首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A male had several features of Greig cephalopolysyndactyly syndrome (GCPS) and significant developmental delay. He was found to have a de novo chromosomal deletion of chromosome no. 7 involving p13; this resulted in loss of the zinc finger gene, GLI3, which is the candidate gene in this syndrome. Modification of the CGPS phenotype in a sporadic case emphasizes the importance of searching for a chromosomal origin of this autosomal dominant disorder. Detection of a chromosomal deletion in these patients may be associated with a poor prognosis from the standpoint of cognitive development, and the potential for other structural abnormalities not normally associated with GCPS.  相似文献   

2.
3.
Point mutations in human GLI3 cause Greig syndrome   总被引:3,自引:0,他引:3  
Greig cephalopolysyndactyly syndrome (GCPS, MIM 175700) is a rare autosomal dominant developmental disorder characterized by craniofacial abnormalities and post-axial and pre-axial polydactyly as well as syndactyly of hands and feet. Human GLI3, located on chromosome 7p13, is a candidate gene for the syndrome because it is interrupted by translocation breakpoints associated with GCPS. Since hemizygosity of 7p13 resulting in complete loss of one copy of GLI3 causes GCPS as well, haploinsufficiency of this gene was implicated as a mechanism to cause this developmental malformation. To determine if point mutations within GLI3 could be responsible for GCPS we describe the genomic sequences at the boundaries of the 15 exons and primer pair sequences for mutation analysis with polymerase chain reaction-based assays of the entire GLI3 coding sequences. In two GCPS cases, both of which did not exhibit obvious cytogenetic rearrangements, point mutations were identified in different domains of the protein, showing for the first time that Greig syndrome can be caused by GLI3 point mutations. In one case a nonsense mutation in exon X generates a stop codon truncating the protein in the C-H link of the first zinc finger. In the second case a missense mutation in exon XIV causes a Pro-->Ser replacement at a position that is conserved among GLI genes from several species altering a potential phosphorylation site.   相似文献   

4.
Greig cephalopolysyndactyly syndrome (GCPS) is caused by haploinsufficiency of GLI3 on 7p13. Features of GCPS include polydactyly, macrocephaly, and hypertelorism, and may be associated with cognitive deficits and abnormalities of the corpus callosum. GLI3 mutations in GCPS patients include point, frameshift, translocation, and gross deletion mutations. FISH and STRP analyses were applied to 34 patients with characteristics of GCPS. Deletions were identified in 11 patients and the extent of their deletion was determined. Nine patients with deletions had mental retardation (MR) or developmental delay (DD) and were classified as severe GCPS. These severe GCPS patients have manifestations that overlap with the acrocallosal syndrome (ACLS). The deletion breakpoints were analyzed in six patients whose deletions ranged in size from 151 kb to 10.6 Mb. Junction fragments were found to be distinct with no common sequences flanking the breakpoints. We conclude that patients with GCPS caused by large deletions that include GLI3 are likely to have cognitive deficits, and we hypothesize that this severe GCPS phenotype is caused by deletion of contiguous genes.  相似文献   

5.
Chromosomal deletions on chromosome 7p are associated with Greig cephalopolysyndactyly syndrome (GCPS, OMIM 175700) a syndrome affecting the development of the skull, face, and limbs. We have compared data from molecular cytogenetic and genetic analyses with clinical symptoms from five previously published GCPS deletion patients, including a pair of monozygotic twins. The genomic DNA of the probands and their parents, as well as the DNA from monoallelic cell lines of two patients, was analyzed using microsatellite markers. In some cases (e.g. where the microsatellite studies were uninformative) we also used fluorescence in situ hybridization (FISH) with bacterial artificial chromosomes (BAC) probes. The fine mapping results of the deletions and genomic data from chromosome 7, were compared to the clinical symptoms. Common breakpoint sequences or mutation hotspots were not observed. Mutation screening for PGAM2, which is responsible for a form of myopathy with recessive inheritance, was performed in all patients. Loss of heterozygosity for known genes with dominant inheritance, such as the glucokinase gene (GCK), which, when mutated or haploinsufficient, is responsible for maturity-onset diabetes of the young, type II (MODY2, OMIM 125851), was identified and included in a genetic counseling of the patients' families.  相似文献   

6.
Here we describe five patients with Greig cephalopolysyndactyly syndrome (GCPS), including one pair of monozygotic twin boys with a de novo microdeletion involving the chromosomal band 7p13, where various clinical manifestations, in addition to GCPS, were recognized. Besides the twin pair, all patients are unrelated. Since there is a considerable lack of well-defined clinical delineation of the few patients with microdeletions involving 7p13 with GCPS described so far, we focus on the symptoms that are not typically related to GCPS, such as moderate psychomotor retardation, seizures, muscle fiber anomalies, cardiac anomalies, hyperglycemia, and hirsutism. Our observations suggest that in all cases of atypical GCPS, the presence of a cytogenetically detectable microdeletion or a submicroscopic deletion of 7p13 should be suspected.  相似文献   

7.
Maturity-onset diabetes of the young type 2 (MODY2) is a form of monogenic diabetes, characterized by mild fasting hyperglycemia. MODY2 is caused by heterozygous mutations in the GCK gene that encodes the glucokinase enzyme. We describe the clinical features and the underlying genetic defect of MODY2 in a patient with atypical Greig cephalopolysyndactyly syndrome (GCPS). The patient presented with the limb formation and the craniofacial developmental abnormalities typical to GCPS, in addition to mental retardation and epilepsy (assigned as atypical syndrome). Fasting hyperglycemia in the diabetic range, impaired glucose tolerance, and lack of diabetes autoantibodies were compatible with MODY2. In order to delineate the genetic aberrations relevant both to MODY2 and Greig syndrome in this patient, we performed cytogenetic analysis, real-time PCR of the GCK gene, and comparative genomic hybridization (CGH) array. Cytogenetic study has shown a microscopic detectable deletion in the 7p13-15 chromosomal region. Real-time PCR demonstrated a deletion of the GCK gene in the patient but not her parents, and CGH array revealed a deleted region of approximately 12 Mb in the 7p13-15 region. This deleted region included GLI3 and GCK genes (where heterozygous mutations cause GCPS and MODY2, respectively), and many other contiguous genes. Our patient manifests a unique form of MODY2, where GCK gene deletion is part of a large deleted segment in the 7p13-15 chromosomal region.  相似文献   

8.
Complex chromosome rearrangements (CCRs) are rare structural abnormalities that involve at least two chromosomes and more than two breakpoints and are often associated with developmental delay, mental retardation, and congenital anomalies. We report on a de novo, apparently balanced translocation t(1;5;7)(p32.1;q14.3;p21.3) involving three chromosomes in a 7-year-old boy with severe psychomotor retardation, neonatal muscular hypertonia, congenital heart defect, polysyndactyly of hands and feet, and dysmorphic features resembling Greig cephalopolysyndactyly syndrome. Analysis of the chromosome breakpoints using fluorescence in situ hybridization (FISH) with locus-specific BAC clones and long-range PCR products did not identify chromosome imbalance at any of the interrogated regions. High-resolution comparative genomic hybridization (HR-CGH) and array CGH (aCGH) revealed two additional cryptic de novo deletions, del(1)(p31.1p31.1) and del(7)(p14.1p14.1), respectively, that are not associated with the translocation breakpoints. FISH and polymorphic marker analyses showed that the deletion on derivative chromosome 1 is between 4.2 and 6.1 Mb, and the deletion on derivative chromosome 7 is approximately 5.1 Mb, and that both are paternal in origin. The deletion on chromosome 7p encompasses the GLI3 gene that is causative for the Greig cephalopolysyndactyly, Pallister-Hall and some cases of Acrocallosal syndromes. We discuss the potential mechanisms of formation of the described CCR.  相似文献   

9.
10.
Greig cephalopolysyndactyly syndrome (GCPS) is a multiple congenital malformation characterised by limb and craniofacial anomalies, caused by heterozygous mutation or deletion of GLI3. We report four boys and a girl who were presented with trigonocephaly due to metopic synostosis, in association with pre- and post-axial polydactyly and cutaneous syndactyly of hands and feet. Two cases had additional sagittal synostosis. None had a family history of similar features. In all five children, the diagnosis of GCPS was confirmed by molecular analysis of GLI3 (two had intragenic mutations and three had complete gene deletions detected on array comparative genomic hybridisation), thus highlighting the importance of trigonocephaly or overt metopic or sagittal synostosis as a distinct presenting feature of GCPS. These observations confirm and extend a recently proposed association of intragenic GLI3 mutations with metopic synostosis; moreover, the three individuals with complete deletion of GLI3 were previously considered to have Carpenter syndrome, highlighting an important source of diagnostic confusion.  相似文献   

11.
The phenotypic spectrum of GLI3 mutations includes autosomal dominant Greig cephalopolysyndactyly syndrome (GCPS) and Pallister–Hall syndrome (PHS). PHS was first described as a lethal condition associating hypothalamic hamartoma, postaxial or central polydactyly, anal atresia and bifid epiglottis. Typical GCPS combines polysyndactyly of hands and feet and craniofacial features. Genotype–phenotype correlations have been found both for the location and the nature of GLI3 mutations, highlighting the bifunctional nature of GLI3 during development. Here we report on the molecular and clinical study of 76 cases from 55 families with either a GLI3 mutation (49 GCPS and 21 PHS), or a large deletion encompassing the GLI3 gene (6 GCPS cases). Most of mutations are novel and consistent with the previously reported genotype–phenotype correlation. Our results also show a correlation between the location of the mutation and abnormal corpus callosum observed in some patients with GCPS. Fetal PHS observations emphasize on the possible lethality of GLI3 mutations and extend the phenotypic spectrum of malformations such as agnathia and reductional limbs defects. GLI3 expression studied by in situ hybridization during human development confirms its early expression in target tissues.  相似文献   

12.
Childhood acute lymphocytic leukemia (ALL) with partial deletion of the short arm of chromosome 9 (9p-), particularly in the p21-22 region, associated with bulky disease, has been regarded as a possible subgroup of ALL. We have reviewed clinical and cytologic data in 128 cases of ALL (childhood and adult). Four of them had 9p anomalies. Two patients had a deletion in the 9p21 region associated with another deletion (9p13----pter) in one case and with t(1;19)(q21;p13) in the second patient. A third patient had a t(9;14)(p21;q12) balanced translocation associated with 14q22----qter deletion; the last patient showed a t(5;9)(p14;q21) unbalanced translocation also associated with 14q deletion. All four patients had lymphomatous ALL, but immunophenotype was non-T, in the four cases, (non-T, non-B in two patients and common ALL in the two remaining cases). Acute lymphocytic leukemia with 9p anomalies appears relatively frequently and is usually associated with poor prognostic features (i.e., bulk disease and high leukocyte counts) but does not seem restricted to childhood and T-cell lineage.  相似文献   

13.
Multifunctional zinc finger proteins in development and disease   总被引:15,自引:0,他引:15  
  相似文献   

14.
15.
t(1;3)(p36;p21) is a recurring therapy-related translocation   总被引:2,自引:0,他引:2  
Chromosome bands 1p36 and 3p21 are known to be recurring breakpoints in therapy-related (t-) leukemia. We identified a recurring translocation, t(1;3)(p36;p21), in eight patients with various hematologic malignancies: three patients with ALL, one with chronic myelogenous leukemia (CML) in accelerated phase (AP), two with MDS, and two with AML(M3). Five of the eight patients had a history of chemotherapy, including alkylating agents in three, before the translocation was detected. In two of these five patients, the t(1;3)(p36;p21) emerged only at relapse or in the accelerated phase of CML. The karyotypes of the patients were complex, including -7 and structural abnormalities of 5q, 6q, 7q, 9p, and 11q23. Survival time varied among patients (25 days to more than 16 years). Using FISH with 13 1p35-36 cosmid probes (tel-FB12-CA5-G7-FD2-CB1-ED8-FD9-G32-AE3-G50-AD8-GG4-G43-cen), we delineated the 1p36 breakpoint in two patients with MDS and ALL as lying between FB12 and FD2 (between BAC47P3 and PAC963K15), with a small deletion near the breakpoint in both cases. In the patient with MDS, there was also a deletion at 3p21.3, as detected with the cosmid probe cosNRL9. The results of the present study suggest that t(1;3)(p36;p21) in hematologic diseases is associated with prior exposure to mutagens, including alkylating agents.  相似文献   

16.
We present an infant with a de novo cytogenetically visible interstitial deletion of approximately 21.9Mb involving chromosome bands 7p15.1-7p12.1, with the loss of 119 genes confirmed by array CGH. The?infant had a ventricular septal defect, hand and skull anomalies, and hyperglycaemia compatible with haploinsufficiency of TBX20, GLI3, and GCK genes, respectively. In addition, the infant had some features reminiscent of Beckwith Wiedemann syndrome including macroglossia, umbilical hernia, and a relatively large birth weight and we speculate that this is due to the deletion of GRB10, an imprinted gene on chromosome 7. This report illustrates how knowledge of genes within a deleted interval facilitates optimal medical management, can explain observed phenotypes, and stimulates research questions.  相似文献   

17.
Contiguous gene syndromes cause disorders via haploinsufficiency for adjacent genes. Some contiguous gene syndromes (CGS) have stereotypical breakpoints, but others have variable breakpoints. In CGS that have variable breakpoints, the extent of the deletions may be correlated with severity. The Greig cephalopolysyndactyly contiguous gene syndrome (GCPS-CGS) is a multiple malformation syndrome caused by haploinsufficiency of GLI3 and adjacent genes. In addition, non-CGS GCPS can be caused by deletions or duplications in GLI3. Although fluorescence in situ hybridisation (FISH) can identify large deletion mutations in patients with GCPS or GCPS-CGS, it is not practical for identification of small intragenic deletions or insertions, and it is difficult to accurately characterise the extent of the large deletions using this technique. We have designed a custom comparative genomic hybridisation (CGH) array that allows identification of deletions and duplications at kilobase resolution in the vicinity of GLI3. The array averages one probe every 730 bp for a total of about 14,000 probes over 10 Mb. We have analysed 16 individuals with known or suspected deletions or duplications. In 15 of 16 individuals (14 deletions and 1 duplication), the array confirmed the prior results. In the remaining patient, the normal CGH array result was correct, and the prior assessment was a false positive quantitative polymerase chain reaction result. We conclude that high-density CGH array analysis is more sensitive than FISH analysis for detecting deletions and provides clinically useful results on the extent of the deletion. We suggest that high-density CGH array analysis should replace FISH analysis for assessment of deletions and duplications in patients with contiguous gene syndromes caused by variable deletions.  相似文献   

18.
Greig cephalopolysyndactyly (GCPS) (OMIM 175700) is an autosomal dominant disorder characterized by a distinct combination of craniofacial, hand and foot malformations. In this report, clinical and radiological findings of 12 patients with GCPS derived from 4 independent families and 3 sporadic cases with documented GLI3 mutations are presented with particular emphasis on inter- and intrafamilial variability. In a particularly instructive family in which 9 members of 4 generations could be studied clinically and molecularly, a missense mutation (R625W) is transmitted and shows a partially penetrant pattern. In a branch of the family, the GCPS phenotype skips a generation via a normal female carrier without clinical signs providing evidence that GCPS does not always manifest full penetrance as generally supposed.  相似文献   

19.
Deletion of the 9p21 chromosomal region is frequently found in childhood acute lymphoblastic leukemia (ALL). The target of these deletions is CDKN2A, a gene encoding both p16(INK4a) and p14(ARF). However, contiguous genes such as CDKN2B, encoding p15(INK4b), or MTAP, encoding methylthioadenosine phosphorylase, can be included in the deletions. Gene dosage by use of real-time PCR has recently been proposed as a promising technical option for the diagnosis of deletions. However, its reliability and its capacity to detect mono-allelic deletions in tumor samples are controversial. To evaluate the frequency and extent of deletions in 284 children with ALL, we devised a real-time PCR assay for CDKN2A, CDKN2B exons 1beta and 3, and MTAP gene dosage and validated it by comparison with loss-of-heterozygosity analysis. We show that, if several controls and adjustments are performed, real-time PCR can provide a reliable test for mono- and bi-allelic deletions in ALL. We propose a strategy that overcomes the major caveats of such a dosage in tumor samples: aneuploidy and contamination by normal cells. By use of this assay, we found bi-allelic deletions in 58 and 17% of T- and B-lineage ALL, respectively. Mono-allelic deletion was observed in about 15% of cases, stressing the importance of their detection in ALL. CDKN2B and/or MTAP co-deletions were highly variable in both T- and B-lineage ALL, making ALL with 9p21 a rather heterogeneous group. Because proteins encoded by these genes might influence the response to treatment, the prognosis of 9p21-deleted ALL could vary according to the extent of the deletion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号