首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Antagonistic effects of the novel suramin analogue 4,4',4",4"'-(carbonylbis(imino-5,1,3-benzenetriylbis(carbonylimino)))tetrakis-benzene-1,3-disulfonic acid (NF449) were studied on contractions of the rat vas deferens elicited by alpha,beta-methylene ATP (alphabetameATP; mediated by P2X1 receptors), contractions of the guinea-pig ileal longitudinal smooth muscle elicited by alphabetameATP (mediated by P2X3 receptors) or adenosine 5'-O-(2-thiodiphosphate) (ADPbetaS; mediated by P2Y1 receptors), ATP-induced increases of [Ca2+]i in human embryonic kidney (HEK) 293 cells (mediated by P2Y2 receptors), inward currents evoked by ATP in follicle cell-free Xenopus laevis oocytes expressing rP2X1 or rP2X3 receptors and degradation of ATP by ecto-nucleotidases in folliculated Xenopus laevis oocytes. In addition, NF449 was examined for its P2 receptor specificity in rat vas deferens (alpha1A-adrenoceptors) and guinea-pig ileum (histamine H1 and muscarinic M3 receptors). At native (pIC50=7.15) and recombinant (pIC50=9.54) P2X1 receptors, NF449 was a highly potent antagonist. The P2X3 receptors present in guinea-pig ileum (pIC50=5.04) or expressed in oocytes (pIC50 approximately 5.6) were much less sensitive for NF449. It also was a very weak antagonist at P2Y1 receptors in guinea-pig ileum (pIC50=4.85) and P2Y2 receptors in HEK 293 cells (pIC50=3.86), and showed very low inhibitory potency on ecto-nucleotidases (pIC50<3.5). NF449 (100 microM) did not interact with alpha1A-adrenoceptors or histamine H1 and muscarinic M3 receptors. Thus, the antagonism by NF449 is highly specific for P2 receptors. In conclusion, the subnanomolar potency at rP2X1 receptors and the rank order of potency, P2X1 > P2X3 > P2Y1 > P2Y2 > ecto-nucleotidases, make NF449 unique among the P2 receptor antagonists reported to date. NF449 may fill the long-standing need for a P2X1-selective radioligand.  相似文献   

2.
Selectivity of diadenosine polyphosphates for rat P2X receptor subunits   总被引:4,自引:0,他引:4  
The pharmacological activity of diadenosine polyphosphates was investigated at three recombinant P2X receptors (rat P2X1, rat P2X3, rat P2X4) expressed in Xenopus oocytes and studied under voltage-clamp conditions. For the rat P2X1 receptor, only P1,P6-diadenosine hexaphosphate (Ap6A) was a full agonist yet 2-3 folds less potent than ATP. At rat P2X3, P1,p4-diadenosine tetraphosphate (Ap4A), P1,P5-diadenosine pentaphosphate (Ap5A) and Ap6A were full agonists and more potent than ATP. Ap4A alone was equipotent with ATP at rat P2X4, but only as a partial agonist. Compared to known data for rat P2X2 and human P2X1 receptors, our findings contrast with rat P2X2 where only Ap4A is a full agonist although four folds less potent than ATP. At rat and human orthologues of P2X1, Ap5A was a partial agonist with similar potency. These data provide a useful basis for selective agonists of P2X receptor subunits.  相似文献   

3.
Novel analogues of the P2 receptor antagonist pyridoxal-5'-phosphate 6-azophenyl-2',5'-disulfonate (2) were synthesized and studied as antagonists in functional assays at recombinant rat P2X1, P2X2, and P2X3 receptors expressed in Xenopus oocytes (ion flux stimulation) and at turkey erythrocyte P2Y1 receptors (phospholipase C activation). Selected compounds were also evaluated as antagonists of ion flux and the opening of a large pore at the recombinant human P2X7 receptor. Modifications were made in the 4-aldehyde and 5'-phosphate groups of the pyridoxal moiety: i.e. a CH2OH group at the 4-position in pyridoxine was either condensed as a cyclic phosphate or phosphorylated separately to form a bisphosphate, which reduced potency at P2 receptors. 5-Methylphosphonate substitution, anticipated to increase stability to hydrolysis, preserved P2 receptor potency. At the 6-position, halo, carboxylate, sulfonate, and phosphonate variations made on the phenylazo ring modulated potency at P2 receptors. The p-carboxyphenylazo analogue, 4, of phosphate 2 displayed an IC50 value of 9 nM at recombinant P2X1 receptors and was 1300-, 16-, and > 10,000-fold selective for P2X1 versus P2X2, P2X3, and P2Y1 subtypes, respectively. The corresponding 5-methylphosphonate was equipotent at P2X1 receptors. The 5-methylphosphonate analogue containing a 6-[3,5-bis(methylphosphonate)]phenylazo moiety, 9, had IC50 values of 11 and 25 nM at recombinant P2X1 and P2X3 receptors, respectively. The analogue containing a phenylazo 4-phosphonate group, 11, was also very potent at both P2X1 and P2X3 receptors. However, the corresponding 2,5-disulfonate analogue, 10, was 28-fold selective for P2X1 versus P2X3 receptors. None of the analogues were more potent at P2X7 and P2Y1 receptors than 2, which acted in the micromolar range at these two subtypes.  相似文献   

4.
The suramin analogue 8,8'-(carbonylbis(imino-3,1-phenylene carbonylimino)bis(1,3,5-naphthalenetrisulfonic acid) (NF023) antagonizes in a competitive fashion P2X receptor-mediated responses in certain vascular and visceral smooth muscles. In the present study, the effect of NF023 on voltage-clamped Xenopus oocytes heterologously expressing homomultimeric P2X1-P2X4 as well as heteromultimeric P2X2/P2X3 receptors has been characterized. P2X1 receptors were most sensitive to inhibition by NF023 with IC50 values of 0.24 and 0.21 microM for the rat and human homologue, respectively. P2X3 receptors have an intermediate sensitivity with IC50 values of 8.5 and 28.9 microM for rat and human subtypes, respectively and P2X2 was the least sensitive subtype (IC50 > 50 microM). P2X4 receptors were insensitive to NF023 at concentrations up to 100 microM. Coexpression of rat P2X3 with rat P2X2 resulted in receptors whose sensitivity to NF023 was identical to that obtained for homomultimeric rat P2X3 receptors (alphabeta meATP as agonist; IC50 = 1.4 and 1.6 microM, respectively). NF023 inhibited P2X1 receptors in a voltage-insensitive manner. In addition, NF023 (5 and 30 microM) caused a shift of the concentration-response curve to the right without affecting the maximal response to ATP (K(B) = 1.1 +/- 0.2 microM). Our results indicate that NF023 is a subtype-selective and surmountable antagonist at P2X1 receptors heterologously expressed in Xenopus oocytes.  相似文献   

5.
The suramin analogue 8,8'-(carbonylbis(imino-4, 1-phenylenecarbonylimino-4,1-phenylenecarbonylimino)) bis(1,3,5-naphthalenetrisul fonic acid) (NF279) was analysed with respect to its potency and P2X receptor subtype selectivity. Two-electrode voltage-clamp measurements were performed with Xenopus laevis oocytes expressing homomultimeric rat P2X(1), P2X(2), P2X(3) and human P2X(4) receptors. For the fast desensitising P2X(1) and P2X(3) receptors, IC(50) values strongly depended on whether oocytes were pre-incubated with NF279 prior to ATP superfusion or exposed to NF279 simultaneously with ATP. With a 10 s pre-incubation period of NF279, IC(50) values of 19 nM and 1.62 microM were obtained for rat P2X(1) and P2X(3), respectively. Without pre-incubation, IC(50) values amounted to 2 microM and 85.5 microM for P2X(1) and P2X(3), respectively. For the non-desensitising rat P2X(2) receptor NF279 appeared to act as a competitive antagonist with an IC(50) value of 0.76 microM and a K(B) value of 0.36 microM, as derived from Schild analysis. P2X(4) receptors were the least sensitive subtypes for NF279 (IC(50)>300 microM). The antagonism was fully reversible at all P2X subtypes analysed. Our results indicate that NF279 is a potent P2X(1) receptor-selective and reversible antagonist.  相似文献   

6.
1. This study investigated the effects of a number of GABA analogues on rat rho3 GABA(C) receptors expressed in Xenopus oocytes using 2-electrode voltage clamp methods. 2. The potency order of agonists was muscimol (EC(50)=1.9 +/- 0.1 microM) (+)-trans-3-aminocyclopentanecarboxylic acids ((+)-TACP; EC(50)=2.7 +/- 0.9 microM) trans-4-aminocrotonic acid (TACA; EC(50)=3.8 +/-0.3 microM) GABA (EC(50)=4.0 +/- 0.3 microM) > thiomuscimol (EC(50)=24.8 +/- 2.6 microM) > (+/-)-cis-2-aminomethylcyclopropane-carboxylic acid ((+/-)-CAMP; EC(50)=52.6 +/-8.7 microM) > cis-4-aminocrotonic acid (CACA; EC(50)=139.4 +/- 5.2 microM). 3. The potency order of antagonists was (+/-)-trans-2-aminomethylcyclopropanecarboxylic acid ((+/-)-TAMP; K(B)=4.8+/-1.8 microM) (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA; K(B)=4.8 +/-0.8 microM) > (piperidin-4-yl)methylphosphinic acid (P4MPA; K(B)=10.2+/-2.3 microM) 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP; K(B)=10.2+/-0.3 microM) imidazole-4-acetic acid (I4AA; K(B)=12.6+/-2.7 microM) > 3-aminopropylphosphonic acid (3-APA; K(B)=35.8+/-13.5 microM). 4. trans-4-Amino-2-methylbut-2-enoic acid (2-MeTACA; 300 microM) had no effect as an agonist or an antagonist indicating that the C2 methyl substituent is sterically interacting with the ligand-binding site of rat rho3 GABA(C) receptors. 5. 2-MeTACA affects rho1 and rho2 but not rho3 GABA(C) receptors. In contrast, (plus minus)-TAMP is a partial agonist at rho1 and rho2 GABA(C) receptors, while at rat rho3 GABA(C) receptors it is an antagonist. Thus, 2-MeTACA and (+/-)-TAMP could be important pharmacological tools because they may functionally differentiate between rho1, rho2 and rho3 GABA(C) receptors in vitro.  相似文献   

7.
1 The modulatory activity of extracellular H+ and Zn2+ was examined on ATP-responses at rat P2X1 (rP2X1) and rat P2X3 (rP2X3) receptors expressed in Xenopus oocytes and studied under voltage-clamp conditions. 2 Superfused ATP (0.03-30 microM, at pH 7.5) evoked inward currents at rP2X1 receptors (EC50 value, 300+/-7 nM). ATP potency was reduced 2 fold at pH 6.5, and 6 fold at pH 5.5, without altering the maximum ATP effect. Alkaline conditions (pH 8.0) did not alter ATP activity. 3 Superfused ATP (0.01 - 300 microM, at pH 7. 5) evoked inward currents at rP2X3 receptors (EC50 value, 1.8+/-0.3 microM). ATP activity was affected only at pH 5.5, reducing agonist potency 15 fold without altering the maximum ATP effect. 4 Extracellular Zn2+ inhibited ATP-responses at rP2X1 receptors in a time-dependent manner, a 20 min pre-incubation being optimal (IC50 value, 1.0+/-0.2 microM). However, the Zn2+ effect was pH-independent, suggesting Zn2+- and H+-inhibition of ATP-responses occur through independent processes. 5 Extracellular Zn2+ weakly potentiated ATP-responses at rP2X3 receptors (EC50 value, 11+/-1 microM). The Zn2+ effect was dependent on pre-incubation time and, with 20 min pre-incubation periods, Zn2+ potentiated then inhibited ATP-responses in a concentration-dependent, but pH-independent, manner. 6 In summary, ATP activity at rP2X1 receptors was decreased by both extracellular H+ and Zn2+ and their effects were additive. ATP activity at rP2X3 receptors was less sensitive to H+-inhibition and, in contrast, was potentiated by Zn2+ in a pH-independent manner. These differential effects may help distinguish P2X1 and P2X3 receptors in whole tissues.  相似文献   

8.
The effect of the suramin analogue 8,8'-(carbonylbis(imino-4, 1-phenylenecarbonylimino-4,1-phenylenecarbonylimino))bis(1,3 , 5-naphthalenetrisulfonic acid) (NF279) was analyzed on human P2X(1) and P2X(7) receptor subtypes (human P2X(1) and human P2X(7)) heterologously expressed in Xenopus oocytes using the two-microelectrode voltage-clamp technique. At activating ATP concentrations of 1 microM (human P2X(1)) and 10 microM ATP (human P2X(7)), IC(50) values of 0.05 microM and 2.8 microM were found for human P2X(1) and human P2X(7) receptors, respectively. An increase in the activating [ATP] shifted the NF279 concentration-inhibition curve rightwards for both receptors. NF279 slowed the activation of both human P2X(1) and human P2X(7) as well as the desensitization of human P2X(1). The data support a model in which desensitization of P2X(1) is dependent on preceding activation of these P2X receptors. It is concluded that NF279 acts as a competitive antagonist with much higher potency at human P2X(1) than at P2X(7) receptors. NF279 may hence be suited to discriminate between both receptors in native tissues.  相似文献   

9.
Based on an unexpected high maximum response to piperidine-4-sulphonic acid (P4S) at human alpha1alpha6beta2gamma2 GABA(A) receptors expressed in Xenopus oocytes attempts to correlate this finding with the pharmacological profile of P4S and other GABA(A) receptor ligands in neuronal cultures from rat cerebellar granule cells and rat cerebral cortex were carried out. GABA and isoguvacine acted as full and piperidine-4-sulphonic acid (P4S) as partial agonists, respectively, at alpha1beta2gamma2, alpha6beta2gamma2 and alpha1alpha6beta2gamma2 GABA receptors expressed in Xenopus oocytes with differences in potency. Whole-cell patch-clamp recordings were used to investigate the pharmacological profile of the partial GABA(A) receptor agonists 4,5,6,7-tetrahydroisoxazolo-(5,4-c)pyridin-3-ol (THIP), P4S, 5-(4-piperidyl)isoxazol-3-ol (4-PIOL), and 3-(4-piperidyl)isoxazol-5-ol (iso-4-PIOL), and the competitive GABA(A) receptor antagonists Bicuculline Methbromide (BMB) and 2-(3-carboxypropyl)-3-amino-6-methoxyphenyl-pyridazinium bromide (SR95531) on cerebral cortical and cerebellar granule neurons. In agreement with findings in oocytes, GABA, isoguvacine and P4S showed similar pharmacological profiles in cultured cortical and cerebellar neurones, which are known to express mainly alpha1, alpha2, alpha3, and alpha5 containing receptors and alpha1, alpha6 and alpha1alpha6 containing receptors, respectively. 4-PIOL and iso-4-PIOL, which at GABA(A) receptors expressed in oocytes were weak antagonists, showed cell type dependent potency as inhibitors of GABA mediated responses. Thus, 4-PIOL was slightly more potent at cortical neurones than at granule neurones and iso-4-PIOL was more potent in inhibiting isoguvacine-evoked currents at cortical than at granule neurons. Furthermore the maximum response to 4-PIOL corresponded to that of a partial agonist, whereas that of iso-4-PIOL gave a maximum response close to zero. It is concluded that the pharmacological profile of partial agonists is highly dependent on the receptor composition, and that small structural changes of a ligand can alter the selectivity towards different subunit compositions. Moreover, this study shows that pharmacological actions determined in oocytes are generally in agreement with data obtained from cultured neurons.  相似文献   

10.
1. The antagonist activity of a series of diinosine polyphosphates (IpnI, where n=3, 4, 5) was assessed against ATP-activated inward currents at rat P2X(1-4) receptors expressed in Xenopus oocytes and studied under voltage-clamp conditions. 2. Diinosine polyphosphates were prepared by the enzymatic degradation of their corresponding diadenosine polyphosphates (e.g., Ap5A into Ip5I) using 5'-adenylic deaminase, and purified using reverse-phase chromatography. 3. Against ATP-responses at rP2X1 receptors, the potency order for antagonism was (pIC50): Ip5I (8.5)>Ip4I (6.3)>Ip3I (>4.5). Ip5I (10-100 nM) caused a concentration-dependent rightwards displacement of the ATP concentration-response curve without reducing the maximum ATP effect. However, the Schild plot was non-linear which indicated Ip5I is not a competitive antagonist. Blockade by micromolar concentrations of Ip5I was not surmountable. Ip4I also behaved as a non-surmountable antagonist. 4. Against ATP-responses at rP2X3 receptors, the potency order for antagonism was (pIC50): Ip4I (6. 0)>Ip5I (5.6)>Ip3I (>4.5). Blockade by Ip4I (pA2, 6.75) and Ip5I (pA2, 6.27) was surmountable at micromolar concentrations. 5. Diinosine polyphosphates failed to inhibit ATP-responses at rP2X2 receptors, whereas agonist responses at rP2X4 were reversibly potentiated by Ip4I and Ip5I. None of the parent diadenosine polyphosphates behave as antagonists at rP2X1 - 4 receptors. 6. Thus, Ip5I acted as a potent and relatively-selective antagonist at the rP2X1 receptor. This dinucleotide pentaphosphate represents a high-affinity antagonist for the P2X1 receptor, at which it acts in a competitive manner at low (100 nM) concentrations.  相似文献   

11.
P2X receptors are cation-selective, ligand-gated ion channels activated by synaptically released, extracellular adenosine 5'-triphosphate (ATP). ATP-gated currents are inhibited by ethanol when tested in dorsal root ganglion and CA1 neurons. Recently, we reported differences in sensitivity to ethanol inhibition between homomeric P2X(2) and P2X(4) receptors expressed in Xenopus oocytes, which suggested that subunit composition of native P2X receptors determines their ethanol sensitivity. The present study extended the investigation to P2X(3) receptors. The effects of ethanol and zinc ions (Zn(2+)) were tested on homomeric P2X(3) and P2X(4) receptors expressed in Xenopus oocytes using two-electrode voltage clamp. Ethanol potentiated ATP-gated P2X(3) receptor currents in a concentration dependent manner. In contrast, ethanol inhibited P2X(4) receptor function. Ethanol did not directly alter receptor function, nor did it alter the Hill coefficient or maximal ATP response (E(max)) in either P2X(3) or P2X(4) receptors. Ethanol increased the maximal response to Zn(2+) ATP-gated currents in P2X3 receptors which suggests that ethanol and Zn(2+) act on different sites. The differences in ethanol response of P2X(3) and P2X(4) receptors set the stage for future investigations that will use chimeric P2X receptors or other molecular manipulations of P2X structure to investigate the molecular sites and mechanisms of action of ethanol.  相似文献   

12.
Our understanding of the role GABA(C) receptors play in the central nervous system is limited due to a lack of specific ligands. Here we describe the pharmacological effects of (+/-)-cis-3- and (+/-)-trans-3-(aminocyclopentyl)methylphosphinic acids ((+/-)-cis- and (+/-)-trans-3-ACPMPA) as novel ligands for the GABA(C) receptor showing little activity at GABA(A) or GABA(B) receptors. (+/-)-cis-3-ACPMPA has similar potency to (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) at human recombinant rho1 (K(B)=1.0+/-0.2microM) and rat rho3 (K(B)=5.4+/-0.8microM) but is 15 times more potent than TPMPA on human recombinant rho2 (K(B)=1.0+/-0.3microM) GABA(C) receptors expressed in Xenopus oocytes. (+/-)-cis- and (+/-)-trans-3-ACPMPA are novel lead compounds for developing into more potent and selective GABA(C) receptor antagonists with increased lipophilicity for in vivo studies.  相似文献   

13.
Novel analogs of the P2 receptor antagonist pyridoxal-5'-phosphate-6-phenylazo-2',4'-disulfonate (PPADS) were synthesized. Modifications were made through functional group substitution on the sulfophenyl ring and at the phosphate moiety through the inclusion of phosphonates, demonstrating that a phosphate linkage is not required for P2 receptor antagonism. Substituted 6-phenylazo and 6-naphthylazo derivatives were also evaluated. Among the 6-phenylazo derivatives, 5'-methyl, ethyl, propyl, vinyl, and allyl phosphonates were included. The compounds were tested as antagonists at turkey erythrocyte and guinea-pig taenia coli P2Y(1) receptors, in guinea-pig vas deferens and bladder P2X(1) receptors, and in ion flux experiments by using recombinant rat P2X(2) receptors expressed in Xenopus oocytes. Competitive binding assay at human P2X(1) receptors in differentiated HL-60 cell membranes was carried out by using [(35)S]ATP-γ-S. A 2'-chloro-5'-sulfo analog of PPADS (C(14)H(12)O(9)N(3)ClPSNa), a vinyl phosphonate derivative (C(15)H(12)O(11)N(3)PS(2)Na(3)), and a naphthylazo derivative (C(18)H(14)O(12)N(3)PS(2)Na(2)), were particularly potent in binding to human P2X(1) receptors. The potencies of phosphate derivatives at P2Y(1) receptors were generally similar to PPADS itself, except for the p-carboxyphenylazo phosphate derivative C(15)H(13)O(8)N(3)PNa and its m-chloro analog C(15)H(12)O(8)N(3)ClPNa, which were selective for P2X vs. P2Y(1) receptors. C(15)H(12)O(8)N(3)ClPNa was very potent at rat P2X(2) receptors with an IC(50) value of 0.82 μM. Among the phosphonate derivatives, [4-formyl-3-hydroxy-2-methyl-6-(2-chloro-5-sulfonylphenylazo)-pyrid-5-yl]methylphosphonic acid (C(14)H(12)-O(8)N(3)ClPSNa) showed high potency at P2Y(1) receptors with an IC(50) of 7.23 μM. The corresponding 2,5-disulfonylphenyl derivative was nearly inactive at turkey erythrocyte P2Y(1) receptors, whereas at recombinant P2X(2) receptors had an IC(50) value of 1.1 μM. An ethyl phosphonate derivative (C(15)H(15)O(11)N(3)PS(2)Na(3)), whereas inactive at turkey erythrocyte P2Y(1) receptors, was particularly potent at recombinant P2X(2) receptors.  相似文献   

14.
Seven PPADS ( P yridoxal‐5′‐ P hosphate 6‐ A zophenyl 2′,4′‐ D i S ulfonate) analogs were investigated at Group 1 P2X receptors expressed in Xenopus oocytes. All seven analogs potently inhibited P2X1 (IC50 range, 5–32 nM) and P2X3 (IC50 range, 22–345 nM), the two Group I P2X receptor subtypes. Analogs showed greater inhibitory activity where the pyridoxal moiety of PPADS contained a 5′‐phosphonate group, rather than a 5′‐phosphate group. Analogs also showed greater potency where disulfonate groups were removed from, or substituted at, the azophenyl moiety. The most active analog was MRS 2257 (pyridoxal‐5′‐phosphonate 6‐azophenyl 3′,5′‐bismethylenephosphonate) at P2X1 (IC50, 5 nM) and P2X3 (IC50, 22 nM) receptors, being 14‐fold and 10‐fold more potent than PPADS itself. MRS 2257 produced a nonsurmountable inhibition when tested against a range of ATP concentrations, although blockade was reversed by about 85% after 20 minutes of washout. TNP‐ATP and Ip5I were equipotent with MRS 2257 at P2X1 receptors, whereas TNP‐ATP was 64‐fold more potent than MRS 2257 at P2X3 receptors. In conclusion, the PPADS template can be altered at the pyridoxal and phenyl moieties to produce P2X1 and P2X3 receptor antagonists showing higher potency and greater degree of reversibility than the parent compound at these Group I P2X receptors. Drug Dev. Res. 53:281–291, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

15.
1. We examined the effect of the sulphonylurea glimepiride on three types of recombinant ATP-sensitive potassium (K(ATP)) channels. 2. K(ATP) channels share a common pore-forming subunit, Kir6.2, which associates with different sulphonylurea receptor isoforms (SUR1 in beta-cells, SUR2A in heart and SUR2B in smooth muscle). 3. Kir6.2 was coexpressed with SUR1, SUR2A or SUR2B in Xenopus oocytes and macroscopic K(ATP) currents were recorded from giant inside-out membrane patches. Glimepiride was added to the intracellular membrane surface. 4. Glimepiride inhibited Kir6.2/SUR currents by interaction with two sites: a low-affinity site on Kir6.2 (IC(50)= approximately 400 microM) and a high-affinity site on SUR (IC(50)=3.0 nM for SUR1, 5.4 nM for SUR2A and 7.3 nM for SUR2B). The potency of glimepiride at the high-affinity site is close to that observed for glibenclamide (4 nM for SUR1, 27 nM for SUR2A), which has a similar structure. 5. Glimepiride inhibition of Kir6.2/SUR2A and Kir6.2/SUR2B currents, but not Kir6.2/SUR1 currents, reversed rapidly. 6. Our results indicate that glimepiride is a high-affinity sulphonylurea that does not select between the beta-cell, cardiac and smooth muscle types of recombinant K(ATP) channel, when measured in inside-out patches. High-affinity inhibition is mediated by interaction of the drug with the sulphonylurea receptor subunit of the channel.  相似文献   

16.
1. The present study was aimed at examining P2 receptor-mediated vasodilatation in human vessels. The isometric tension was recorded in isolated segments of the human left internal mammary artery branches precontracted with 1 microM noradrenaline. 2. Endothelial denudation abolished the dilator responses. 3. The selective P2Y(1) agonist, 2-MeSADP, induced a potent vasodilatation (pEC(50)=6.9+/-0.1). The P2Y(1) antagonist of 10 microM, MRS 2216, shifted the 2-MeSADP concentration-response curve 1.1 log units to the right. The combined P2Y(1) and P2X agonist, 2-MeSATP, stimulated a dilatation with a potency similar to that of 2-MeSADP. Furthermore, MRS 2216 had a similar antagonistic effect on both 2-MeSATP and 2-MeSADP indicating that P2X receptors do not mediate vasodilatation. 4. Both the P2Y(2/4) agonist, UTPgammaS and the P2Y(6) agonist, UDPbetaS, stimulated potent dilatations (pEC(50)=7.8+/-0.4 for UTPgammaS and 8.4+/-0.2 for UDPbetaS). 5. The 2-MeSADP-induced nitric oxide (NO)-mediated dilatation was studied in the presence of 10 micro M indomethacin, 50 nM charybdotoxin and 1 microM apamin. The involvement of the endothelium-derived hyperpolarising factor (EDHF) was investigated in the presence of 0.1 mM L-NOARG and indomethacin. The involvement of prostaglandins was investigated in the presence of L-NOARG, charybdotoxin and apamin. Both NO, EDHF and prostaglandins mediated 2-MeSADP dilatation with similar efficacy (E(max)=25+/-5% for NO, 25+/-6% for EDHF and 27+/-5% for prostaglandins). 6. In conclusion, extracellular nucleotides induce endothelium-derived vasodilatation in human vessels by stimulating P2Y(1), P2Y(2/4) and P2Y(6) receptors, while P2X receptors are not involved. Endothelial P2Y receptors mediate dilatation by release of EDHF, NO and prostaglandins.  相似文献   

17.
Strategy, Management and Health PolicyVenture Capital Enabling TechnologyPreclinical ResearchPreclinical Development Toxicology, Formulation Drug Delivery, PharmacokineticsClinical Development Phases I-III Regulatory, Quality, ManufacturingPostmarketing Phase IVThe effects of structural modifications of adenine nucleotides previously shown to enhance either agonist (2-thioether groups) or antagonist (additional phosphate moieties at the 3'- or 2'-position) properties at P2Y(1) receptors were examined at recombinant rat P2X(1), P2X(2), P2X(3), and P2X(4) receptors expressed in Xenopus oocytes. The potency of P2Y(1) agonists HT-AMP (2-(hexylthio)adenosine-5'-monophosphate) and PAPET (2-[2-(4-aminophenyl)ethylthio]adenosine-5'-triphosphate) was examined at P2X receptors. Both nucleotides showed a preference for the Group I (α,β-meATP-sensitive, fast-inactivating) P2X sub-units. HT-AMP was 5-fold more potent than ATP at P2X(3) receptors and a partial agonist at all except P2X(2) receptors, at which it was a full agonist. The efficacy of HT-AMP was as low as 23% at P2X(4) receptors. PAPET was a weak partial agonist at rat P2X(4) receptors and a nearly full agonist at the other subtypes. At rat P2X(3) receptors, PAPET was more potent than any other known agonist (EC(50) = 17 ± 3 nM). MRS 2179 (N(6)-methyl-2'-deoxyadenosine 3', 5-bisphosphate, a potent P2Y(1) receptor antagonist) inhibited ATP-evoked responses at rat P2X(1) receptors with an IC(50) value of 1.15 ± 0.21 μM. MRS 2179 was a weak antagonist at rat P2X(3) receptors, with an IC(50) value of 12.9 ± 0.1 μM, and was inactive at rat P2X(2) and P2X(4) receptors. Thus, MRS 2179 was 11-fold and 130-fold selective for P2Y(1) receptors vs. P2X(1) and P2X(3) receptors, respectively. MRS 2209, the corresponding 3'-deoxy-2'-phosphate isomer, was inactive at rat P2X(1) receptors, thus demonstrating its greater selectivity as a P2Y(1) receptor antagonist. Various adenine bisphosphates in the family of MRS 2179 containing modifications of either the adenine (P2Y(1) antagonists with 2- and 6-substitutions), the phosphate (a 3',5'-cyclic diphosphate, inactive at P2Y(1) receptors), or the ribose moieties (antagonist carbocyclic analogue), were inactive at both rat P2X(1) and P2X(3) receptors. An anhydrohexitol derivative (MRS 2269) and an acyclic derivative (MRS 2286), proved to be selective antagonists at P2Y(1) receptors, since they were inactive as agonist or antagonist at P2X(1) and P2X(3) receptors.  相似文献   

18.
1 Many types of culture media contain a pH-sensitive dye. One commonly occurring dye, Phenol red sodium (Na(+)) salt, was tested for blocking activity at rat P2X(1-4) receptors (P2X(1-4)Rs) expressed in Xenopus oocytes. 2 Phenol red Na(+)-salt antagonised adenosine 5'-triphosphate (ATP) responses at P2X(1)R (IC(50), 3 microM) and, at higher concentrations, also blocked P2X(2)R and P2X(3)R. Phenol red Na(+)-salt, purified of lipophilic contaminants, blocked P2X(1)R and P2X(3)R by acting as an insurmountable antagonist. 3 Two lipophilic extracts of Phenol red antagonised ATP responses at P2XRs. Extract A was a potent antagonist at P2X(1)R (IC(50), 1.4 microM), whereas extract B was a potent antagonist at P2X(3)R (IC(50), 4.1 microM). A bisphenolic compound (RS151030) found in these extracts was a potent antagonist at P2X(1)R (IC(50), 0.3 microM) and at P2X(3)R (IC(50), 2.4 microM). 4 Phenolphthalein base was a potent irreversible antagonist at P2X(1)R (IC(50), 1 microM), whereas Phenolphthalein K(+)-salt was 25-fold less potent here. 5 Phenolphthalein base was a reversible antagonist of ATP responses at rat P2X(4)R (IC(50), 26 microM), whereas Phenolphthalein K(+)-salt was inactive. 6 Dimethyl sulphoxide (DMSO), used to dissolve lipophilic extracts, showed pharmacological activity by itself at rat P2X(1)R and P2X(4)R. 7 Thus, Phenol red and related compounds are antagonists at rat P2X(1)R, but are also active at other rat P2XRs. Phenolphthalein base is a newly identified, low potency antagonist of ATP responses at P2X(4)R. Culture media containing these red dyes should be used cautiously in future pharmacological studies of P2XRs. Also, wherever possible, the solvent DMSO should be used with caution.  相似文献   

19.
Metabotropic G protein-coupled receptors have recently been recognized as targets for anesthetics and analgesics. In particular, G(q)-coupled receptors such as muscarinic M(1) receptors (M(1)R) and 5-hydroxytryptamine (5-HT) type 2A receptors have been reported to be targets for anesthetics. Much less is known, however, about the effects of anesthetics on G(i)-coupled receptors. Here we report a method to analyze functions of G(i)-coupled receptors in Xenopus oocytes expressing a chimeric G alpha protein. A chimeric G alpha(q) protein G alpha(qi5), which contains carboxy-terminus five amino acids of G alpha(i), enables G(i)-coupled receptors to couple to Gq-coupled receptor-mediated downstream pathways such as activation of phospholipase C. We determined acetylcholine (ACh)-induced Ca(2+)-activated Cl(-) currents in Xenopus oocytes coexpressing G(i)-coupled muscarinic M(2)receptors (M(2)R) with the chimeric G alpha(qi5). Although ACh did not induce any currents in oocytes expressing M(2)R alone, it caused robust Cl(-) currents in oocytes coexpressing M(2)R with G alpha(qi5). The EC(50) of the ACh-induced Cl(-) current mediated through G alpha(qi5) was 0.2 micromol/l, which was 2.2 times higher than that of the ACh-induced G protein-activated inwardly rectifying K(+) currents activated by G beta gamma subunits liberated from endogenously expressed G alpha(i) in Xenopus oocytes. Other G(i)-coupled somatostatin type 2, 5-HT(1A) and delta-opioid receptors, when coexpressed with G alpha(qi5) in oocytes, also caused robust Ca(2+)-activated Cl(-) currents. In oocytes coexpressing M(2)R and G alpha(qi5), a volatile anesthetic halothane inhibited M(2)R-induced Cl(-) currents in a concentration-dependent manner with the IC(50) of 1.1 mmol/l, suggesting that halothane inhibits M(2)R-induced cellular responses at clinically relevant concentrations. Treatment with the protein kinase C inhibitor GF109203X produced a 3.5-fold enhancement of the initial Cl(-) currents induced by 1 micromol/l ACh in oocytes expressing M(2)R and G(qi5). The rate of halothane-induced inhibition of Cl(-) currents elicited by ACh, however, was not changed in such oocytes pretreated with GF109203X. These findings suggest that halothane inhibits the M(2)R-induced signaling by acting at sites other than PKC activity. Collectively these findings suggest that the use of oocyte expressing G alpha(qi5) would be helpful to examine the effects of anesthetics or analgesics on the function of G(i)-coupled receptors in the Xenopus oocyte expression system.  相似文献   

20.
1. The aim of this study was to functionally characterize the recombinant mouse P2X(4) receptor and to compare its pharmacological properties with those of the human and rat orthologues. 2. Whole cell recordings were made from rafts of HEK-293 cells stably expressing recombinant mouse, rat or human P2X(4) receptors, using Cs-aspartate containing electrodes (3 - 8 MOmega) in a HEPES-buffered extracellular medium. 3. The agonist potency of ATP at the three species orthologues was similar, with mean EC(50) values of 2.3 microM, 1.4 microM and 5.5 microM, respectively. 4. Adenosine-5'-tetraphosphate (AP4) acted as a partial agonist with respect to ATP at the mouse and human P2X(4) receptors (EC(50)=2.6 and 3.0 microM), but was significantly less potent at the rat orthologue (EC(50)=20.0 microM). alpha,beta-methylene adenosine-5'-triphosphate (alpha,beta-meATP) also acted as a partial agonist, producing 29% of the maximum response at the mouse P2X(4) and 24% at the human P2X(4) receptor. 5. In contrast to the other species orthologues, alpha,beta-meATP failed to elicit a significant agonist response at rat P2X(4) receptors, and was found to act as an antagonist, with an IC(50) of 4.6 microM, against 10 microM ATP. 6. Mouse P2X(4) receptors were found to be sensitive to the antagonist, pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) (IC(50)=10.5 microM), as were human P2X(4) receptors (IC(50)=9.6 microM). The rat receptor however, showed a low sensitivity to PPADS (IC(50)>100 microM). 7. All three orthologues were relatively suramin-insensitive (IC(50)>100 microM) and insensitive to 1-[N, O-Bis(5-isoquinoline sulphonyl)benzyl]-2-(4-phenylpiperazine)ethyl]-5-isoquinoline sulphonamide (KN-62; IC(50)>3 microM). 8. Our results suggest that the pharmacological properties of the mouse receptor are most similar to the human P2X(4) receptor, and differ markedly from the rat receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号