首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In cerebellar ataxia, kinematic aberrations of multijoint movements are thought to originate from deficiencies in generating muscular torques that are adequate to control the mechanical consequences of dynamic interaction forces. At this point the exact mechanisms that lead to an abnormal control of interaction torques are not known. In principle, the generation of inadequate muscular torques may result from an impairment in generating sufficient levels of torques or from an inaccurate assessment and prediction of the mechanical consequences of movements of one limb segment on adjacent joints. We sought to differentiate the relative contribution of these two mechanisms and, therefore, analyzed intersegmental dynamics of multijoint pointing movements in healthy subjects and in patients with cerebellar degeneration. Unrestrained vertical arm movements were performed at three different target movement velocities and recorded using an optoelectronic tracking system. An inverse dynamics approach was employed to compute net joint torques, muscular torques, dynamic interaction torques and gravitational torques acting at the elbow and shoulder joint. In both groups, peak dynamic interaction forces and peak muscular forces were largest during fast movements. In contrast to normal subjects, patients produced hypermetric movements when executing fast movements. Hypermetric movements were associated with smaller peak muscular torques and smaller rates of torque change at elbow and shoulder joints. The patients’ deficit in generating appropriate levels of muscular force were prominent during two different phases of the pointing movement. Peak muscular forces at the elbow were reduced during the initial phase of the movement when simultaneous shoulder joint flexion generated an extensor influence upon the elbow joint. When attempting to terminate the movement, gravitational and dynamic interaction forces caused overshooting extension at the elbow joint. In normal subjects, muscular torque patterns at shoulder and elbow joint were synchronized in that peak flexor and extensor muscular torques occurred simultaneously at both joints. This temporal pattern of muscular torque generation at shoulder and elbow joint was preserved in patients. Our data suggest that an impairment in generating sufficient levels of phasic muscular torques significantly contributes to the patients’ difficulties in controlling the mechanical consequences of dynamic interaction forces during multijoint movements. Received: 28 October 1996 / Accepted: 30 September 1997  相似文献   

2.
This study investigated how the human CNS organizes complex three-dimensional (3D) ball-throwing movements that require both speed and accuracy. Skilled baseball players threw a baseball to a target at three different speeds. Kinematic analysis revealed that the fingertip speed at ball release was mainly produced by trunk leftward rotation, shoulder internal rotation, elbow extension, and wrist flexion in all speed conditions. The study participants adjusted the angular velocities of these four motions to throw the balls at three different speeds. We also analyzed the dynamics of the 3D multijoint movements using a recently developed method called "nonorthogonal torque decomposition" that can clarify how angular acceleration about a joint coordinate axis (e.g., shoulder internal rotation) is generated by the muscle, gravity, and interaction torques. We found that the study participants utilized the interaction torque to generate larger angular velocities of the shoulder internal rotation, elbow extension, and wrist flexion. To increase the interaction torque acting at these joints, the ball throwers increased muscle torque at the shoulder and trunk but not at the elbow and wrist. These results indicates that skilled ball throwers adopted a hierarchical control in which the proximal muscle torques created a dynamic foundation for the entire limb motion and beneficial interaction torques for distal joint rotations.  相似文献   

3.
The speed of arm movements is normally increased by increasing agonist muscle activity, but in overarm throwing, an additional effect on speed may come from exploitation of interaction torques (a passive torque associated with motion at adjacent joints). We investigated how the central nervous system (CNS) controls interaction torques at the shoulder and elbow to increase speed in 2-D overarm throwing. Twelve experienced throwers made slow, medium, and fast 2-D throws in a parasagittal plane. Joint motions were computed from recordings made with search coils; joint torques were calculated using inverse dynamics. For slow and medium-speed throws, elbow extension was primarily produced by elbow muscle torque. For fast throws, there was an additional late-occurring elbow extensor interaction torque. Parceling out this elbow extension interaction torque revealed that it primarily arose from shoulder extension deceleration. Surprisingly, shoulder deceleration before ball release was not caused by shoulder flexor (antagonist) muscle torque. Rather, shoulder deceleration was produced by passive elbow-to-shoulder interaction torques that were primarily associated with elbow extension acceleration and velocity. It is concluded that when generating fast 2-D throws, the CNS utilized the arm’s biomechanical properties to increase ball speed. It did this by coordinating shoulder and elbow motions such that an instantaneous mechanical positive feedback occurred of interaction torques between shoulder and elbow before ball release. To what extent this mechanism is utilized in other fast multijoint arm movements remains to be determined.  相似文献   

4.
Multiarticular reaching movements at different speeds produce differential demands for the on-line control of ongoing movements and for the predictive control of intersegmental dynamics. The aim of this study was to assess the ability of a proprioceptively deafferented patient and aged-matched control subjects to make precise and coordinated three-dimensional reaching movements at different speeds without vision during the movement. A patient with a complete loss of proprioception below the neck (C.F.) and five control subjects made reaching movements to four remembered visual targets at slow, natural, and fast speeds. All movements were performed without vision of the arm during the movements. The spatial accuracy, the movement kinematics and the interjoint coordination of these movements were analyzed. Results showed that control subjects made larger spatial errors at both slow and fast speeds than at natural speed. However, they synchronized motions at the shoulder and elbow joints and kept most movement kinematic features invariant across speed conditions. In contrast, C.F. failed to produce smooth and simultaneous motions at the shoulder and elbow joints at all speeds. Surprisingly, however, he made much larger errors than control subjects at slow and natural speeds, but not at fast speed. Analysis of patterns of interjoint coordination revealed that, when instructed to move fast, C.F. initiated arm movements by fixing the elbow while moving the shoulder joint to damp interaction torques exerted on the elbow joint from motion of the upper arm. The results demonstrated that, although proprioceptive loss disrupted normal control of multijoint movements at all speeds, when performing relatively fast three-dimensional movements, C.F. could control intersegmental dynamics by reducing the number of active joints. More importantly, the results highlight the dual role of proprioception in controlling multijoint movements; that is, to provide important cues both for the predictive control of interaction torques and for the synchronization of adjacent joints even when interactive torques are very small. These findings support the idea that proprioceptive input is used by the CNS to update an internal model of limb dynamics that adapts the motor plan according to biomechanical contexts. Electronic Publication  相似文献   

5.
During multijoint limb movements such as reaching, rotational forces arise at one joint due to the motions of limb segments about other joints. We report the results of three experiments in which we assessed the extent to which control signals to muscles are adjusted to counteract these "interaction torques." Human subjects performed single- and multijoint pointing movements involving shoulder and elbow motion, and movement parameters related to the magnitude and direction of interaction torques were manipulated systematically. We examined electromyographic (EMG) activity of shoulder and elbow muscles and, specifically, the relationship between EMG activity and joint interaction torque. A first set of experiments examined single-joint movements. During both single-joint elbow (experiment 1) and shoulder (experiment 2) movements, phasic EMG activity was observed in muscles spanning the stationary joint (shoulder muscles in experiment 1 and elbow muscles in experiment 2). This muscle activity preceded movement and varied in amplitude with the magnitude of upcoming interaction torque (the load resulting from motion of the nonstationary limb segment). In a third experiment, subjects performed multijoint movements involving simultaneous motion at the shoulder and elbow. Movement amplitude and velocity at one joint were held constant, while the direction of movement about the other joint was varied. When the direction of elbow motion was varied (flexion vs. extension) and shoulder kinematics were held constant, EMG activity in shoulder muscles varied depending on the direction of elbow motion (and hence the sign of the interaction torque arising at the shoulder). Similarly, EMG activity in elbow muscles varied depending on the direction of shoulder motion for movements in which elbow kinematics were held constant. The results from all three experiments support the idea that central control signals to muscles are adjusted, in a predictive manner, to compensate for interaction torques-loads arising at one joint that depend on motion about other joints.  相似文献   

6.
Summary Rapid pointing movements (no accuracy or reaction time requirements) were performed under three conditions which limited motion to the shoulder, elbow or a combination of these two joints. Velocity profiles of the hand's trajectory differed during single and multijoint movements. For the same magnitude of displacement, the hand always had a higher peak velocity, shorter rise time (time to peak velocity) and shorter movement time during single joint movements. However, when the profiles were normalized with respect to amplitude and movement time, no significant differences were observed between these three movement conditions. The velocity profiles of the elbow and/or shoulder were also compared under single and multijoint movement conditions. Analysis of these profiles revealed that the relationships between peak velocity and displacement and between movement time and displacement remained the same at the shoulder joint during single and multijoint movements. In contrast, the elbow joint velocity profiles were significantly affected by movement conditions. These relationships (peak velocity/ displacement and movement time/displacement) changed during multijoint movements and became the same as those observed at the shoulder joint. The shape of the hand velocity profile and its invariance across movement conditions can best be explained by dynamic optimization theory and supports the notion that movement of the hand is of primary importance during rapid pointing. However, the consistency of the shoulder velocity profile and the highly significant relationships between the movement of the elbow and shoulder joints indicates that a subordinate joint planning strategy is also used. The purpose of this strategy is to functionally decrease the available degrees of freedom and to simplify coordination between the moving joints. Thus, the organization of arm movements is hierarchically structured with important, but different contributions being made on both the hand planning and joint planning levels.  相似文献   

7.
Prior work has shown that cerebellar subjects have difficulty adjusting for interaction torques that occur during multi-jointed movements. The purpose of this study was to determine whether this deficit is due to a general inability to generate sufficient levels of phasic torque inability or due to an inability to generate muscle torques that predict and compensate for interaction torques. A second purpose was to determine whether reducing the number of moving joints by external mechanical fixation could improve cerebellar subjects' targeted limb movements. We studied control and cerebellar subjects making elbow flexion movements to touch a target under two conditions: 1) a shoulder free condition, which required only elbow flexion, although the shoulder joint was unconstrained and 2) a shoulder fixed condition, where the shoulder joint was mechanically stabilized so it could not move. We measured joint positions of the arm in the sagittal plane and electromyograms (EMGs) of shoulder and elbow muscles. Elbow and shoulder torques were estimated using inverse dynamics equations. In the shoulder free condition, cerebellar subjects made greater endpoint errors (primarily overshoots) than did controls. Cerebellar subjects' overshoot errors were largely due to unwanted flexion at the shoulder. The excessive shoulder flexion resulted from a torque mismatch, where larger shoulder muscle torques were produced at higher rates than would be appropriate for a given elbow movement. In the shoulder fixed condition, endpoint errors of cerebellar subjects and controls were comparable. The improved accuracy of cerebellar subjects was accompanied by reduced shoulder flexor muscle activity. Most of the correct cerebellar trials in the shoulder fixed condition were movements made using only muscles that flex the elbow. Our findings suggest that cerebellar subjects' poor shoulder control is due to an inability to generate muscle torques that predict and compensate for interaction torques, and not due to a general inability to generate sufficient levels of phasic torque. In addition, reducing the number of muscles to be controlled improved cerebellar ataxia.  相似文献   

8.
We tested the hypothesis that in fast arm movements the CNS deliberately utilizes interaction torques to decelerate (brake) joint rotations. Twelve subjects performed fast 2-D overarm throws in which large elbow extension velocities occurred. Joint motions were computed from recordings made with search coils; joint torques were calculated using inverse dynamics. After ball release, a large follow-through shoulder extension acceleration occurred that was initiated by shoulder extensor muscle torque. This shoulder acceleration produced a flexor interaction torque at the elbow that initiated elbow deceleration (braking). An instantaneous mechanical interaction of passive torques then occurred between elbow and shoulder, i.e., elbow extension deceleration produced a large shoulder extensor interaction torque that contributed to the shoulder extension acceleration which, simultaneously, produced a large elbow flexor interaction torque that contributed to elbow extension deceleration, and so on. Late elbow flexor muscle torque also contributed to elbow deceleration. The interaction of passive torques between shoulder and elbow was braked by shoulder flexor muscle torque. In this mechanism, shoulder musculature contributed to braking elbow extension in two ways: shoulder extensors initiated the mechanical interaction of passive torques between shoulder and elbow and shoulder flexors dissipated kinetic energy from elbow braking. It is concluded that, in fast 2-D throws, the CNS deliberately utilizes powerful interaction torques between shoulder and elbow to brake motion at the elbow.  相似文献   

9.
Roles played by the proximal-to-distal sequencing (PDS) of the multi-joint limb in a relatively slow target-aiming task by the arm were investigated using keystroke motion on the piano. Kinematic recordings were made while experts (N=7) and novices (N=7) of piano players performed an octave keystroke at four linearly-scaled loudness levels with a short tone production (staccato) technique. The temporal relationship of the peak angular velocity at the shoulder, elbow and wrist joints showed a clear PDS organization for the experts, but not for the novices. The result thus confirmed that the PDS occurred in a slow and skilled multi-joint movement. The summation effect of segmental speed in terms of increment of the peak segmental angular velocity was equal for both groups. Similarly, no group difference was found for the total kinetic energy produced by the upper limb during keystroke. The role of the PDS in piano keystroke thus cannot be explained by the exploitation of speed-summation effect and mechanical efficiency. Compared to the novices, the experts had a longer period and a greater magnitude of deceleration at the shoulder and elbow joints while their adjacent distal joints were accelerating. These results indicated that greater inertial forces had been generated to descend the forearm as well as the hand for the experts. A dominant role of the PDS in pianists can therefore be to effectively exploit motion-dependent interaction torques at the forearm and hand, and thereby reducing muscle-dependent torques to make the keystroke more physiologically efficient.  相似文献   

10.
Cerebellar dysmetria at the elbow, wrist, and fingers   总被引:9,自引:0,他引:9  
1. The objective was to investigate in cerebellar patients with dysmetria the kinematic and electromyographic (EMG) characteristics of large and small movements at the elbow, wrist, and finger and thereby to determine the nature of cerebellar dysmetria at distal as well as proximal joints. Flexions were made as fast as possible by moving relatively heavy manipulanda for each joint to the same end position through 5, 30, and 60 degrees. 2. In normal subjects flexions at all joints were accompanied by similar triphasic EMG activity. Movements of increasing amplitude were made with increasing movement durations and increasing durations and magnitudes of initial agonist EMG activity. Antagonist activity often appeared to have two components: one coactive with the initial agonist burst but starting later, the other reaching its peak at about peak velocity. 3. Cerebellar patients with dysmetria showed hypermetria followed by tremor at all three joints when movements were made with the manipulanda. Hypermetria was most marked for aimed movements of small amplitude (5 degrees) at all joints. 4. A characteristic of cerebellar disordered movements, which could be present at all amplitudes and all joints, was an asymmetry with decreased peak accelerations and increased peak decelerations compared to normal movements. Both the asymmetry and the hypermetria for small amplitude movements could be used clinically as sensitive indicators of cerebellar dysfunction. 5. The EMG abnormalities accompanying hypermetria and asymmetry were a more gradual buildup and a prolongation of agonist activity and delayed onset of antagonist activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Studies of multijoint arm movements have demonstrated that the nervous system anticipates and plans for the mechanical effects that arise from motion of the linked limb segments. The general rules by which the nervous system selects appropriate muscle activities and torques to best deal with these intersegmental effects are largely unknown. In order to reveal possible rules, this study examined the relationship of muscle and interaction torques to joint acceleration at the shoulder, elbow and wrist during point-to-point arm movements to a range of targets in the horizontal plane. Results showed that, in general, dynamics differed between the joints. For most movements, shoulder muscle torque primarily determined net torque and joint acceleration, while interaction torque was minimal. In contrast, elbow and wrist net torque were determined by a combination of muscle and interaction torque that varied systematically with target direction and joint excursion. This "shoulder-centered pattern" occurred whether subjects reached targets using straight or curved finger paths. The prevalence of a shoulder-centered pattern extends findings from a range of arm movement studies including movement of healthy adults, neurological patients, and simulations with altered interaction effects. The shoulder-centered pattern occurred for most but not all movements. The majority of the remaining movements displayed an "elbow-centered pattern," in which muscle torque determined initial acceleration at the elbow and not at the shoulder. This occurred for movements when shoulder excursion was <50% of elbow excursion. Thus, both shoulder- and elbow-centered movements displayed a difference between joints but with reversed dynamics. Overall, these findings suggest that a difference in dynamics between joints is a general feature of horizontal plane arm movements, and this difference is most commonly reflected in a shoulder-centered pattern. This feature fits well with other general shoulder-elbow differences suggested in the literature on arm movements, namely that: (a) agonist muscle activity appears more closely related to certain joint kinematics at the shoulder than at the elbow, (b) adults with neurological damage display less disruption of shoulder motion than elbow motion, and (c) infants display adult-like motion first in the shoulder and last at the wrist.  相似文献   

12.
Cerebellar patients throw inaccurately in the left-right direction but the cause of this multijoint ataxia is unclear. We tested whether it was due, as originally proposed, to variable left-right directions of the hand path, or, alternatively, to variable timing of ball release occurring on a right to left curved hand path. We also examined the cause of the variability in hand path direction per se. Six right-handed cerebellar patients and six control subjects were instructed to throw tennis balls at a slow, medium and fast speed from a seated position while angular positions in 3D of five arm segments were recorded at 1000 Hz with the search-coil technique. Compared to controls, cerebellar patients threw slower and less accurately, had more variable timing of ball release occurring on a right to left curved hand path and had more variable left-right directions of hand paths at a fixed point in front of the sternum. In all cerebellar patients, ball left-right inaccuracy was related both to timing of ball release and to hand path direction at the fixed point. The cause of the increased variability in hand path direction varied between patients and could not be explained by disorder in a single joint rotation. No evidence was found that it resulted from variable stabilization at the shoulder during elbow extension. Instead, the more variable left-right direction of the hand path was related to the initial pattern of joint rotations occurring early in the throw before the onset of elbow extension, and to the amplitudes of radioulnar pronation and wrist abduction occurring late in the throw. The results emphasize that in the presence of a cerebellar lesion, ball left-right inaccuracy in overarm throws cannot be explained by a single disorder. Rather ball inaccuracy was likely due to disorders in central commands to proximal joint rotations that produced the hand path and in central commands to distal joints that controlled the timing of finger opening.  相似文献   

13.
A simple paradigm was used to investigate how patients with cerebellar lesions cope with the need to correct for joint interactions during a multi-joint movement. Normal subjects and patients with cerebellar degeneration performed fast unconstrained elbow flexions with the instruction to voluntarily fixate the shoulder joint. Angular kinematics and inverse dynamics analyses were performed. A susceptibility index quantified how strong-concomitant shoulder-motion depended on interactions from the elbow. Amplitudes of involuntary shoulder movements increased with elbow movement speed and were generally larger in patients. Susceptibility indices were smaller in patients, indicating a more variable compensatory response, however, increased with elbow movement speed. We conclude that patients were significantly less able to 'tune' their postural stabilizing response to match interaction torques. However, the velocity dependence of this effect points to a deficit in generating normal levels of phasic torque.  相似文献   

14.
It has been suggested that the cerebellum is an important contributor to CNS prediction and control of intersegmental dynamics during voluntary multijoint reaching movements. Leg movements subserve different behavioral goals, e.g., locomotion versus voluntary stepping, which may or may not be under similar dynamic control. The objective was to determine whether cerebellar leg hypermetria (excessive foot elevation) during obstacle avoidance in locomotion and voluntary stepping could be attributed to a particular deficit in appropriately controlling intersegmental dynamics. We compared the performance of eight individuals with cerebellar damage to eight healthy controls as they walked or voluntarily stepped in place over a small obstacle. Joint kinematics and dynamics were calculated during swing phase for both movement contexts. The kinematic analysis showed that hypermetria occurred during both walking and stepping and was associated with excessive knee flexion. When present, the amplitude of hypermetria was greater during stepping compared to walking. During stepping, subjects with cerebellar damage produced excessive knee flexor muscle torques and consequently overcompensated for interaction and gravitational torques normally used to decelerate the limb. During walking, the torque pattern was very similar to that of control subjects walking over a taller obstacle, and therefore might be a voluntary compensatory strategy to avoid tripping. Our results show that the extent of kinematic and dynamic abnormalities associated with cerebellar leg hypermetria is context-specific, with more fundamental abnormalities of leg dynamics being apparent during stepping as opposed to walking.  相似文献   

15.
We examined the systematic variation in shoulder and elbow torque, as well as movement kinematics, for horizontal-plane arm movements with direction reversals performed by normal individuals and individuals with Down syndrome. Eight neurologically normal individuals and eight individuals with Down syndrome performed horizontal, planar reversal movements to four different target locations. The four locations of the targets were chosen such that there is a systematic increase in elbow interaction torque for each of the four different target locations. This systematic increase in interaction torque has previously been shown to lead to progressively larger movement reversal errors, and trajectories that do not show a sharp reversal of direction, for movements to and from the target in patients who have proprioceptive abnormalities. We computed joint torques at the elbow and shoulder and found a high correlation between elbow and shoulder torque for the neurologically normal subjects. The ratio of joint torques varied systematically with target location. These findings extend previously reported findings of a linear synergy between shoulder and elbow joints for a variety of point-to-point movements. There was also a correlation between elbow and shoulder torque in individuals with Down syndrome, but the magnitude of the correlation was less. The ratio of joint torques changed systematically with target direction in individuals with Down syndrome but was slightly different from the ratio observed for neurologically normal individuals. The difference in the ratio was caused by the generation of proportionately more elbow torque than shoulder torque. The fingertip path of individuals with Down syndrome showed a sharp reversal in moving toward and then away from the target. In this respect, they were similar to neurologically normal individuals but dissimilar to individuals with proprioceptive deficits. Finally, we observed that individuals with Down syndrome spend proportionately more time in the vicinity of the target than normal individuals. Collectively these results show that there is a systematic relationship between joint torques at the elbow and shoulder. This relationship is present for reversal movements and is also present in individuals with Down syndrome.  相似文献   

16.
To detect joint movement, the brain relies on sensory signals from muscle spindles that sense the lengthening and shortening of the muscles. For single-joint muscles, the unique relationship between joint angle and muscle length makes this relatively straightforward. However, many muscles cross more than one joint, making their spindle signals potentially ambiguous, particularly when these joints move in opposite directions. We show here that simultaneous movement at adjacent joints sharing biarticular muscles affects the threshold for detecting movements at either joint whereas it has no effect for non-adjacent joints. The angular displacements required for 70% correct detection were determined in 12 subjects for movements imposed on the shoulder, elbow and wrist at angular velocities of 0.25–2 deg s−1. When moved in isolation, detection thresholds at each joint were similar to those reported previously. When movements were imposed on the shoulder and wrist simultaneously, there were no changes in the thresholds for detecting movement at either joint. In contrast, when movements in opposite directions at velocities greater than 0.5 deg s−1 were imposed on the elbow and wrist simultaneously, thresholds increased. At 2 deg s−1, the displacement threshold was approximately doubled. Thresholds decreased when these adjacent joints moved in the same direction. When these joints moved in opposite directions, subjects more frequently perceived incorrect movements in the opposite direction to the actual. We conclude that the brain uses potentially ambiguous signals from biarticular muscles for kinaesthesia and that this limits acuity for detecting joint movement when adjacent joints are moved simultaneously.  相似文献   

17.
18.
Different investigators have proposed that multi-joint arm movements are planned with respect to either the path of the hand or the forces and torques acting about the moving joints. In this experiment, we examined the kinematic and kinetic response of the motor system when a load was applied to the forearm, which reduced the natural anisotropy of the arm. We asked two questions: (1) when the movement path changes upon the introduction of the novel load, do muscle torques at the shoulder and elbow remain the same as they were before the load was applied? and (2) when the path is restored partially as the novel load is learned, do changes in muscle torque occur preferentially at one or the other joint? Participants performed rapid arm movements to a target with and without the novel load attached to their arm. Changes in hand path and muscle torque profiles were examined immediately after the application of the load and again following 30 practice trials. The introduction of the load increased the curvature of hand paths for each participant and resulted in changes in the magnitude and time course of muscle torque at both joints, although to a greater extent at the shoulder. After practice with the load, hand paths and elbow muscle torques resembled those produced with no load. Muscle torques produced at the shoulder, however, did not return to pre-load patterns. These observations provide support for the idea that movements are initiated by planned muscle torques and that as the movement proceeds muscle torques are regulated in order to produce hand paths that conform approximately to a kinematic plan.  相似文献   

19.
The present study identifies the mechanics of planar reaching movements performed by monkeys (Macaca mulatta) wearing a robotic exoskeleton. This device maintained the limb in the horizontal plane such that hand motion was generated only by flexor and extensor motions at the shoulder and elbow. The study describes the kinematic and kinetic features of the shoulder, elbow, and hand during reaching movements from a central target to peripheral targets located on the circumference of a circle: the center-out task. While subjects made reaching movements with relatively straight smooth hand paths and little variation in peak hand velocity, there were large variations in joint motion, torque, and power for movements in different spatial directions. Unlike single-joint movements, joint kinematics and kinetics were not tightly coupled for these multijoint movements. For most movements, power generation was predominantly generated at only one of the two joints. The present analysis illustrates the complexities inherent in multijoint movements and forms the basis for understanding strategies used by the motor system to control reaching movements and for interpreting the response of neurons in different brain regions during this task.  相似文献   

20.
Impairments in the performance of complex actions in Parkinson's disease (PD) patients are well documented. The aim of the present study was to investigate potential mechanisms that may be contributing to impaired movement performance in PD patients. PD patients and age-matched control subjects performed rapid pointing movements to a series of four tabletop targets. The height of the table was adjusted until the targets could be achieved with arm movements in the horizontal plane. The targets were arranged such that target 1 required elbow extension only and targets 2–4 required increasing amounts of horizontal shoulder flexion in addition to the elbow extension. While the control subjects accelerated and decelerated the elbow and shoulder joints simultaneously regardless of the target location, the PD patients decomposed motion during the acceleration phase by accelerating first the shoulder and then the elbow joint. For PD patients this decomposition of arm segments was associated with greater coactivation of the muscles about the elbow when elbow extension and shoulder flexion were simultaneously required (targets 2–4), in contrast to the single joint action. The control subjects decreased elbow joint coactivation while the patients increased it across the four targets. The resulting peak interaction torques at both the elbow and shoulder joints occurred relatively later for the PD patients. The coactivation patterns observed in PD patients may reduce the ability to take advantage of interaction torques and may also contribute to joint motion decomposition. Electronic Publication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号