow cytometry. There were no significant differences in leukocyte concentration between UT and TR groups. There were significant differences between TR and UT in [Ca2+]i (October B and November), and [Ca2+]t (January and March). There were also significant sequential monthly changes in both [Ca2+]i and [Ca2+]t for TR and UT groups during the study. Significant increases in [Ca2+]i and [Ca2+]t during summer (January and March) for both TR and UT groups suggest an increase in intracellular signalling during hot weather. [Ca2+]i and [Ca2+]t were significantly lower in TR lymphocytes during November and March, suggesting that endurance training during warmer months may decrease [Ca2+]i through altered intracellular signalling, possibly to maintain lymphocyte function during heat stress.  相似文献   

18.
In patients suffering from primary pulmonary hypertension (PPH), a raised pulmonary vascular resistance may limit the ability to increase pulmonary blood flow as work rate increases. We hypothesised that oxygen uptake (O2) may not rise appropriately with increasing work rate during incremental cardiopulmonary exercise tests. Nine PPH patients and nine normal subjects performed symptom-limited maximal continuous incremental cycle ergometry exercise. Mean peak O2 [1.00 (SD 0.22) compared to 2.58 (SD 0.64) l · min−1] and mean O2 at lactic acidosis threshold [LAT, 0.73 (SD 0.17) compared to 1.46 (SD 0.21 · l) ml · min−1] were much lower in patients than in normal subjects (both P < 0.01, two-way ANOVA with Tukey test). The mean rate of change of O2 with increasing work rate above the LAT [5.9 (SD 2.1) compared to 9.4 (SD 1.3) ml · min−1 · W−1, P < 0.01)] was also much lower in patients than in normal subjects [apparent δ efficiency 60.3 (SD 38.8)% in patients compared to 31.0 (SD 4.9)% in normal subjects]. The patients displayed lower mean values of end-tidal partial pressure of carbon dioxide than the normal subjects at peak exercise [29.7 (SD 6.8) compared to 42.4 (SD 5.8) mmHg, P < 0.01] and mean oxyhaemoglobin saturation [89.1 (SD 4.1) compared to 93.6 (SD 1.8)%, P < 0.05]. Mean ventilatory equivalents for CO2 [49.3 (SD 11.4) compared to 35.0 (SD 7.3), P < 0.05] and O2 [44.2 (SD 10.7) compared to 29.9 (SD 5.1), P < 0.05] were greater in patients than normal subjects. The sub-normal slopes for the O2-work-rate relationship above the LAT indicated severe impairment of the circulatory response to exercise in patients with PPH. The ventilatory abnormalities in PPH suggested that the lung had become an inefficient gas exchange organ because of impaired perfusion of the ventilated lung. Accepted: 17 April 2000  相似文献   

19.
This study examined the effect of mild hypobaria (MH) on the peak oxygen consumption (O2peak) and performance of ten trained male athletes [ (SEM); O2peak = 72.4 (2.2) ml · kg−1 · min−1] and ten trained female athletes [O2peak = 60.8 (2.1) ml · kg−1 · min−1]. Subjects performed 5-min maximal work tests on a cycle ergometer within a hypobaric chamber at both normobaria (N, 99.33 kPa) and at MH (92.66 kPa), using a counter-balanced design. MH was equivalent to 580 m altitude. O2peak at MH decreased significantly compared with N in both men [− 5.9 (0.9)%] and women [− 3.7 (1.0)%]. Performance (total kJ) at MH was also reduced significantly in men [− 3.6 (0.8)%] and women [− 3.8 (1.2)%]. Arterial oxyhaemoglobin saturation (SaO2) at O2peak was significantly lower at MH compared with N in both men [90.1 (0.6)% versus 92.0 (0.6)%] and women [89.7 (3.1)% versus 92.1 (3.0)%]. While SaO2 at O2peak was not different between men and women, it was concluded that relative, rather than absolute, O2peak may be a more appropriate predictor of exercise-induced hypoxaemia. For men and women, it was calculated that 67–76% of the decrease in O2peak could be accounted for by a decrease in O2 delivery, which indicates that reduced O2 tension at mild altitude (580 m) leads to impairment of exercise performance in a maximal work bout lasting ≈ 5 min. Accepted: 30 July 1996  相似文献   

20.
The loop of Henle (LOH) reabsorbs approximately 15% of filtered HCO 3 via a luminal Na+-H+ exchanger and H+ATPase. During acute metabolic alkalosis (AMA) induced by i.v. HCO 3 infusion, we have observed previously inhibition of LOH net HCO 3 reabsorption , which contributes to urinary elimination of the HCO 3 load and correction of the systemic alkalosis. To determine whether the activities of the Na+-H+ exchanger and/or H+-ATPase are reduced during AMA, two inhibitors believed to be sufficiently specific for each transporter were delivered by in vivo LOH microperfusion during AMA. AMA reduced LOH from 205.0±0.8 to 96.2±11.8 pmol · min−1 (P<0.001). Luminal perfusion with bafilomycin A1 (10−4 mol · l−1) caused a further reduction in by 83% and ethylisopropylamiloride (EIPA; 5.10−4 mol · l−1) completely abolished net HCO 3 reabsorption. The combination of bafilomycin A1 and EIPA in the luminal perfusate was additive, resulting in net HCO 3 secretion (−66.6±20.8 pmol · min−1;P<0.001) and abolished net fluid reabsorption (from 5.0±0.6 during AMA to 0.2±1.1 nl · min−1;P<0.001). To establish whether HCO 3 secretion via luminal stilbenesensitive transport mechanism participates in LOH adaptation to AMA, we added diisothiocyanato-2,2′-stilbenedisulphonate (DIDS; 10−4 mol · l−1) to the perfusate. No effect was found. However, when the same LOH were exposed to luminal DIDS for more than 10 min, the direction of net HCO 3 movement was reversed and net HCO 3 secretion occurred: changed from 90.6±8.8 to −91.9±34.1 pmol · min−1;P<0.01, an effect that was not observed in the control state (undisturbed acid-base balance). Thus, during AMA, neither the luminal Na+-H+ exchanger nor the H+-ATPase are noticeably suppressed. However, pharmacological elimination of both transporters, as well as prolonged exposure of the tubular lumen to DIDS, induced net HCO 3 secretion. This secretory flux may reflect paracellular backflux due to the steeper blood to lumen HCO 3 concentration gradient that presumably prevails in AMA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号