首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hematopoietic stem cells, numbering approximately 1/100,000 cells in mammalian bone marrow, are capable of complete hematopoietic and immune reconstitution upon injection into a myeloablated host. The present study aimed to analyze the earliest events in reconstitution of lethally irradiated, host murine bone marrow and spleen, after injecting purified Thy 1(lo)Lin(-)Sca-1(+) stem cells. Thy-1(lo)Lin(-)Sca-1(+) cells were isolated by fluorescence-activated cell sorting (FACS) from the bone marrow of 4-week-old C57BL(Thy1.1, Ly5.1) mice and injected into preirradiated, syngeneic hosts. These stem cells were also injected into congenic hosts, i.e., C57BL(Thy1.2, Ly5.2), and confirmed the donor origin of hematopoietic cells in the reconstituted host mice. Hematologically stained smears of the spleen and bone marrow of stem cell-injected recipients were prepared at 11, 14, 17, 21, 24, and 28 days after stem cell injection, and nucleated erythroid cells, mature granulocytes, and their myeloid precursors, monocytes, and large and small lymphocytes were recorded as a proportion of all nucleated cells in each organ at each time interval. The results indicated that in the earliest post stem cell injection intervals, both organs were predominantly erythroid and myeloid. Only at the later intervals did both organs show high proportions of large lymphoid cells and their progeny, small lymphocytes. Thus, early (<1 month) dynamics of hematopoietic reconstitution after transplantation of purified hematopoietic stem cells, is cell lineage specific.  相似文献   

2.
In humans, autologous transplants derived from bone marrow (BM) usually engraft more slowly than transplants derived from mobilized peripheral blood. Allogeneic BM transplants show a further delay in engraftment and have an apparent requirement for donor T cells to facilitate engraftment. In mice, Thy-1.1(lo)Lin-/loSca-1+ hematopoietic stem cells (HSCs) are the principal population in BM which is responsible for engraftment in syngeneic hosts at radioprotective doses, and higher doses of HSCs can radioprotect an allogeneic host in the absence of donor T cells. Using the mouse as a preclinical model, we wished to test to what extent engraftment kinetics was a function of HSC content, and whether at high doses of c-Kit+Thy-1.1(lo)Lin-/loSca-1+ (KTLS) cells rapid allogeneic engraftment could also be achieved. Here we demonstrate that engraftment kinetics varied greatly over the range of KTLS doses tested (100-10,000 cells), with the most rapid engraftment being obtained with a dose of 5,000 or more syngeneic cells. Mobilized splenic KTLS cells and the rhodamine 123(lo) subset of KTLS cells were also able to engraft rapidly. Higher doses of allogeneic cells were needed to produce equivalent engraftment kinetics. This suggests that in mice even fully allogeneic barriers can be traversed with high doses of HSCs, and that in humans it may be possible to obtain rapid engraftment in an allogeneic context with clinically achievable doses of purified HSCs.  相似文献   

3.
Several studies have reported that bone marrow (BM) cells may give rise to neurons and astrocytes in vitro and in vivo. To further test this hypothesis, we analyzed for incorporation of neural cell types expressing donor markers in normal or injured brains of irradiated mice reconstituted with whole BM or single, purified c-kit(+)Thy1.1(lo)Lin(-)Sca-1(+) (KTLS) hematopoietic stem cells (HSCs), and of unirradiated parabionts with surgically anastomosed vasculature. Each model showed low-level parenchymal engraftment of donor-marker(+) cells with 96-100% immunoreactivity for panhematopoietic (CD45) or microglial (Iba1 or Mac1) lineage markers in all cases studied. Other than one arborizing structure in the olfactory bulb of one BM-transplanted animal, possibly representing a neuronal or glial cell process, we found no donor-marker-expressing astrocytes or non-Purkinje neurons among >10,000 donor-marker(+) cells from 21 animals. These data strongly suggest that HSCs and their progeny maintain lineage fidelity in the brain and do not adopt neural cell fates with any measurable frequency.  相似文献   

4.
Previous work had revealed that a CD34- fibroblast-like cell is the earliest hematopoietic progenitor population. This cell type is able to differentiate into hematopoietic progeny of all lineages and circulates in the peripheral blood, from where it can be isolated by IL-6-mediated plastic adherence. We isolated peripheral blood-derived mononuclear cells (MNC) from male CBA mice and established in vitro a fibroblast-like, adherent growing cell layer. Cells were immortalized by SV-40 transfection for cellular cloning. Monoclonal fibroblast-like cell clones were established, and the surface expression of early stem cell markers was determined by flow cytometry. Clones were CD34-, Sca-1+, Thy-1(low), and c-kit+. Lethally irradiated female CBA mice were successfully transplanted with a fibroblast-like cell clone, R-M26/2-1. After syngeneic transplantation, peripheral blood counts were back to normal in transplanted mice on days 15-20, and fluorescence in situ hybridization (FISH) revealed the sole presence of male hematopoietic cells in the BM of female recipients at weeks 7, 9, 11, and 16 after transplantation. Immunohistochemistry for the expression of CD34, Sca-1, Thy-1, and c-kit showed the presence of the phenotype of the transplanted stem cell clone along the bone spicules in the marrow cavity, giving rise to HPC of all lineages. In summary, we have shown that a CD34-, Sca-1+, Thy-1(low), and c-kit+ fibroblast-like cell is consistent with the phenotype of the earliest hematopoietic and repopulating stem cell and can be isolated from peripheral blood cells.  相似文献   

5.
6.
The effects of interleukin-2 (IL-2) deficiency on hematopoiesis were tested by measuring cellular compositions in peripheral blood, spleen, thymus, and bone marrow of 3- to 5-month-old gene-targeted Il2 null (Il2(-/-)) mice using the Advia 120 Hematology system and fluorescence-activated cell staining (FACS). Il2(-/-) mice developed hematological failure and autoimmune responses, showing variable but significant degrees of anemia, lymphocytopenia, thrombocytopenia, splenomegaly, thymus involution, and weight loss. Surprisingly, Il2(-/-) mice had normal numbers of bone marrow cells (BMCs) with increased numbers of Lin(-)Kit(+)Sca1(+)CD34(-) and Lin(-)Kit(+)Sca1(+)CD34(+) cells that are normally associated with hematopoietic stem cells (HSCs) and progenitor cells. Day-12 colony-forming units-spleen cells were slightly reduced in Il2(-/-) mice. When Il2(-/-) and Il2(+/+) mice were compared for long-term HSC function in vivo in the competitive repopulation assay, BMCs from Il2(-/-) donors had 10- to 20-fold less HSC repopulating ability, which affected both myeloid and lymphoid cell lineages. Thus, HSCs from Il2(-/-) mice can proliferate normally but are functionally defective for reconstituting lethally irradiated recipients.  相似文献   

7.
The introduction of clonal assays and long-term culture systems has resulted in considerable progress in the understanding of the early events that control self-renewal and commitment to differentiation of pluripotent hematopoietic stem cells (PHSC). Relatively little is known about the factors that control the commitment of PHSC to the lymphoid lineages, especially the T cell lineage. In the present study, the expression of the proto-oncogene c-kit was used to isolate and study the capacity of highly purified day 14 colony-forming units-spleen (CFU-S) to reconstitute the thymus of sublethally irradiated Thy-1 congenic recipient mice. We demonstrate here that one c-kit positive (c-kitpos) stem cell upon intrathymic transfer can effectively reconstitute the thymus of a sublethally irradiated recipient. After a lag phase of 15 d, high levels of donor-derived thymocytes (Thy-1.1pos) could be detected until 65 d after transplantation in Thy-1.2pos host mice. Donor-derived cells were only detected in the lobe of the thymus in which cells were previously injected and not in the noninjected lobe. These data suggest that c-kitpos stem cells do not migrate from one lobe to another and that they do not re-seed the thymus after having migrated to the bone marrow. The level and duration of reconstitution was found to be cell dose dependent, suggesting that, over time, endogenous stem cells compete with donor stem cells for available sites in the thymus microenvironment. The data presented in this paper demonstrate that commitment of purified adult bone marrow-derived c-kitpos stem cells to the T cell differentiation pathway can occur in the thymus and does not have to happen in the bone marrow.  相似文献   

8.
Using an experimental mouse model, we have investigated the kinetics of hematopoietic reconstitution of recipients transplanted during fetal development with fresh and transduced hematopoietic stem cells (HSCs). Total bone marrow (BM) and purified Lin(-)Sca-1(+) cells, either fresh or transduced ex vivo with enhanced green fluorescent protein (EGFP)-encoding retroviral vectors, were in utero transplanted (IUT) into fetal mice. Data obtained 2 months after transplantation showed a similar proportion of engrafted animals, regardless of the fact that samples were purified or not on HSCs, and subjected or not to ex vivo transduction with retroviral vectors. The transplantation of grafts enriched in HSCs, either fresh or transduced, always improved the levels of donor chimerism of IUT mice in comparison with results obtained in mice transplanted with unpurified BM grafts (6.8 and 7.3% versus 1.15% median values, respectively). Significantly, engrafted recipients that were transplanted with the transduced graft always contained transduced EGFP(+) cells in peripheral blood (around 5% of donor cells were EGFP(+) at 2 months post-transplantation). This proportion was essentially maintained at longer times post-transplantation, as well as in secondary recipients transplanted with the BM of IUT mice. Our study describes for the first time a significant and stable engraftment of unconditioned mice subjected to IUT with HSCs transduced with retroviral vectors.  相似文献   

9.
本研究探讨DAPT(N-[N-(3,5-difluorophenacetyl-L:-alanyl)]-S-phenylglycinet-butyl ester)对小鼠骨髓造血干细胞(HSC)细胞周期、凋亡、分化及扩增的影响及其可能的相关机制。运用实时定量PCR检测DAPT1μmol/L作用前后细胞周期相关基因p18、p21、p27、CDK1、CDK2、CDK4、CDK6 mRNA表达水平及凋亡相关基因Bcl-2、Bcl-xl、mcl-1、Bax、Bim、p53、Puma mRNA表达量的水平;用流式细胞术检测DAPT作用前后小鼠骨髓细胞Lin-c-kit+Sca-1+及CD34-Lin-c-kit+Sca-1+表型细胞的细胞周期及凋亡的变化;用单细胞培养检测DAPT作用前后单个HSC分化的变化;用长周期培养实验检测DAPT作用前后HSC扩增能力的变化。结果显示,Lin-c-kit+Sca-1+表型细胞经DAPT处理5 d后,小鼠骨髓细胞中细胞周期相关基因CDK1、CDK2、CDK4、CDK6及p27的mRNA表达量较对照组明显升高(P<0.01-P<0.001),p18和p21表达量明显降低(P<0.01-P<0.001);凋亡相关基因Bcl-2、Bcl-xl、Bax、p53、Puma表达量较对照组明显升高(P<0.01-P<0.001),Bim表达量明显降低(P<0.001),Mcl-1的表达量无差异。加DAPT处理5 d后,小鼠骨髓细胞Lin-c-kit+Sca-1+表型细胞的细胞周期的变化无统计学意义(P>0.05),小鼠骨髓细胞CD34-Lin-c-kit+Sca-1+表型细胞的G0期的细胞减少,G1期的细胞明显增多(P<0.05),处于S、G2、M期的细胞数量的变化无统计学意义(P>0.05);小鼠骨髓细胞Lin-c-kit+Sca-1+表型细胞和CD34-Lin-c-kit+Sca-1+表型细胞的细胞凋亡增多(P<0.05)。单细胞培养10 d实验显示,每板形成的克隆数、每孔平均细胞数的变化及DAPT对单个造血干细胞分化影响的差异均无统计学意义(P>0.05)。DAPT处理3 d后,小鼠骨髓细胞中HSC的扩增能力下降。结论:DAPT可加速小鼠骨髓细胞CD34-Lin-c-kit+Sca-1+表型细胞的耗竭,促进小鼠骨髓细胞Lin-c-kit+Sca-1+及CD34-Lin-c-kit+Sca-1+表型细胞的凋亡,降低小鼠骨髓细胞中HSC的扩增能力,但对单个CD34-Lin-c-kit+Sca-1+表型细胞的增殖及分化无明显影响。  相似文献   

10.
The role of autophagy, a lysosomal degradation pathway which prevents cellular damage, in the maintenance of adult mouse hematopoietic stem cells (HSCs) remains unknown. Although normal HSCs sustain life-long hematopoiesis, malignant transformation of HSCs leads to leukemia. Therefore, mechanisms protecting HSCs from cellular damage are essential to prevent hematopoietic malignancies. In this study, we crippled autophagy in HSCs by conditionally deleting the essential autophagy gene Atg7 in the hematopoietic system. This resulted in the loss of normal HSC functions, a severe myeloproliferation, and death of the mice within weeks. The hematopoietic stem and progenitor cell compartment displayed an accumulation of mitochondria and reactive oxygen species, as well as increased proliferation and DNA damage. HSCs within the Lin(-)Sca-1(+)c-Kit(+) (LSK) compartment were significantly reduced. Although the overall LSK compartment was expanded, Atg7-deficient LSK cells failed to reconstitute the hematopoietic system of lethally irradiated mice. Consistent with loss of HSC functions, the production of both lymphoid and myeloid progenitors was impaired in the absence of Atg7. Collectively, these data show that Atg7 is an essential regulator of adult HSC maintenance.  相似文献   

11.
Thrombopoietin expands hematopoietic stem cells after transplantation   总被引:10,自引:0,他引:10       下载免费PDF全文
Multiple lines of evidence indicate that thrombopoietin (TPO) contributes to the development of hematopoietic stem cells (HSC), supporting their survival and proliferation in vitro. To determine whether TPO supports the impressive expansion of HSC observed following transplantation, we transplanted normal marrow cells into lethally irradiated Tpo(-/-) and Tpo(+/+) mice and quantified HSC self-renewal and expansion and hematopoietic progenitor cell homing. Although essentially identical numbers of marrow-associated colony forming unit-culture (a surrogate measure of stem cell homing) were observed in each type of recipient 24 hours following transplantation, we found that a minimum of fourfold greater numbers of marrow cells were required to radioprotect Tpo-null mice than to radioprotect controls. To assess whether long-term repopulating (LTR) HSCs self-renew and expand in Tpo(-/-) recipients or controls, we performed limiting-dilution secondary transplants using donor cells from the Tpo(-/-) or Tpo(+/+) recipients 5-7.5 weeks following primary transplantation. We found that LTR HSCs expand to levels 10-20 times greater within this time period in normal recipients than in Tpo-null mice and that physiologically relevant amounts of TPO administered to the Tpo(-/-) recipients could substantially correct this defect. Our results establish that TPO greatly promotes the self-renewal and expansion of HSCs in vivo following marrow transplantation.  相似文献   

12.
Granulocyte/macrophage colony-stimulating factor (GM-CSF) promotes the survival, proliferation, and differentiation of myeloid lineage cells and regulates chemotaxis and adhesion. However, mice in which the genes encoding GM-CSF (Gmcsf) or the beta common subunit of the GM-CSF receptor (betac) are inactivated display normal steady-state hematopoiesis. Here, we show that host GM-CSF signaling strongly modulates the ability of donor hematopoietic cells to radioprotect lethally irradiated mice. Although bone marrow mononuclear cells efficiently rescue Gmcsf mutant recipients, fetal liver cells and Sca1(+) lin(-/dim) marrow cells are markedly impaired. This defect is partially attributable to accessory cells that are more prevalent in bone marrow. In contrast, Gmcsf-deficient hematopoietic stem cells demonstrate normal proliferative potentials. Short-term survival is also impaired in irradiated betac mutant recipients transplanted with fetal liver or bone marrow. These data demonstrate a nonredundant function of GM-CSF in radioprotection by donor hematopoietic cells that may prove relevant in clinical transplantation.  相似文献   

13.
Age-associated characteristics of murine hematopoietic stem cells   总被引:27,自引:0,他引:27       下载免费PDF全文
Little is known of age-associated functional changes in hematopoietic stem cells (HSCs). We studied aging HSCs at the clonal level by isolating CD34(-/low)c-Kit(+)Sca-1(+) lineage marker-negative (CD34(-)KSL) cells from the bone marrow of C57BL/6 mice. A population of CD34(-)KSL cells gradually expanded as age increased. Regardless of age, these cells formed in vitro colonies with stem cell factor and interleukin (IL)-3 but not with IL-3 alone. They did not form day 12 colony-forming unit (CFU)-S, indicating that they are primitive cells with myeloid differentiation potential. An in vivo limiting dilution assay revealed that numbers of multilineage repopulating cells increased twofold from 2 to 18 mo of age within a population of CD34(-)KSL cells as well as among unseparated bone marrow cells. In addition, we detected another compartment of repopulating cells, which differed from HSCs, among CD34(-)KSL cells of 18-mo-old mice. These repopulating cells showed less differentiation potential toward lymphoid cells but retained self-renewal potential, as suggested by secondary transplantation. We propose that HSCs gradually accumulate with age, accompanied by cells with less lymphoid differentiation potential, as a result of repeated self-renewal of HSCs.  相似文献   

14.
Three approaches were used to demonstrate the presence of Thy-1 antigen on the surface of pluripotent hemopoietic stem cells in the rat. In the first, stem cells from fetal liver, neonatal spleen, and adult bone marrow were prevented from forming hemopoietic colonies in the spleens of irradiated recipients spleen (colony-forming unit assay) by incubation with antibodies to Thy-1 antigen. Highly specific rabbit heteroantiserum to purified rat brain Thy-1 antigen and mouse alloantisera to Thy-1.1-positive thymocytes were equally effective. This inhibition was neutralized by purified Thy-1 antigen. In a second series of experiments, Thy-1-positive and Thy-1-negative populations of nucleated bone marrow cells were separated by the FACS. All of the hemopoietic stem cell activity was recovered in the Thy-1-positive population. The stem cells were among the most strongly positive for Thy-1 antigen, being in the upper 25th percentile for relative fluorescence intensity. The relationships of Thy-1 antigen to the rat bone marrow lymphocyte antigen (BMLA) was shown in a third series of experiments. Rabbit anti-BMLA serum, which is raised against a null population of lymphocyte-like bone marrow cells, has been shown to have anti-stem cell activity. Here we demonstrate by double immunofluorescence, cocapping, and differential absorption studies that Thy-1 and BMLA are parts of the same molecule.  相似文献   

15.
A single embryonic stem cell (ESC) line can be repetitively cryopreserved, thawed, expanded, and differentiated into various cellular components serving as a potentially renewable and well-characterized stem cell source. Therefore, we determined whether ESCs could be used to reconstitute marrow and blood in major histocompatibility complex (MHC)-mismatched mice. To induce differentiation toward hematopoietic stem cells (HSCs) in vitro, ESCs were cultured in methylcellulose with stem cell factor, interleukin (IL)-3, and IL-6. ESC-derived, cytokine-induced HSCs (c-kit+/CD45+) were isolated by flow cytometry and injected either intra bone marrow or intravenously into lethally irradiated MHC-mismatched recipient mice. From 2 wk to 6 mo after injection, the peripheral blood demonstrated increasing ESC-derived mononuclear cells that included donor-derived T and B lymphocytes, monocytes, and granulocytes without clinical or histologic evidence of graft-versus-host disease (GVHD). Mixed lymphocyte culture assays demonstrated T cell tolerance to both recipient and donor but intact third party proliferative responses and interferon gamma production. ESCs might be used as a renewable alternate marrow donor source that reconstitutes hematopoiesis with intact immune responsiveness without GVHD despite crossing MHC barriers.  相似文献   

16.
A major goal in the study of hematopoiesis is to obtain populations of primitive stem cells, free of restricted and mature cells. We previously showed that a small population of normal bone marrow, the Thy-1loLin- cells, was highly enriched for pluripotent stem cells that repopulate lethally irradiated mice. These cells also differentiated along the B lymphocyte lineage in response to the stromal elements in Whitlock-Witte cultures. These two hematopoietic activities were entirely contained in and were enriched to similar extents in the Thy-1loLin- population. Here we show for the first time that these two activities can be resolved functionally and phenotypically. The cells that respond to the stroma in lymphoid culture are more sensitive to the cytotoxic drug 5-Fluorouracil than are stem cells. Furthermore, we have derived a new monoclonal antibody, Fall-3, that detects primitive stem cells but does not label the B cell precursor. This indicates that the small Thy-1loLin- population is heterogeneous, containing precursors restricted to the B cell lineage as well as pluripotent stem cells. Antibody Fall-3 defines a novel stem cell antigen, expressed on all primitive stem cells and thus, will be useful in the further characterization and isolation of both stem cells and B cell precursors.  相似文献   

17.
背景:研究证实多种造血生长因子、基质细胞饲养层及其条件培养液可促进胚胎干细胞向造血干细胞分化。目的:以人主动脉-性腺-中肾(aorta-gonad-mesonephros,AGM)区基质细胞为饲养层体外诱导小鼠胚胎干细胞分化为造血干细胞,并比较不同移植途径对造血干细胞体内造血重建能力的影响。方法:将小鼠E14胚胎干细胞诱导为拟胚体,采用Transwell非接触共培养体系在人AGM区基质细胞饲养层上诱导6d,接种NOD-SCID小鼠检测体内致瘤性。再将诱导后的拟胚体细胞移植经致死量60Coγ射线辐照的BALB/C雌鼠,受鼠随机分为静脉移植组、骨髓腔移植组、照射对照组及正常对照组。结果与结论:拟胚体细胞经人AGM区基质细胞诱导后Sca-1+c-Kit+细胞占(13.12±1.30)%。NOD-SCID小鼠皮下接种经人AGM区基质细胞诱导的拟胚体细胞可出现畸胎瘤,经骨髓腔接种未见肿瘤形成。静脉移植组动物全部死亡,骨髓腔移植组生存率为55.6%,移植后21d外周血象基本恢复,存活受鼠检测到供体来源Sry基因。提示小鼠胚胎干细胞经人AGM区基质细胞诱导分化的造血干细胞通过骨髓腔移植安全并具有一定的造血重建能力。  相似文献   

18.
DNA methylation is an epigenetic modification essential for development. The DNA methyltransferases Dnmt3a and Dnmt3b execute de novo DNA methylation in gastrulating embryos and differentiating germline cells. It has been assumed that these enzymes generally play a role in regulating cell differentiation. To test this hypothesis, we examined the role of Dnmt3a and Dnmt3b in adult stem cells. CD34(-/low), c-Kit(+), Sca-1(+), lineage marker(-) (CD34(-) KSL) cells, a fraction of mouse bone marrow cells highly enriched in hematopoietic stem cells (HSCs), expressed both Dnmt3a and Dnmt3b. Using retroviral Cre gene transduction, we conditionally disrupted Dnmt3a, Dnmt3b, or both Dnmt3a and Dnmt3b (Dnmt3a/Dnmt3b) in CD34(-) KSL cells purified from mice in which the functional domains of these genes are flanked by two loxP sites. We found that Dnmt3a and Dnmt3b function as de novo DNA methyltransferases during differentiation of hematopoietic cells. Unexpectedly, in vitro colony assays and in vivo transplantation assays showed that both myeloid and lymphoid lineage differentiation potentials were maintained in Dnmt3a-, Dnmt3b-, and Dnmt3a/Dnmt3b-deficient HSCs. However, Dnmt3a/Dnmt3b-deficient HSCs, but not Dnmt3a- or Dnmt3b-deficient HSCs, were incapable of long-term reconstitution in transplantation assays. These findings establish a critical role for DNA methylation by Dnmt3a and Dnmt3b in HSC self-renewal.  相似文献   

19.
Multipotent self-renewing hematopoietic stem cells (HSCs) are responsible for reconstitution of all blood cell lineages. Whereas growth stimulatory cytokines have been demonstrated to promote HSC self-renewal, the potential role of negative regulators remains elusive. Receptors for tumor necrosis factor (TNF) and Fas ligand have been implicated as regulators of steady-state hematopoiesis, and if overexpressed mediate bone marrow failure. However, it has been proposed that hematopoietic progenitors rather than stem cells might be targeted by Fas activation. Here, murine Lin(-)Sca1(+)c-kit(+) stem cells revealed little or no constitutive expression of Fas and failed to respond to an agonistic anti-Fas antibody. However, if induced to undergo self-renewal in the presence of TNF-alpha, the entire short and long-term repopulating HSC pool acquired Fas expression at high levels and concomitant activation of Fas suppressed in vitro growth of Lin(-)Sca1(+)c-kit(+) cells cultured at the single cell level. Moreover, Lin(-)Sca1(+)c-kit(+) stem cells undergoing self-renewal divisions in vitro were severely and irreversibly compromised in their short- and long-term multilineage reconstituting ability if activated by TNF-alpha or through Fas, providing the first evidence for negative regulators of HSC self-renewal.  相似文献   

20.
A number of surprising observations have shown that stem cells, in suitable conditions, have the ability to produce a whole spectrum of cell types, regardless, whether these tissues are derived from the same germ layer or not. This phenomenon is called stem cell plasticity, which means that tissue-specific stem cells are mutually interchangeable. In our experiments, as a model, we used neural stem cells (NSCs) harvested from fetal (E14-15) neocortex and beta-galactosidase positive. In the first experiment we found that on days 12 and 30 after sub-lethal irradiation (LD 8.5 Gy) and (beta-galactosidase(+)) NSCs transplantation all mice survived, just as the group with bone marrow transplantation. Moreover, the bone marrow of mice transplanted NSCs contained the number of CFU-GM colonies with beta-galactosidase(+) cells which was as much as 50% higher. These differences were statistically significant, p<0.001. In the second experiment, we studied kinetics of (beta-galactosidase(+)) NSCs after their transplantation to sub-lethally irradiated mice. Histochemistry of tissues was performed on days 12 and 30 post-transplantation, and beta-galactosidase(+) cells were detected with the help of histochemical examination of removed tissues (lung, liver, spleen, thymus, and skeletal muscle). In tissues removed on day 12 post-transplantation, we found a significantly higher number of beta-galactosidase(+) cells in the spleen and thymus on day 30. While we presumed the presence beta-galactosidase(+) cells in the spleen, as spleen and reticuloendothelial system represent an important retaining system for different cell types, the presence of beta-galactosidase(+) cells in the thymus was rather surprising but very interesting. This indicates a certain mutual and close interconnection of transplanted stem cells and immune system in an adult organism. In the third experiment, we verified the mutual interchange of Sca-1 surface antigen in the bone marrow cells and NSCs before transplantation. Analysis of this antigen showed 24.8% Sca-1 positive cells among the bone marrow cells, while NSCs were Sca-1 negative. Our experiments show that NSCs share hemopoietic identity and may significantly influence the recovery of damaged hematopoiesis but do not have typical superficial markers as HSCs. This result is important for the determination of predictive factors for hemopoiesis recovery, for stem cell plasticity and for their use in the cell therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号