首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Five isoforms of Na+/Ca2+ exchanger have been identified: NCX1, NCX2, NCX3, NCX-SQ1, and CALX. In all of the exchangers, the Na+/Ca2+ exchange current, which was recorded in inside-out membrane patches, was regulated by cytoplasmic Ca2+. However, the mode of regulation is different among the exchangers. NCX1, NCX2, and NCX-SQ1 are positively regulated by cytoplasmic Ca2+, but CALX is negatively regulated. NCX3 apparently has both positive and negative regulation mechanisms. In this review, I briefly summarize the Ca2+ -dependent regulation mechanisms of the exchangers.  相似文献   

2.
In the myocardium the inhibitory guanine nucleotide-binding regulatory proteins (Gi proteins) mediate negative chronotropic and negative inotropic effects by activation of K+ channels and inhibition of adenylyl cyclase. The concept of a uniform inhibitory action of Gi proteins on myocardial cellular activity has been questioned by the recent observations of adenosine-induced activation of the Na+/Ca2+ exchange and a carbachol-induced inhibition of the Na+/K+-ATPase activity in cardiac sarcolemmal membranes. The aim of the present study, therefore, was to reinvestigate the putative regulation of Na+/Ca2+ exchange and Na+/K+-ATPase activity in purified canine sarcolemmal membranes. These membranes were enriched in adenosine A1 (Maximum number of receptors, B max 0.033 pmol/mg) and muscarinic M2 (B max 2.9 pmol/mg) receptors and contained Gi2 and Gi3, two Gi protein isoforms, and Go, another pertussis toxin-sensitive G protein, as detected with specific antibodies. The adenosine A1-selective agonist, (–)-N 6-(2-phenylisopropyl)-adenosine, and the muscarinic agonist, carbachol, both inhibited isoprenaline-stimulated adenylyl cyclase activity by 25% and 35% respectively, and the stable GTP analogue 5-guanylylimidodiphosphate inhibited forskolin-stimulated adenylyl cyclase activity by 35% in these membranes. The characteristics of Na+/Ca2+ exchange and Na+/K+-ATPase activity as well as those of the ouabain-sensitive, K+-activated 4-nitrophenylphosphatase, an ATP-independent, partial reaction of the Na+/K+-ATPase, were in agreement with published data with regard to specific activity, time course of activity and substrate dependency. However, none of these activities were influenced by adenosine, (–)-N 6-(2-phenylisopropyl)-adenosine, carbachol, or stable GTP analogs, suggesting that Na+/Ca2+ exchange and Na+/K+-ATPase are not regulated by Gi proteins in canine cardiac sarcolemmal membranes.  相似文献   

3.
4.
Using the whole-cell voltage clamp, we examined acute effects of various agents on Na(+)/Ca(2+) exchange current (I(NCX)) in guinea-pig cardiac ventricular cells and transfected cells. Among the antiarrhythmic drugs, amiodarone, bepridil, dronedarone, cibenzoline, azimilide, and aprindine inhibited I(NCX) in a concentration-dependent manner. We also investigated the effects on NCX of 2,3-buanedione monoxim (BDM) and selective NCX inhibitors such as KB-R7943, SEA0400, and SN-6. The presence of trypsin in the pipette solution attenuated the inhibitory effects on NCX of amiodarone, bepridil, and BDM, suggesting that these drugs inhibit NCX from the cytosolic side. In contrast, the trypsin-insensitive NCX inhibitors were aprindine, azimilide, dronedarone, cibenzoline, KB-R7943, SEA0400, and SN-6. KB-R7943, SEA0400, and SN-6 suppressed the uni-directional outward I(NCX) more potently than the uni-directional inward I(NCX). The mechanism of this mode-dependency is unknown, but is suggested to be related to intracellular Na(+) concentration.  相似文献   

5.
We used Na+/Ca2+ exchanger (NCX) knockout mice to evaluate the effects of NCX in cardiac function and the infarct size after ischemia/reperfusion injury. The contractile function in NCX KO mice hearts was significantly better than that in wild type (WT) mouse hearts after ischemia/reperfusion and the infracted size was significantly smaller in NCX KO mice hearts compared with that in WT mice hearts. NCX is critically involved in the development of ischemia/reperfusion-induced myocardial injury, and therefore the inhibition of NCX function may contribute to cardioprotection against ischemia/reperfusion injury.  相似文献   

6.
Many kinds of vasodilators induce relaxation of the vascular smooth muscle cells (VSMCs) through the production of cyclic AMP (cAMP) or cyclic GMP (cGMP). The relaxant effects mediated by these second messengers are thought to be mainly due to the decrease in intracellular Ca(2+) concentration ([Ca(2+)](i)), as well as the decrease in Ca(2+) sensitivity of the contractile apparatus of VSMCs. To explain the cAMP- or cGMP-mediated decrease in [Ca(2+)](i), several mechanisms have been proposed, including the inhibition of Ca(2+) influx due to a hyperpolarization, a stimulation of Ca(2+) uptake into the intracellular store, and an increase in Ca(2+) extrusion from VSMCs by stimulation of sarcolemmal Ca(2+)-pump. VSMCs have two major systems for Ca(2+) extrusion, namely, sarcolemmal Ca(2+)-pump and Na(+)/Ca(2+) exchanger (NCX). However, the involvement of NCX in the vasodilator-induced relaxation of VSMCs has not been well established. In this article, the possible involvement of NCX in the vasodilator-induced relaxation of VSMCs will be reviewed.  相似文献   

7.
The effects of alpha 1-adrenergic stimulation on intracellular pH (pHi) and Ca2+ concentration ([Ca2+]i) were investigated in isolated rat cardiomyocytes with fluorescence dyes, BCECF and fura-2, respectively. In the presence of 5 or 25 mM HCO3- norepinephrine (NE) increased pHi in a dose-dependent manner. Intracellular alkalinization was inhibited by prazosin and phentolamine but not by yohimbine. NE-induced alkalinization was inhibited in the presence of a Na+/H+ exchange inhibitor (5-(N,N-hexamethylene) amiloride (HMA)), a C kinase inhibitor (H-7) or a calmodulin inhibitor (W-7), or in the absence of extracellular Na+. NE also increased [Ca2+]i following the pHi increase, which was abolished in the absence of extracellular Na+ or Ca2+. This Ca2+ influx was inhibited by HMA but not by diltiazem (10(-5) M). Thus, we conclude that alpha 1-adrenergic stimulation enhances Na+/H+ exchange by activation of C kinase, thereby allowing intracellular alkalinization, and that subsequent activation of Na+/Ca2+ exchange increases Ca2+ influx.  相似文献   

8.
[Ca2+]i transients by reverse mode of cardiac Na+/Ca2+ exchanger (NCX1) were recorded in fura-2 loaded BHK cells with stable expression of NCX1. Repeated stimulation of reverse NCX1 produced a long-lasting decrease of Ca2+ transients (''rundown''). Rundown of NCX1 was independent of membrane PIP2 depletion. Although the activation of protein kinase C (PKC) was observed during the Ca2+ transients, neither a selective PKC inhibitor (calphostin C) nor a PKC activator (PMA) changed the degrees of rundown. By comparison, a non-specific PKC inhibitor, staurosporine (STS), reversed rundown in a dose-dependent and reversible manner. The action of STS was unaffected by pretreatment of the cells with calphostin C, PMA, or forskolin. Taken together, the results suggest that the stimulation of reverse NCX1 by STS is independent of PKC and/or PKA inhibition.  相似文献   

9.
Sensitivities of the reverse-mode Na+/Ca2+ exchange activity measured as the Na+i-dependent Ca2+ uptake to extracellular monovalent cations K+, Li+, and Na+ were compared between the K+ -dependent (NCKX2) and the K+ -independent Na+/Ca2+ exchanger (NCX1) overexpressed in a fibroblast cell. Interestingly, the exchange activity of NCKX2 was not influenced by Li+ while it was increased by K+. On the contrary, the activity of NCX1 was increased by Li+. Thus, the cation sensitivities to K+ and Li+ markedly differed between NCKX2 and NCX1. In addition, Na+ exerted a significantly smaller inhibitory effect on the activity in NCKX2 than in NCX1. The Na+/Ca2+ exchange activities of NCKX2 and NCX1 are considered to be regulated differentially via the respective binding site domains that have distinct sensitivities to the external monovalent cations.  相似文献   

10.
11.
The Na(+)/Ca(2+) exchanger (NCX) plays a role in regulation of intracellular Ca(2+) levels, but little is known about the functional role of NCX in microglia. To clarify the role of NCX in microglia, we studied the responses of NCX to pathological conditions such as interferon-gamma or nitric oxide (NO) exposure. Treatment with interferon-gamma caused a biphasic increase in NCX activity. The delayed increase in NCX activity was accompanied by increases in the mRNA and protein levels. Pharmacological studies show that protein kinase C and tyrosine kinase are involved in the transient and delayed increases in NCX activity, and the extracellular signal-regulated protein kinase is involved in the delayed increase in NCX activity. On the other hand, NO causes apoptotic cell death in cultured microglia. We observed, using the specific NCX inhibitor SEA0400, that NO activates NCX activity and NCX is involved in NO-induced depletion of Ca(2+) in the endoplasmic reticulum (ER), leading to ER stress. These results suggest that NCX is involved in the regulation of Ca(2+) levels in the ER. The responses of NCX to interferon-gamma and NO implies that NCX plays a key role in microglial function.  相似文献   

12.
An interaction between the Na(+)/Ca(2+) exchanger (NCX) and the Na(+)/H(+) exchanger (NHE) induces reperfusion injury. We investigated the effect of brief repetitive acidosis as acidic preconditioning on NCX and NHE interaction during recovery from acidosis. NCX current with the reversal potential was measured in guinea-pig ventricular myocytes using the whole-cell voltage clamp. The cells were exposed to 5 min of acidosis preceded by two episodes of brief acidosis as acidic preconditioning. Acidosis inhibited NCX current and upon recovery shifted its reversal potential in the negative direction. The shift was prevented by cariporide, but was augmented by a high concentration of phorbol 13-myristate acetate (PMA). Acidic preconditioning prevented the shift, but not in the presence of a selective PKCepsilon inhibitor. A low concentration of PMA, which activates PKCepsilon selectively, prevented the shift, but together with PKCepsilon inhibitor (epsilonV1-2) restored the shift during recovery. 5-Hydroxydecanoate inhibited the effects of acidic preconditioning and those of both low and high concentrations of PMA. The negative shift of NCX reversal potential during recovery from acidosis may be due to [Na(+)](i) accumulation by the NHE. Acidic preconditioning prevented the shift most likely by activating PKCepsilon, which in turn inhibited the NHE. The NHE-NCX interaction may be one of the important end-effectors of preconditioning.  相似文献   

13.
Inhibition of Na(+)/H(+) (NHE) and Na(+)/Ca(2+) (NCE) exchangers prevents myocardial ischemia/reperfusion injury by preventing cardiomyocyte Ca(2+) overload. We hypothesized that it may influence ischemic/reperfused myocardium also indirectly by preventing endothelial Ca(2+) accumulation, and thereby by attenuating reperfusion-induced formation of nitric oxide (NO) and/or oxygen free radicals. Langendorff-perfused rat hearts were subjected to 30-min ischemia and 30-min reperfusion. Myocardial outflow of NO (nitrite+nitrate) and hydroxyl radical (*OH, salicylate method), and functional recoveries were followed during reperfusion. In all groups, there was a transient rise in NO and *OH outflow upon reperfusion. An inhibitor of NHE, cariporide (10 microM) [(4-Isopropyl-3-methylsulfonyl-benzoyl)-quanidine methanesulfonate], and an inhibitor of the reverse mode of NCE, KB-R7943 (5 microM) (2-[4-(4-Nitrobenzyloxy)phenyl]ethyl]isothiourea mesylate), decreased NO and *OH formation, reduced contracture, and improved the recovery of mechanical function during reperfusion, compared to the untreated hearts. The formation of NO was reduced by 40% by 100 microM N(G)-methyl-L-arginine acetate salt (L-NMMA, NO synthase inhibitor), and not affected by 50 microM L-NMMA. *OH formation, contracture, and the functional recoveries were affected neither by 50 nor by 100 microM L-NMMA. Also, the effects of cariporide and KB-R7943 were unaffected by 100 microM L-NMMA. This study shows for the first time that the inhibition of NHE and NCE attenuates post-ischemic myocardial formation of NO and *OH, suggesting that prevention of Ca(2+) overload is cardioprotective via these mechanisms. The results indicate, however, that NO synthase pathway did not interfere with the protection afforded by NHE or NCE in our model.  相似文献   

14.
The present study was designed to investigate the effects of KB-R7943, an inhibitor of the Na+/Ca2+ exchanger, on impaired endothelium-dependent relaxation (EDR) induced by high glucose in rat isolated aorta. Both acetylcholine (ACh)-induced EDR and sodium nitroprusside (SNP)-induced endothelium-independent relaxation (EIR) were measured after aortic rings had been exposed to high glucose in the absence and presence of KB-R7943. Coincubation of aortic rings with high glucose (25 mmol/L) for 24 h resulted in a significant inhibition of EDR, but had no effect on EIR. After incubation of aortic rings in the presence of both KB-R7943 (0.1-10 micromol/L) and high glucose for 24 h, significantly attenuation of impaired EDR was observed. This protective effect of KB-R7943 (10 micromol/L) was abolished by superoxide dismutase (SOD; 200 U/mL) and l-arginine (3 mmol/L), whereas d-arginine (3 mmol/L) had no effect. Similarly, high glucose decreased SOD activity and the release of nitric oxide (NO) and increased superoxide anion (O2(-)) production in aortic tissue. KB-R7943 significantly decreased O2(-) production and increased SOD activity and NO release. These results suggest that KB-R7943 can restore impaired EDR induced by high glucose in rat isolated aorta, which may be related to the scavenging of oxygen free radicals and enhanced NO production.  相似文献   

15.
AIM: To study the effect of Phe-Arg-Cys-Arg-Ser-Phe-CONH2 (FRCRSFa) on Na+/Ca2+ exchange and its specificity in rat ventricular myocytes. METHODS: Na+/Ca2+ exchange current (INa+/Ca2+) and other currents were measured using whole-cell voltage clamp technique. RESULTS: A concentration-dependent inhibition of hexapeptide FRCRSFa on Na +/Ca2+ exchange was observed in rat ventricular myocytes. IC50 of inward and outward INa+/Ca2+ were 2 and 4 micromol/L, respectively. FRCRSFa 5 micromol/L did not affect L-type Ca2+ current, voltage-gated Na+ current, transient outward K+ current, and inward rectifier K+ current. CONCLUSION: These data indicate that FRCRSFa is an available inhibitor of Na+/Ca2+ exchange with relative selectivity and m ay be valuable for studies of the Na+/Ca2+ exchange in cardiac myocytes.  相似文献   

16.
Rat or human neocortical synaptosomes were used to study the role of voltage-gated Ca(2+) channels and the Na(+)/Ca(2+) exchanger in (45)Ca(2+) influx into nerve terminals. K(+) depolarization-induced (45)Ca(2+) influx through voltage-gated Ca(2+) channels into rat or human synaptosomes was completely blocked by mibefradil 30 microM or Cd(2+) 100 microM but was not affected by tetrodotoxin 1 microM. It was reduced by omega-agatoxin IVA 0.2 microM by 68% in synaptosomes of either species, whereas omega-conotoxin GVIA 0.1 microM and nifedipine 1 microM had no effect. Veratridine-induced (45)Ca(2+) entry into rat neocortical synaptosomes was completely blocked by mibefradil 30 microM, reduced by 80% by Cd(2+) 100 microM, by 90% by tetrodotoxin 1 microM and by 53% by omega-agatoxin IVA 0.2 microM but not by omega-conotoxin GVIA 0.1 microM or nifedipine 1 microM. Na(+)/Ca(2+) exchanger-mediated (45)Ca(2+) uptake into rat neocortical synaptosomes evoked by replacement of Na(+) by choline(+) in the incubation buffer was reduced by KB-R7943 (3-50 microM), an inhibitor of the Na(+)/Ca(2+) exchanger, in a concentration-dependent manner (maximal inhibition by 46% at 50 microM; IC(23%)=7.1 microM). Mibefradil also inhibited the Na(+)/Ca(2+) exchanger-mediated Ca(2+) uptake, although at 3.7 times lower potency (IC(23%)=26 microM). It is concluded that in rat and human neocortical nerve terminals Ca(2+) entry is mediated under physiological conditions by P/Q-type, but not by N- or L-type Ca(2+) channels or the Na(+)/Ca(2+) exchanger. If the cytosolic Na(+) concentration is increased, Ca(2+) is also taken up via the Na(+)/Ca(2+) exchanger. In addition to the ability of mibefradil to block all voltage-operated Ca(2+) channels, this drug is a low potency inhibitor of the Na(+)/Ca(2+) exchanger.  相似文献   

17.
Using the whole-cell voltage clamp, we examined the mechanism of activation of the Na(+)/Ca(2+) exchanger (NCX) by hydrogen peroxide (H(2)O(2)) in isolated guinea-pig cardiac ventricular myocytes. Exposure to H(2)O(2) increased the NCX current. The effect was inhibited by cariporide, an inhibitor of the Na(+)/H(+) exchanger (NHE), suggesting that there are NHE-dependent and -independent pathways in the effect of H(2)O(2) on NCX. In addition, both pathways were blocked by edaravone, a hydroxyl radical (*OH) scavenger; pertussis toxin, a Galpha(i/o) protein inhibitor; and U0126, an inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK). On the other hand, wortmannin, a phosphatidylinositol 3-kinase (PI3K) inhibitor, inhibited only the NHE-dependent pathway, while PP2, a Src family protein tyrosine kinase inhibitor, inhibited only the NHE-independent pathway. Taken together, our data suggest that H(2)O(2) increases the NCX current via two signal transduction pathways. The common pathway is the conversion of H(2)O(2) to *OH, which activates Galpha(i/o) protein and a mitogen-activated protein (MAP) kinase signaling pathway. Then, one pathway activates NHE with a PI3K-dependent mechanism and indirectly increases the NCX current. Another pathway involves activation of a Src family tyrosine kinase.  相似文献   

18.
We have studied the effects of serotonin on the histaminergic neurons in the hypothalamic tuberomammillary nucleus. Intracellular recordings of the membrane potential were made with sharp electrodes from superfused rat hypothalamic slices. We found that serotonin increased the firing rate of the neurons to 224% of the control rate and depolarized them dose-dependently. Insensitivity to tetrodotoxin indicated a postsynaptic effect, which was unrelated to any conductance change. The involved receptor appeared to be a 5-HT2C receptor. The depolarization was strongly dependent on temperature and replacement of extracellular Na(+) with Li(+) or with N-methyl-D-glucamine suppressed the depolarization. Pretreatment with Ni(2+), 2',4'-dichlorobenzamil or KB-R7943 strongly attenuated the effect. These features indicate that the depolarization is the result of activation of an electrogenic Na(+)/Ca(2+)-exchanger which leads to an net inward current. These results support the view that the Na(+)/Ca(2+)-exchanger can play a role in determining the excitability of neurons. The results also provide a functional connection between two transmitter systems, the histaminergic and serotonergic, which modulate many physiological functions in the brain.  相似文献   

19.
Glucagon like peptide-1 (GLP-1) released from enteroendocine L-cells in the intestine has incretin effects due to its ability to amplify glucose-dependent insulin secretion. Promotion of an endogenous release of GLP-1 is one of therapeutic targets for type 2 diabetes mellitus. Although the secretion of GLP-1 in response to nutrient or neural stimuli can be triggered by cytosolic Ca2+ elevation, the stimulus-secretion pathway is not completely understood yet. Therefore, the aim of this study was to investigate the role of reverse Na+/Ca2+ exchanger (rNCX) in Ca2+ entry induced by muscarinic stimulation in NCI-H716 cells, a human enteroendocrine GLP-1 secreting cell line. Intracellular Ca2+ was repetitively oscillated by the perfusion of carbamylcholine (CCh), a muscarinic agonist. The oscillation of cytosolic Ca2+ was ceased by substituting extracellular Na+ with Li+ or NMG+. KB-R7943, a specific rNCX blocker, completely diminished CCh-induced cytosolic Ca2+ oscillation. Type 1 Na+/Ca2+ exchanger (NCX1) proteins were expressed in NCI-H716 cells. These results suggest that rNCX might play a crucial role in Ca2+ entry induced by cholinergic stimulation in NCI-H716 cells, a GLP-1 secreting cell line.  相似文献   

20.
The protective effects of the Na+/H+ exchange inhibitors amiloride, EIPA (5‐(N‐ethyl‐N‐isopropyl)‐amiloride), and HOE 694 (3‐methylsulfonyl‐4‐(1‐piperidino) benzoyl‐guanidine) and the Na+/Ca2+ exchange inhibitor, DCB (3,4‐Dichlorobenzamil) on ischemia (30 min) / reperfusion (30 min) injury were studied using Langendorff perfused rat hearts. EIPA and HOE 694 given before ischemia protected the heart during reperfusion from mechanical and metabolic disturbances. A weak protective effect was observed with amiloride, but not with DCB. The cardioprotective efficacies of these compounds correlated with their potencies as Na+/H+ exchange inhibitors as assessed by the NH4Cl prepulse method. None of the inhibitors was effective when given at reperfusion. EIPA and HOE 694 decreased myocardial rigidity as assessed by the resting tension (RT) which elevated during reperfusion. EIPA led to a more marked attenuation of RT elevation during reperfusion rather than ischemia, whereas diltiazem, a Ca2+ channel blocker, suppressed RT elevation during ischemia but did not cause a further attenuation of RT during reperfusion. Treatment with EIPA as well as diltiazem before ischemia showed a direct negative chronotropic effect. Cardioprotective effects were also observed with diltiazem. These results suggest that Na+/H+ exchange plays a more important role in ischemia‐reperfusion‐induced myocardial injury than does Na+/Ca2+ exchange. The cardioprotective effects of EIPA appear to be produced by Ca2+ channel blockade during ischemia and by Na+/H+ exchange inhibition during reperfusion. Drug Dev. Res. 48:160–170, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号