首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ischemic preconditioning (IPC) produces cardioprotection by phosphorylation of glycogen synthaes kinase-3β (GSK-3β) that inhibits the opening of mitochondrial permeability transition pore (MPTP), and this cardioprotective action of IPC is attenuated by hyperlipidaemia. The present study investigated the role of GSK-3β in attenuation of cardioprotective effect of IPC, by hyperlipidaemia in the rat heart. Hyperlipidaemia was produced in rat by feeding high fat diet for six weeks. Isolated perfused rat heart was subjected to 30 min of ischemia followed by 120 min of reperfusion. Myocardial infarct size was estimated by triphenyltetrazolium chloride (TTC) staining and lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) was analyzed from coronary effluent. IPC significantly decreased the myocardial infarct size and the release of LDH and CK-MB from normal rat heart. IPC induced myocardial protection was attenuated in hyperlipidaemic rat heart. However, cardioprotective effect of pharmacological preconditioning with GSK-3β inhibitors i.e. Lithium Chloride (LiCl) (20 mM), Indirubin - 3 Monooxime (1 μM) and 3-(2, 4-dichlorophenyl)-4-(1-methyl-1H-indol-3-yl)-1H-pyrrole-2, 5-dione (SB216763) (3 μM), was not attenuated. This differential attenuation by hyperlipidaemia, of IPC and pharmacological preconditioning induced cardioprotection is a new finding in our study. GSK-3β inhibition is reported to increase the threshold of opening for MPTP during reperfusion. Administration of atractyloside (20 μM), an opener of MPTP, significantly attenuated the cardioprotective effect of IPC in normal heart, and pharmacological preconditioning in the hyperlipidaemic rat heart. Thus, the attenuation of cardioprotective effect of IPC in hyperlipidaemic heart may be due to inhibition of protective signaling pathways upstream of GSK-3β and inhibition of opening of MPTP.  相似文献   

2.
1 The cardioprotective effect of N-[(1S, trans)-2-hydroxycyclopentyl]adenosine (GR79236), an adenosine A1 receptor agonist, was compared with that produced by ischaemic preconditioning in an anaesthetized rabbit model of myocardial ischaemia and reperfusion. In addition, we examined the effect of different body core temperatures on GR79236- or ischaemic preconditioning-induced cardioprotection when administered prior to ischaemia, and on cardioprotection induced by GR79236 administered 10 min prior to the onset of reperfusion. 2 When rabbits were subjected to 30 min occlusion of the left coronary artery, followed by 2 h reperfusion, GR79236 (3 x 10(-8) mol kg-1 i.v. (10.5 microg kg-1 i.v.)) or ischaemic preconditioning (5 min ischaemia followed by 5 min reperfusion), administered or applied 10 min prior to the occlusion, significantly limited the development of infarction. The cardioprotective effect of ischaemic preconditioning was significantly greater than that seen after administration of GR79236. Pre-treatment with the selective adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 3.3 x 10(-6) mol kg-1 (1 mg kg-1 i.v.)), prevented the cardioprotective effect of GR79236, but not that of ischaemic preconditioning. 3 Maintaining body core temperature at 38.5 degrees C rather than at 37.0 degrees C did not influence infarct size in control groups of rabbits, but reduced the cardioprotective effect of GR79236 when administered 10 min prior to occlusion or 10 min prior to the onset of reperfusion. The cardioprotective effect of ischaemic preconditioning was not temperature-dependent. 4 In conclusion, myocardial protection conferred by GR79236 in anaesthetized rabbits is mediated via adenosine A1 receptors. Myocardial protection can be conferred when GR79236 is administered before the onset of ischaemia or reperfusion, and is reduced when body core temperature is maintained at 38.5 degrees C rather than at 37.0 degrees C. In contrast, myocardial protection conferred by ischaemic preconditioning is not reduced by adenosine A1 receptor blockade, or by maintaining body core temperature at 38.5 degrees C rather than at 37.0 degrees C. These findings point to distinct differences in the mechanisms of induction of myocardial protection by adenosine A1 receptor agonist and ischaemic preconditioning. They also highlight the need for careful control of body core temperature when investigating the phenomenon of cardioprotection.  相似文献   

3.
Adenosine and preconditioning revisited   总被引:2,自引:0,他引:2  
1. Myocardial tolerance against infarction is substantially increased by exposing myocytes to 3-10 min transient ischaemia. In this phenomenon, termed 'preconditioning', the adenosine receptor is one of the redundant triggers and the best characterized factor in the cardioprotective mechanism. 2. An increase in interstitial adenosine during preconditioning is thought to be derived primarily from hydrolysis of 5'-AMP in the myocyte by cytosolic 5'-nucleotidase, although a contribution of ectosolic 5'-nucleotidase remains controversial. Adenosine production during ischaemia is substantially suppressed in the preconditioned myocardium, probably due to a decrease in ATP utilization. 3. The adenosine receptor needs to be activated not only at the time of preconditioning ischemia, but also during ischaemic insult for the preconditioning to be cardioprotective. However, the extent of cardioprotection afforded by preconditioning is primarily determined by the interstitial adenosine level achieved during preconditioning ischaemia, not by the level during sustained ischaemia. These data suggest that a post-receptor mechanism downstream of the adenosine receptor may be up-regulated after preconditioning. 4. Studies in vitro suggest that the subtypes of adenosine receptor relevant to preconditioning against infarction are A1 and A3, the activation of which appears to provide additive protection. The functional interrelationship between these subtypes in vivo remains unknown. 5. An important step downstream of adenosine receptor activation is protein kinase C (PKC), which facilitates opening of ATP-sensitive potassium (KATP) channels, probably leading to enhancement of myocardial tolerance. However, activation of other protein kinases, such as tyrosine kinase, may also be important in preconditioning, depending on the animal species and preconditioning protocols. The PKC isoform and location of KATP channels (i.e. sarcolemmal vs mitochondrial KATP) that induce anti-infarct tolerance in myocytes remain to be identified.  相似文献   

4.
1. Cytochrome P450 (CYP) epoxygenases and their arachidonic acid metabolites play a protective role against ischaemia-reperfusion injury. In the present study, we investigated whether endogenous CYP2J3/epoxyeicosatrienoic acid (EET) mediates the cardioprotective effects of ischaemic preconditioning (IPC) and ischaemic post-conditioning (IPost). 2. Male Wistar rats were subjected to two cycles of IPC, consisting of 5 min ischaemia and 5 min reperfusion, followed by 45 min occlusion and 2 h reperfusion; IPost consisted of three cycles of 30 s reperfusion and 30 s re-occlusion at the onset of reperfusion. The selective CYP epoxygenase inhibitor N-methylsulphonyl-6-(2-propargyloxyphenyl)hexanamide (MS-PPOH; 3 mg/kg) was administered 10 min before ischaemia or during ischaemia 10 min before reperfusion started. Cardiac function was measured continuously with a angiocatheter connected to a fluid-filled pressure transducer and myocardial infarct size was assessed by triphenyl tetrazolium chloride staining at the end of the experiment. 3. Subjecting rats to IPC and IPost similarly improved cardiac function and reduced myocardial infarct size. Interestingly, IPost, but not IPC, significantly increased CYP2J3 mRNA (1.75 ± 0.22 vs 1.0; P < 0.05) and protein (1.62 ± 0.22 vs 1.0; P < 0.05), as well as 11,12-EET synthesis compared to I/R (6.2 ± 0.2 vs 2.9 ± 0.2 ng/mg wet weight, respectively; P < 0.01). Administration of MS-PPOH before ischaemia significantly decreased 11,12-EET synthesis in both IPC and IPost compared with I/R rats (2.1 ± 0.2, 3.2 ± 0.3 and 2.9 ± 0.2 ng/mg wet weight, respectively; P < 0.01), but decreased the cardioprotective effects, as evidenced by cardiac function and myocardial infarct size, of IPost only. 4. These data indicate that endogenous activation of CYP2J3/EET may be an essential trigger leading to the protective effects of IPost, but not IPC, in the rat heart.  相似文献   

5.
Introduction: Kinins are main active mediators of the kallikrein–kinin system (KKS) via bradykinin type 1 inducible (B1R) and type 2 constitutive (B2R) receptors. B2R mediates most physiological bradykinin (BK) responses, including vasodilation, natriuresis, NO, prostaglandins release.

Areas covered: The article summarizes knowledge on kinins, B2R signaling and biological functions; highlights crosstalks between B2R and renin–angiotensin system (RAS). The double role (Janus face) in physiopathology, namely the beneficial protection of the endothelium, which forms the basis for the therapeutical utilization of B2 receptor agonists, on the one side, and the involvement of B2R in inflammation or infection diseases and in pain mechanisms, which justifies the use of B2R antagonists, on the other side, is extensively analyzed.

Expert opinion: For decades, the B2R has been unconsciously activated during angiotensin-converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB) treatments. Whether direct B2R targeting with stable agonists could bring additional therapeutic benefit to RAS inhibition should be investigated. Efficacy, established in experimental models, should be confirmed by translational studies in cardiovascular pathologies, glaucoma, Duchenne cardiopathy and during brain cancer therapy. The other face of B2R is targeted by antagonists already approved to treat hereditary angioedema. The use of antagonists could be extended to other angioedema and efficacy tested against acute pain and inflammatory diseases.  相似文献   

6.
The investigation of therapeutic actions of angiotensin type 1 (AT1) receptor antagonists and ACE inhibitors (ACEI) demonstrated complex interactions between the renin-angiotensin system (RAS) and the kallikrein-kinin system (KKS) in several experimental and clinical studies. They are evidenced by the fact that (1) ACE efficiently catabolizes kinins; (2) angiotensin-derivatives such as ANG-(1-7) exert kininlike effects; and (3) kallikrein probably serves as a prorenin-activating enzyme. (4) Several authors have demonstrated experimentally that the protective effects of ACEI are at least partly mediated by a direct potentiation of kinin receptor response on BK stimulation. (5) Furthermore, studies on AT1 antagonists, which do not directly influence kinin degradation, and studies on angiotensin-receptor transgenic mice have revealed additional interactions between the RAS and the KKS. There is mounting evidence that an autocrine cascade including kinins, nitric oxide, prostaglandins, and cyclic GMP is involved in at least some of the angiotensin type 2 receptor effects. This review discusses multiple possibilities of cross-talks between the RAS and KKS in vascular and cardiac physiology and pathology after ACE inhibition and AT1 receptor blockade.  相似文献   

7.
The cardioprotective effects of the selective adenosine A1-receptor agonist, GR79236 (N-[(1S, trans)-2-hydroxycyclopentyl]adenosine), were examined in a porcine model of myocardial ischaemia-reperfusion injury. When pigs were subjected to a 50-min coronary artery occlusion followed by 3-h reperfusion, GR79236 (10 nmol/kg, i.v.) significantly reduced infarct size whether given 10 min before the onset of ischaemia or reperfusion. This effect was independent of the bradycardia induced by GR79236, as it was also observed in animals in which heart rate was maintained by electrical pacing. However, GR79236 administered 10 min after reperfusion did not reduce infarct size. GR79236 had no effect on the incidence or outcome of ventricular dysrhythmias in this pig model of infarction. Similarly, ischaemic preconditioning (IPC, 2 x 10-min ischaemia and 10-min reperfusion) significantly reduced infarct size. The selective adenosine A1-receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 3.3 micromol/kg, i.v.), abolished the haemodynamic and cardioprotective effects of GR79236 and the cardioprotective effects of IPC in anaesthetised pigs. In conclusion, GR79236 exerted a marked cardioprotective effect in a porcine model of myocardial ischaemia-reperfusion injury, provided that it was administered before reperfusion. This suggests that GR79236 may have clinical utility in the treatment of various aspects of ischaemic heart disease.  相似文献   

8.
1. Although pharmacological preconditioning (PPC) has emerged as an alternative to ischaemic preconditioning (IPC) in cardioprotection, the efficacy of PPC compared with IPC has not been investigated. Because IPC is mediated by complex signalling cascades arising from multiple triggers, we have hypothesized that combined PPC is necessary to mimic IPC. 2. Isolated and perfused rat hearts underwent IPC by three cycles of 5 min ischaemia and 5 min reperfusion before 30 min global ischaemia followed by 120 min reperfusion. Adenosine (30 micromol/L), diazoxide (50 micromol/L) and s-nitroso-N-acetylpenicillamine (SNAP; 50 micromol/L) were added for 25 min just before (pretreatment modality) or 45 min before (PPC modality) the index ischaemia. 3. Ischaemic preconditioning significantly improved isovolumic left ventricular (LV) function and reduced infarct size. Although pretreatment with adenosine, diazoxide or SNAP alone was capable of reducing infarct size, PPC with each drug alone or in a combination of two drugs except for diazoxide plus SNAP failed to reduce infarct size. In contrast, PPC in combination with adenosine, diazoxide and SNAP (triple combination PPC) conferred significant improvement of LV function and reduction of infarct size that was as effective as IPC. 4. Cardioprotection afforded by triple combination PPC was abolished by the Gi/o-protein inhibitor pertussis toxin, the mitochondiral KATP channel inhibitor 5-hydroxydecanoate or the nitric oxide (NO) scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl imidazoline-1-oxyl 3-oxide (carboxy-PTIO). 5. Protein kinase C (PKC)-epsilon in the particulate fraction was activated throughout preconditioning ischaemia and reperfusion. Although PKC-epsilon was activated during treatment with adenosine, diazoxide or SNAP alone, it was inactivated after washout. In contrast, PKC-epsilon remained activated after triple combination PPC. The PKC inhibitor chelerythrine abolished activation of PKC-epsilon and cardioprotection afforded by IPC and triple combination PPC. 6. These results demonstrate that combined PPC with a G-protein-coupled receptor agonist, a mitochondrial KATP channel opener and an NO donor is necessary to mimic IPC and such synergistic cardioprotection is associated with enhanced and sustained activation of PKC-epsilon.  相似文献   

9.
beta-Adrenoceptor (AR) ligands have been the mainstay of cardiovascular therapy for decades, with beta-AR antagonist being used for hypertension, angina and myocardial infarction and adrenaline in use for cardiopulmonary resuscitation for nearly 100 years. Ischaemia of the heart through coronary artery occlusion causes cell injury and death through necrosis and apoptosis. Reperfusion of the ischaemic myocardium results in cardiac dysfunction and infarction. Stimulation of alpha- and beta-ARs in the ischaemic heart have variable and inconsistent effects depending on when the agonist is applied. This review describes the different effects of stimulation of the three established beta-AR subtypes (beta(1)-, beta(2)- and beta(3)-ARs) either before ischaemia (preconditioning) or during ischaemia and reperfusion of the heart (postconditioning). Brief periods of ischaemia preceding a major ischaemic episode can have a protective effect against post-ischaemia-reperfusion damage, known as ischaemic preconditioning. This review considers the role of endogenous catecholamines released during preconditioning and the nature of the adrenoceptor subtypes that mediate these effects. The clinical significance of this to the use of beta-AR antagonists is considered. The transduction pathways and effects on apoptosis of the cardioprotective and deleterious effects of AR activation are considered. This commentary reviews the literature and attempts to bring together a unified synopsis of the effects of adrenoceptor stimulation in myocardial ischaemia and the potential clinical relevance.  相似文献   

10.
Kinins are located in the vascular smooth muscle and the heart, and are the most potent biologically active polypeptides. Pharmacological studies of cardiovascular disorders, including hypertension, cardiac failure, ischemia, myocardial infarction and left ventricular hypertrophy, indicate that reduced activity of the local kallikrein-kinin system (KKS) may be instrumental in the induction of these disorders. The ability of kallikrein gene delivery and bradykinin (BK) B2 receptor agonists to produce a wide spectrum of beneficial effects make them excellent candidate therapies for the treatment of hypertension, and cardiovascular and renal diseases. In addition, strategies that activate kinin receptors may be applicable to the treatment of cardiovascular and renal disorders. However, one major challenge of this approach is the unanswered question of whether there is a sufficiently safe therapeutic index between the potential cardioprotective and pro-inflammatory effects following administration of BK B2 receptor agonists.  相似文献   

11.
Angiotensin II‐preconditioning (APC) has been shown to reproduce the cardioprotective effects of ischaemic preconditioning (IPC), however, the molecular mechanisms mediating the effects of APC remain unknown. In this study, Langendorff‐perfused rat hearts were subjected to IPC, APC or both (IPC/APC) followed by ischaemia‐reperfusion (IR), to determine translocation of PKCε, PKCδ, Akt, Erk1/2, JNK, p38 MAPK and GSK‐3β to mitochondria as an indicator of activation of the protein kinases. In agreement with previous observations, IPC, APC and IPC/APC increased the recovery of left ventricular developed pressure (LVDP), reduced infarct size (IS) and lactate dehydrogenase (LDH) release, compared to controls. These effects were associated with increased mitochondrial PKCε/PKCδ ratio, Akt, Erk1/2, JNK, and inhibition of permeability transition pore (mPTP) opening. Chelerythrine, a pan‐PKC inhibitor, abolished the enhancements of PKCε but increased PKCδ expression, and inhibited Akt, Erk1/2, and JNK protein levels. The drug had no effect on the APC‐ and IPC/APC‐induced cardioprotection as previously reported, but enhanced the post‐ischaemic LVDP in controls. Losartan, an angiotensin II type 1 receptor (AT1‐R) blocker, abolished the APC‐stimulated increase of LVDP and reduced PKCε, Akt, Erk1/2, JNK, and p38. Both drugs reduced ischaemic contracture and LDH release, and abolished the inhibition of mPTP by the preconditioning. Chelerythrine also prevented the reduction of IS by APC and IPC/APC. These results suggest that the cardioprotection induced by APC and IPC/APC involves an AT1‐R‐dependent translocation of PKCε and survival kinases to the mitochondria leading to mPTP inhibition. In chelerythrine‐treated hearts, however, alternate mechanisms appear to maintain cardiac function.  相似文献   

12.

Objective:

The cardioprotective potential of human recombinant erythropoietin (alpha) (Epo) against ischemia-reperfusion-induced injury is well known. But, the underlying mechanisms are not well elucidated. The aim of this study was to characterize the mechanism involved in the cardioprotective effect of Epo-induced preconditioning in isolated rat heart.

Materials and Methods:

The heart was mounted on a Langendorff apparatus. After 10 min of stabilization, four cycles of ischemic preconditioning (IPC) were given followed by 30 min of global ischemia and 120 min of reperfusion. Epo preconditioning was induced by four cycles of 5-min perfusion of K-H solution containing Epo (1.0 U/ml) followed by 5 min perfusion with K-H solution. Myocardial infarct size was estimated macroscopically using the triphenyltetrazolium chloride staining technique. The extent of myocardial injury was measured by release of lactate dehydrogenase and creatine kinase-MB in the coronary effluent.

Results:

The present study demonstrates that Epo preconditioning was almost as effective as IPC. Administration of Wortmannin (100 nM), a PI-3K inhibitor, or Chelerythrine (1 µM), a protein kinase-C (PKC) inhibitor, or AG490 (5 µM), a JAK-2 inhibitor, significantly attenuated the cardioprotective effects of Epo-induced preconditioning.

Conclusion:

Our result suggest that the cardioprotective potential of Epo-induced preconditioning in isolated rat heart was due to an interplay of the JAK-2, PI-3K and PKC pathways. Inhibition of any one of the three pathways was sufficient to block the cardioprotective effect of Epo-induced preconditioning in isolated rat heart.  相似文献   

13.
万里燕  崔建  李亮  魏建英  李松鹤 《中国药房》2010,(42):3987-3990
目的:对高血压患者应用血管紧张素转换酶抑制剂(ACEI)或血管紧张素Ⅱ受体拮抗药(ARB)能否预防房颤进行评价。方法:计算机检索PubMed(1980~2008年)、ScienceDirec(t1980~2008年)、Cochrane图书馆临床对照试验资料数据库(1980~2008年)、Google学术网站、中国生物医学文献数据库(1980~2008年)、中国万方数据库(1980~2008年),纳入比较ACEI或ARB与其它药治疗高血压的随机对照研究,对纳入研究的方法学质量进行评价,用RevMan5.0版软件进行统计学分析。结果:共6个随机对照研究入选,病例数总计39964例,治疗组18930例,对照组21034例。Meta分析结果显示,在高血压患者中:ACEI类药与对照组比较在预防房颤发作方面差异无统计学意义;ARB类药与对照组比较差异有统计学意义[RR合并=0.63,95%C(I0.44,0.90),P=0.01]。结论:对于高血压患者,ARB类药可降低房颤发生几率。  相似文献   

14.
Bradykinin is thought to play a major role among the endogenous cardioprotective candidates of ischaemic preconditioning (IPC). Little attention has been paid to the fact that in the tissue kallidin (KAL), rather than bradykinin might be the physiological mediator of the kallikrein-kinin system. In order to evaluate the importance of one or the other peptide the release and effect of both kinins has been investigated in isolated rat hearts following IPC. Bradykinin- and a KAL-like peptide were measured in the effluent of the rat isolated Langendorff heart with two different specific radioimmunoassays. The creatine kinase activity in the effluent was judged as degree of cardiac injury caused by ischaemia. During IPC, which consists of three 5 min no-flow and 5 min reperfusion cycles prior to the 30 min ischaemia, the bradykinin level in the effluent did not change significantly (15.4-19.4 pg ml(-1)). In the control group the bradykinin levels were 15.9-16.6 pg ml(-1). During IPC KAL-like peptide (Arg(1)-, instead of Lys(1)-KAL), which has recently been verified by mass spectrometry, displays 5.8-fold higher levels in the effluent and significantly increases in the same time interval from 90.4 to 189 pg ml(-1).After 30 min ischaemia the bradykinin levels in the IPC group were not significantly different to those of the control group (18.7 vs 14.4 pg ml(-1)). The KAL-like peptide levels in the IPC group vs the control group were 105 vs 86.1 pg ml(-1). By the 30 min ischaemia the creatine kinase activity in the IPC group increased from 0.367 to 8.93 U l(-1) (before and 10-30 min after ischaemia). In the control group during the same time period the creatine kinase levels increased from 0.277 to 34.9 U l(-1). The low increase in creatine kinase activity following IPC was taken as equivalent of the cardioprotective action. A KAL antibody or HOE140 (kinin B(2)-receptor antagonist) completely abolished this beneficial effect of IPC (36.6 and 53.0 U l(-1)) when added to the perfusion medium during the reperfusion cycles of IPC prior to the 30 min ischaemia. Our data suggest that in rat hearts KAL-like peptide rather than bradykinin is the physiological compound activated by IPC and acting via the cardiac kinin B(2)-receptor. Thus, endogenously generated KAL-like peptide seems to play a major role in the cardioprotection of IPC.  相似文献   

15.
It is clear that multiple signalling pathways regulate the critical balance between cell death and survival in myocardial ischaemia-reperfusion. Recent attention has focused on the activation of survival or salvage kinases, particularly during reperfusion, as a common mechanism of many cardioprotective interventions. The phosphatidyl inositol 3'-hydroxy kinase/Akt complex (PI3K/Akt) and p42/p44 mitogen-activated protein kinase cascades have been widely promoted in this respect but the cyclic guanosine 3',5'-monophosphate/cGMP-dependent protein kinase (cGMP/PKG) signal transduction cassette has been less systematically investigated as a survival cascade. We propose that activation of the cGMP/PKG signalling pathway, following activation of soluble or particulate guanylate cyclases, may play a pivotal role in survival signalling in ischaemia-reperfusion, especially in the classical preconditioning, delayed preconditioning and postconditioning paradigms. The resurgence of interest in reperfusion injury, largely as a result of postconditioning-related research, has confirmed that the cGMP/PKG pathway is a pivotal salvage mechanism in reperfusion. Numerous studies suggest that the infarct-limiting effects of preconditioning and postconditioning, exogenously donated nitric oxide (NO), natriuretic peptides, phosphodiesterase inhibitors, and other diverse drugs and mediators such as HMG co-A reductase inhibitors (statins), Rho-kinase inhibitors and adrenomedullin, whether given before and during ischaemia, or specifically at the onset of reperfusion, may be mediated by activation or enhancement of the cGMP pathway, either directly or indirectly via endogenous NO generation downstream of PI3K/Akt. Putative mechanisms of protection include PKG regulation of Ca(2+) homeostasis through the modification of sarcoplasmic reticulum Ca(2+) uptake mechanisms, and PKG-induced opening of ATP-sensitive K(+) channels during ischaemia and/or reperfusion. At present, significant technical obstacles in defining the precise roles played by cGMP/PKG signalling include the heavy reliance on pharmacological PKG inhibitors of uncertain selectivity, difficulties in determining PKG activity in intact tissue, and the growing recognition that intracellular compartmentalisation of the cGMP pool may contribute markedly to the nucleotide's biological actions and biochemical determination. Overall, the body of experimental evidence suggests that cGMP/PKG survival signalling ameliorates irreversible injury associated with ischaemia-reperfusion and may be a tractable therapeutic target.  相似文献   

16.
激肽释放酶-激肽系统的心血管领域研究进展   总被引:16,自引:0,他引:16  
本文主要就激肽释放酶 激肽系统 (KKS)在心血管领域的研究进展进行综述。KKS是机体重要的调节系统 ,广泛地存在于许多组织和器官中 ,参与多种生理和病生理过程 ,如心血管、肾脏和神经系统的功能调节 ,平滑肌收缩、葡萄糖代谢、细胞增殖、炎症与疼痛及休克过程等。近年来特别是在心血管方面的研究进展很快 ,许多临床研究和基础实验已证实KKS具有强大的心血管保护作用 ,如调节血压、抑制心肌肥厚的形成、减少缺血再灌注损伤和参与缺血预适应形成。对于其各组分及相应受体作用的研究已达分子水平。基因敲除和转基因模型的建立 ,进一步扩大了研究的深度和广度 ,为心血管疾病的治疗和新型药物的开发提供广阔的前景  相似文献   

17.
The present study is designed to investigate the mechanism of the cardioprotective effect of ischaemic preconditioning. Isolated perfused rat heart was subjected to global ischaemia for 30 min followed by reperfusion for 120 min. Coronary effluent was analysed for LDH and CK release to assess the degree of cardiac injury. Myocardial infarct size was estimated macroscopically using TTC staining. Four episodes of ischaemic preconditioning markedly reduced LDH and CK release in the coronary effluent and decreased myocardial infarct size. Administration of prazosin (alpha(1)adrenoceptor antagonist) before global ischaemia reduced the extent of ischaemia-reperfusion induced myocardial injury. The cardioprotective effect of ischaemic preconditioning was abolished by prazosin and colchicine (microtubule disaggregator). On the basis of these results, it may be concluded that the cardioprotective effects of ischaemic preconditioning may be mediated through stimulation of alpha(1)adrenoceptors and translocation of PKC.  相似文献   

18.
The present study was designed to investigate the possible role of free radicals in cardioprotective effects of ischemic, pharmacological and remote preconditioning. Isolated rat heart was perfused on Langendorff apparatus with Kreb's Henseleit solution and subjected to 30 min global ischemia followed by 120 min reperfusion. To assess myocardial injury, coronary effluent was analyzed for lactate dehydrogenase and creatine kinase activity. Myocardial infarct size was estimated using triphenyl tetrazolium chloride staining. Ischemic preconditioning, pharmacological preconditioning (angiotensin II; H2O2), remote aortic preconditioning markedly attenuated I/R induced increase in lactate dehydrogenase and creatine kinase release and myocardial infarct size. Administration of N-Acetyl Cysteine (NAC), in vitro, during ischemic and pharmacological, and in vivo during remote preconditioning attenuated the cardioprotective effects of preconditioning. On the basis of these results, it may be concluded that sub threshold generation of Reactive Oxygen Species (ROS) may activate redox signaling which may be responsible for preconditioning induced cardioprotection.  相似文献   

19.
20.
Ischaemic preconditioning and post-conditioning are cardioprotective interventions that salvage ischaemic myocardium and reduce infarct size. Yet this cardioprotective effect is not the sole response of the heart to ischaemic preconditioning and post-conditioning. It was known that protein kinase C activation in the signalling cascade of ischaemic preconditioning increased the affinity of the adenosine A2b receptor so that much lower concentrations of adenosine caused A2b receptor-dependent signalling. In this issue of the British Journal of Pharmacology, these cardioprotective interventions are shown to block desensitization of surface receptors on the sarcolemma of the cardiomyocyte and this receptor effect is divorced from any cardioprotection. Modulating receptor function through signalling pathways is a novel idea but, currently, whether these observations have any clinical relevance is not known. Additional investigations are warranted to determine whether this effect on receptors can be generalized to other surface receptors, and whether the effect can be harnessed to improve treatment of the patient with acute myocardial infarction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号