首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Very little is known about the role of the cingulate motor area (CMA) in visually guided reaching compared to other cortical motor areas. To investigate the hierarchical role of the caudal CMA (CMAc) during reaching we recorded the activity of neurons in CMAc in comparison to the supplementary motor area proper (SMA) while a monkey performed an instructed delay task that required it to position a cursor over visual targets on a computer screen using two-dimensional (2D) joystick movements. The direction of the monkeys arm movement was dissociated from the direction of the visual target by periodically reversing the relationship between the direction of movement of the joystick and that of the cursor. Neurons that responded maximally with a particular limb movement direction regardless of target location were classified as limb-dependent, whereas neurons that responded maximally to a particular target direction regardless of the direction of limb movement were classified as target-dependent. Neurons whose activity was directional in one of the two visuomotor mapping conditions and non-directional or inactive in the other were categorized as context-dependent. Limb-dependent activity was observed more frequently than target-dependent activity in both CMAc and SMA proper during both the delay period (preparatory activity; CMAc, 17%; SMA, 31%) and during movement execution (CMAc, 49%, SMA, 48%). A modest percentage of neurons with preparatory activity were target-dependent in both CMAc (11%) and SMA proper (8%) and a similar percentage of neurons in both areas demonstrated target-dependent, movement activity (CMAc, 8%; SMA, 10%). The surprising finding was that a very large percentage of neurons in both areas displayed context-dependent activity either during the preparatory (CMAc, 72%; SMA, 61%) or movement (CMAc, 43%, SMA 42%) epochs of the task. These results show that neural activity in both CMAc and SMA can directly represent movement direction in either limb-centered or target-centered coordinates. The presence of target-dependent activity in CMAc, as well as SMA, suggests that both are involved in the transformation of visual target information into appropriate motor commands. Target-dependent activity has been found in the putamen, SMA, CMAc, dorsal and ventral premotor cortex, as well as primary motor cortex. This indicates that the visuomotor transformations required for visually guided reaching are carried out by a distributed network of interconnected motor areas. The large proportion of neurons with context-dependent activity suggests, however, that while both CMAc and SMA may play a role in the visuomotor transformation of target information into movement parameters, their activity is not solely coding parameters of movement, since their involvement in this process is highly condition-dependent.  相似文献   

2.
Recent anatomical and physiological studies have suggested that parts of the cingulate cortex are involved in the control of movement. These areas have been collectively termed the cingulate motor area (CMA). Currently almost nothing is known, however, about how neurons in the CMA actually participate in the control of movement. Therefore, we investigated the role of cells in the dorsal and ventral banks of the CMA (CMAd and CMAv, respectively) in the preparation and execution of visually guided arm movements. We recorded the activity of neurons while a monkey performed a visually guided, two-dimensional instructed delay task. A monkey was required to operate a joystick that moved a cursor from a centrally located hold target to one of four peripheral targets. Neurons were classified as exhibiting preparatory activity if the neural discharge during the postinstruction delay period was significantly higher than the preinstruction activity. Neurons were classified as exhibiting movement activity if the neural discharge was significantly elevated around the time of the movement. Of the 115 task-related neurons studied, 18 (16%) exhibited only preparatory activity, 48 (42%) exhibited only movement activity, and 49 (43%) exhibited both preparatory and movement activity. Neurons were further classified in terms of their directional tuning. For 51% of neurons with preparatory activity, that activity was directional. A significantly larger proportion of movement-related activity was directional (78%). For neurons with both directional preparatory and movement activity, the preferred directions were highly correlated (r=0.83). The median onset of movement activity was 10 ms before the beginning of movement (range -200 to 200 ms). The patterns and directionality of task-related activity of CMA neurons observed in this study are similar to those previously reported for other cortical motor areas. Together, these data provide preliminary evidence that neurons in CMAd and CMAv play a role in both the preparation and execution of visually guided arm movements.  相似文献   

3.
Based on a previous exploratory study, the functionality of event-related potentials related to visuomotor processing and learning was investigated. Three pursuit tracking tasks (cursor control either mouse, joystick, or bimanually) revealed the greatest tracking error and greatest learning effect in the bimanual task. The smallest error without learning was found in the mouse task. Error reduction reflected visuomotor learning. In detail, target–cursor distance was reduced continuously, indicating a better fit to a changed direction, whereas response time remained at 300 ms. A central positive ERP component with an activity onset 100 ms after a directional change of the target and most likely generated in premotor areas could be assigned to response planning and execution. The magnitude of this component was modulated by within-and-between-task difficulty and size of the tracking error. Most importantly, the size of this component was sensitive to between-subject performance and increased with visuomotor learning. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Summary We compared set-related premotor cortex activity in two conditional motor tasks. In both tasks, a rhesus monkey moved its forelimb to one of two possible targets on the basis of visuospatial instruction stimuli. One target was located to the left of the limb's starting position, the other to the right. In the directional task, a white light situated within the target provided the instruction. In the arbitrary task, colored instruction stimuli equidistant from the targets established an arbitrary relationship between stimulus and response. One hypothesis about setrelated premotor cortex activity is that it contributes to the preparation for limb movement on the basis of sensory instruction stimuli. If set-related activity differed profoundly in the arbitrary and directional tasks, then that hypothesis would be untenable. Out of 403 task-related premotor cortex neurons in two monkeys, 130 neurons showed set-related activity, and we studied 118 cells in detail. The vast majority (81%) of these 118 neurons showed no significant difference between the two tasks in set-related activity. When set-related activity did differ, the greatest activity usually occurred after arbitrary instructions; the opposite being the case for only 5% of our sample. Differences in activity during the two tasks, even when statistically significant, were generally small. The present results accord with the hypothesis that set-related premotor cortex activity reflects aspects of motor preparation.  相似文献   

5.
Testing the hypothesis that the lateral cerebellum forms a sensory representation of arm movements, we investigated cortical neuronal activity in two monkeys performing visually guided step-tracking movements with a manipulandum. A virtual target and cursor image were viewed co-planar with the manipulandum. In the normal task, manipulandum and cursor moved in the same direction; in the mirror task, the cursor was left-right reversed. In one monkey, 70- and 200-ms time delays were introduced on cursor movement. Significant task-related activity was recorded in 31 cells in one animal and 142 cells in the second: 10.2% increased activity before arm movements onset, 77.1% during arm movement, and 12.7% after the new position was reached. To test for neural representation of the visual outcome of movement, firing rate modulation was compared in normal and mirror step-tracking. Most task-related neurons (68%) showed no significant directional modulation. Of 70 directionally sensitive cells, almost one-half (n = 34, 48%) modulated firing with a consistent cursor movement direction, many fewer responding to the manipulandum direction (n = 9, 13%). For those "cursor-related" cells tested with delayed cursor movement, increased activity onset was time-locked to arm movement and not cursor movement, but activation duration was extended by an amount similar to the applied delay. Hence, activity returned to baseline about when the delayed cursor reached the target. We conclude that many cells in the lateral cerebellar cortex signaled the direction of cursor movement during active step-tracking. Such a predictive representation of the arm movement could be used in the guidance of visuo-motor actions.  相似文献   

6.
Many single-neuron recording studies have examined the degree to which the activity of primary motor cortex (M1) neurons is related to the kinematics and kinetics of various motor tasks. This has not been explored as extensively for arm movement-related neurons in posterior parietal cortex area 5. We recorded the activity of 78 proximal arm-related neurons in area 5 of two monkeys while they used their whole arm to make reaching movements toward eight targets on a horizontal plane against an inertial load or to generate isometric forces at the hand in the same eight horizontal directions. The overall range of measured output forces was similar in the two tasks. The forces increased monotonically in the desired direction in the isometric task. In the movement task, in contrast, they showed a rapid initial increase in the direction of movement, followed by a transient reversal of forces as the hand approached the target. Many task-related area 5 neurons were tuned for the direction of motor output in the tasks, but most area 5 neurons were more strongly active or exclusively active in the movement task than in the isometric task. Furthermore, their activity at either the single cell or population level did not reflect the transient reversal of output forces during movement. In contrast, M1 neuronal activity was typically strong in both tasks and showed task-related changes that reflected the differences in the time course and directionality of force outputs between both tasks, including the transient reversal of forces in the movement task. These results show that area 5 neurons are less strongly related to the time-course of task kinetics than M1 during isometric and arm-movement tasks.  相似文献   

7.
Summary Regional cerebral blood flow was measured in normal subjects with positron emission tomography (PET) while they performed five different motor tasks. In all tasks they had to moved a joystick on hearing a tone. In the control task they always pushed it forwards (fixed condition), and in four other experimental tasks the subjects had to select between four possible directions of movement. These four tasks differed in the basis for movement selection. A comparison was made between the regional blood flow for the four tasks involving movement selection and the fixed condition in which no selection was required. When selection of a movement was made, significant increases in regional cerebral blood flow were found in the premotor cortex, supplementary motor cortex, and superior parietal association cortex. A comparison was also made between the blood flow maps generated when subjects performed tasks based on internal or external cues. In the tasks with internal cues the subjects could prepare their movement before the trigger stimulus, whereas in the tasks with external cues they could not. There was greater activation in the supplementary motor cortex for the tasks with internal cues. Finally a comparison was made between each of the selection conditions and the fixed condition; the greatest and most widespread changes in regional activity were generated by the task on which the subjects themselves made a random selection between the four movements.  相似文献   

8.
To investigate functional differences between the rostral and caudal parts of the dorsal premotor cortex (PMd), we first examined the effects of intracortical microstimulation (ICMS) while monkeys were performing oculomotor and limb motor tasks or while they were at rest. We found that saccades were evoked from the rostral part (PMdr) whereas ICMS in the caudal part (PMdc) predominantly produced forelimb or body movements. Subsequently, we examined neuronal activity in relation to the performance of visually cued and memorized saccades while monkeys reached an arm toward a visual target. We found that roughly equal numbers of PMdr neurons were active during performance of the oculomotor and limb motor tasks. In contrast, the majority of PMdc neurons were related preferentially to arm movements and not to saccades. In the subsequent analysis, we found that the oculomotor effects evoked in the PMdr differ from the effects evoked in either the frontal eye field (FEF) or supplementary eye field (SEF). These findings suggest that the PMdr is involved in oculomotor as well as limb motor behavior. However, the oculomotor involvement of the PMdr seems to have a functional aspect different from that operating in the FEF and SEF.  相似文献   

9.
Previous studies have shown that both young and older subjects adapt their reaches in response to a visuomotor distortion. It has been suggested that one’s continued ability to adapt to a visuomotor distortion with advancing age is due to the preservation of implicit learning mechanisms, where implicit learning mechanisms include processes that realign sensory inputs (i.e. shift one’s felt hand position to match the visual representation). The present study examined this proposal by determining if changes in sense of felt hand position (i.e. proprioceptive recalibration) follow visuomotor adaptation in older subjects. As well, we examined the influence of age on proprioceptive recalibration by comparing young and older subjects’ estimates of the position at which they felt their hand was aligned with a visual reference marker before and after aiming with a misaligned cursor that was gradually rotated 30° clockwise of the actual hand location. On estimation trials, subjects moved their hand along a robot-generated constrained pathway. At the end of the movement, a reference marker appeared and subjects indicated if their hand was left or right of the marker. Results indicated that all subjects adapted their reaches at a similar rate and to the same extent across the reaching trials. More importantly, we found that both young and older subjects recalibrated proprioception, such that they felt their hand was aligned with a reference marker when it was approximately 6° more left (or counterclockwise) of the marker following reaches with a rotated cursor. The leftward shift in both young and older subjects’ estimates was in the same direction and a third of the extent of adapted movement. Given that the changes in the estimate of felt hand position were only a fraction of the changes observed in the reaching movements, it is unlikely that sensory recalibration was the only source driving changes in reaches. Thus, we propose that proprioceptive recalibration combines with adapted sensorimotor mappings to produce changes in reaching movements. From the results of the present study, it is clear that changes in both sensory and motor systems are possible in older adults and could contribute to the preserved visuomotor adaptation.  相似文献   

10.
1. We recorded single cell activities in the caudate nucleus of the monkeys trained to perform a series of visuomotor tasks. In the first part of this paper, we summarize the types and locations of neurons in the monkey caudate nucleus. In the second part, we report the characteristics of neurons related to saccadic eye movements. 2. Neurons were classified into two types in terms of spontaneous discharge pattern. A majority of the neurons (2,287/2,559, 89%) had very low-frequency discharges (mostly less than 1 Hz). The rest (n = 272) showed irregular-tonic discharges (3-8 Hz) with broad spikes. 3. Of 2,559 neurons tested, 867 showed spike activity related to some aspects of the tasks; 502 neurons showed discharges in response to environmental changes outside, not in relation to, the tasks. None of the neurons responsive in or outside the tasks belonged to the irregular-tonic type. 4. The task-related activities were classified as: Saccade-related, Visual, Auditory, Cognitive, Fixation-related, and Reward-related. The activities detected outside the tasks were classified into: Visual, Auditory, Movement-related, Reward-related, and Other. Few neurons had both task-related and task-unrelated activities. 5. The locations of recorded neurons were determined using a coordinate system based on the anterior and posterior commissures. Task-related neurons were clustered longitudinally in the central part of the caudate. Neurons responsive outside the tasks were more widely distributed; specifically, auditory neurons were in the medial part, whereas movement-related neurons were in the lateral part. The irregular-tonic neurons were dispersed all over the caudate. 6. The monkey was trained to fixate on a spot of light on the screen and, when the spot moved, to follow it by making a saccade. A visually guided saccade occurred when the spot moved to another location without a time gap (saccade task). A memory-guided saccade occurred when the spot first disappeared and after a time gap reappeared at a fixed location (saccade with gap task). By delivering a cue stimulus while the monkey was fixating, a memory-guided saccade was elicited to a randomly chosen location (delayed saccade task).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
To investigate a possible role of the lateral premotor cortex in human cognitive processes, we compared brain activity during mental-operation numeral (MO-numeral) and verbal rehearsal (VR) tasks, using block-design functional MRI. Sixteen healthy subjects serially added a series of single-digit numbers during the MO-numeral task and silently rehearsed a memorized seven-digit number during the VR task. Each task condition was contrasted with a visual fixation task. Both MO-numeral and VR tasks revealed activity within the lateral premotor cortex among others. The rostral and dorsal part of the lateral premotor cortex (PMdr) showed significantly greater activity during the MO-numeral task than the VR task whereas its caudal part (PMdc) was similarly active during the two tasks. The present study suggests that the PMdr and PMdc are involved in different non-motor cognitive processes.  相似文献   

12.
Reaching to targets with misaligned visual feedback of the hand leads to changes in proprioceptive estimates of hand position and reach aftereffects. In such tasks, subjects are able to make use of two error signals: the discrepancy between the desired and actual movement, known as the sensorimotor error signal, and the discrepancy between visual and proprioceptive estimates of hand position, which we refer to as the cross-sensory error signal. We have recently shown that mere exposure to a sensory discrepancy in the absence of goal-directed movement (i.e. no sensorimotor error signal) is sufficient to produce similar changes in felt hand position and reach aftereffects. Here, we sought to determine the extent that this cross-sensory error signal can contribute to proprioceptive recalibration and movement aftereffects by manipulating the magnitude of this signal in the absence of volitional aiming movements. Subjects pushed their hand out along a robot-generated linear path that was gradually rotated clockwise relative to the path of a cursor. On all trials, subjects viewed a cursor that headed directly towards a remembered target while their hand moved out synchronously. After exposure to a 30° rotated hand-cursor distortion, subjects recalibrated their sense of felt hand position and adapted their reaches. However, no additional increases in recalibration or aftereffects were observed following further increases in the cross-sensory error signal (e.g. up to 70°). This is in contrast to our previous study where subjects freely reached to targets with misaligned visual hand position feedback, hence experiencing both sensorimotor and cross-sensory errors, and the distortion magnitude systematically predicted increases in proprioceptive recalibration and reach aftereffects. Given these findings, we suggest that the cross-sensory error signal results in changes to felt hand position which drive partial reach aftereffects, while larger aftereffects that are produced after visuomotor adaptation (and that vary with the size of distortion) are related to the sensorimotor error signal.  相似文献   

13.
Reaching movements are rapidly adapted following training with rotated visual feedback of the hand (motor recalibration). Our laboratory has also found that visuomotor adaptation results in changes in estimates of felt hand position (proprioceptive recalibration) in the direction of the visuomotor distortion (Cressman and Henriques 2009, 2010; Cressman et al. 2010). In the present study, we included an additional method for measuring hand proprioception [specifically, proprioceptive-guided reaches of the unadapted (left) hand to the robot-guided adapted (right) hand-target] and compared this with our original perceptual task (estimating the felt hand position of the adapted hand relative to visual reference markers/the body midline), as well as to no-cursor reaches with the adapted hand (reaching to visual and midline-targets), to better identify whether changes in reaching following adaptation to a 50° rightward-rotated cursor reflect sensory or motor processes. Results for the proprioceptive estimation task were consistent with previous findings; subjects felt their hand to be aligned with a reference marker when it was shifted approximately 4° more in the direction of the visuomotor distortion following adaptation compared with baseline conditions. Moreover, we found similar changes in the proprioceptive-guided reaching task such that subjects misreached 5° in the direction of the cursor rotation. However, these results were true only for proprioceptive-guided reaches to the adapted hand, as reaches to the body midline were not affected by adaptation. This suggests that proprioceptive recalibration is restricted to the adapted hand and does not generalize to the rest of the body; this truly reflects a change in the sensory representation of the hand rather than changes in the motor program. This is in contrast to no-cursor reaches made with the adapted hand, which show reach after-effects for both visual targets and the midline, suggesting that reaches with the adapted hand reflect more of a change in the motor system. Our results also shed light on previous studies that may have misattributed these sensory and motor changes.  相似文献   

14.
Experimental evidence and computational modeling suggest that target selection for reaching is associated with the parallel encoding of multiple movement plans in the dorsomedial posterior parietal cortex (dmPPC) and the caudal part of the dorsal premotor cortex (PMdc). We tested the hypothesis that a similar mechanism also accounts for arm selection for unimanual reaching, with simultaneous and separate motor goal representations for the left and right arms existing in the right and left parietofrontal cortex, respectively. We recorded simultaneous electroencephalograms and functional MRI and studied a condition in which subjects had to select the appropriate arm for reaching based on the color of an appearing visuospatial target, contrasting it to a condition in which they had full knowledge of the arm to be used before target onset. We showed that irrespective of whether subjects had to select the arm or not, activity in dmPPC and PMdc was only observed contralateral to the reaching arm after target onset. Furthermore, the latency of activation in these regions was significantly delayed when arm selection had to be achieved during movement planning. Together, these results demonstrate that effector selection is not achieved through the simultaneous specification of motor goals tied to the two arms in bilateral parietofrontal cortex, but suggest that a motor goal is formed in these regions only after an arm is selected for action.  相似文献   

15.
Bilateral basal ganglia activation associated with sensorimotor adaptation   总被引:3,自引:0,他引:3  
Sensorimotor adaptation tasks can be classified into two types. When subjects adapt movements to visual feedback perturbations such as in prism lens adaptation, they perform kinematic adaptations. When subjects adapt movements to force field perturbations such as with robotic manipulanda, they perform kinetic adaptations. Neuroimaging studies have shown basal ganglia involvement in kinetic adaptations, but have found little evidence of basal ganglia involvement in kinematic adaptations, despite reports of deficits in patients with diseases of the basal ganglia, such as Parkinson’s and Huntington’s disease, in these. In an effort to resolve such apparent discrepancy, we used FMRI to focus on the first few minutes of practice during kinematic adaptation. Human subjects adapted to visuomotor rotations in the context of a joystick aiming task while lying supine in a 3.0 T MRI scanner. As demonstrated previously, early adaptive processes were associated with BOLD activation in the cerebellum and the sensory and motor cortical regions. A novel finding of this study was bilateral basal ganglia activation. This suggests that, at least for early learning, the neural correlates of kinematic adaptation parallel those of other types of skill learning. We observed activation in the right globus pallidus and putamen, along with the right prefrontal, premotor and parietal cortex, which may support spatial cognitive processes of adaptation. We also observed activation in the left globus pallidus and caudate nucleus, along with the left premotor and supplementary motor cortex, which may support the sensorimotor processes of adaptation. These results are the first to demonstrate a clear involvement of basal ganglia activation in this type of kinematic motor adaptation.  相似文献   

16.
The role of the posterior parietal cortex (PPC) in the visual guidance of movements was studied in monkeys trained to use a joystick to guide a spot to a target. Visual and motor influences were dissociated by transiently occluding the spot and by varying the relationship between the direction of joystick and spot movements. We found a strong segregation of function in PPC during visual guidance. Neurons in area MST were selectively modulated by the direction of visible moving stimuli, whereas neurons in area MIP were selectively modulated by the direction of hand movement. In contrast, the selectivity of cells in the lateral intraparietal area (LIP) did not directly depend on either visual input or motor output, but rather seemed to encode a predictive representation of stimulus movement. These predictive signals may be an important link in visuomotor transformations.  相似文献   

17.
We have tested human visuo-motor adaptation in rotated-feedback tasks in which subjects first learn to move a cursor to visual targets with a rotational perturbation between joystick and cursor, and are then challenged with the opposing rotation. We then retest the subjects in the original adaptation task, to measure retention of a short-term memory of its earlier learning. Others have used similar tasks and report retrograde interference between one task and the short-term motor memory of the preceding task, such that later performance is impaired. However, we show that in the short-term conditions tested here, these effects can be considered as anterograde interference effects between the two tasks and we find no evidence of retrograde interference.  相似文献   

18.
Visuomotor tracking with delayed visual feedback   总被引:3,自引:0,他引:3  
A rhesus monkey and five human subjects used a hand-held joystick to track unpredictable continuously moving targets. Both monkey and human respond by making discrete ("step-and-hold") corrections of positional error, at an average frequency of 1.33 and 2.26 movements/second, respectively. By delaying visual feedback of joystick position, we could reduce these frequencies in a predictable manner. These results imply that the primate visuomotor system probably does not operate as a "sampled-data mechanism" governed by an asynchronous clock, but that inevitable delays in visuomotor feedback control determine the frequency of corrective movements.  相似文献   

19.
Vision and proprioception contribute to generating hand movement. If a conflict between the visual and proprioceptive feedback of hand position is given, reaching movement is disturbed initially but recovers after training. Although previous studies have predominantly investigated the adaptive change in the motor output, it is unclear whether the contributions of visual and proprioceptive feedback controls to the reaching movement are modified by visuomotor adaptation. To investigate this, we focused on the change in proprioceptive feedback control associated with visuomotor adaptation. After the adaptation to gradually introduce visuomotor rotation, the hand reached the shifted position of the visual target to move the cursor to the visual target correctly. When the cursor feedback was occasionally eliminated (probe trial), the end point of the hand movement was biased in the visual-target direction, while the movement was initiated in the adapted direction, suggesting the incomplete adaptation of proprioceptive feedback control. Moreover, after the learning of uncertain visuomotor rotation, in which the rotation angle was randomly fluctuated on a trial-by-trial basis, the end-point bias in the probe trial increased, but the initial movement direction was not affected, suggesting a reduction in the adaptation level of proprioceptive feedback control. These results suggest that the change in the relative contribution of visual and proprioceptive feedback controls to the reaching movement in response to the visuomotor-map uncertainty is involved in visuomotor adaptation, whereas feedforward control might adapt in a manner different from that of the feedback control.  相似文献   

20.
Functional imaging studies in humans have demonstrated widespread age-related changes in cortical motor networks. However, the relative contribution of cortical regions during motor performance varies not only with age but with task parameters. In this study, we investigated whether motor system activity during a task involving increasingly forceful hand grips was influenced by age. Forty right-handed volunteers underwent functional magnetic brain imaging whilst performing repetitive isometric hand grips with either hand in separate sessions. We found no age-related changes in the average size and shape of the task-related blood oxygen level dependent (BOLD) signal in contralateral primary motor cortex (M1), but did observe reduced ipsilateral M1 deactivation in older subjects (both hands). Furthermore, task-related activity co-varied positively with force output in a number of brain regions, but was less prominent with advancing age in contralateral M1, cingulate sulcus (both hands), sensory and premotor cortices (right hand). These results indicate that a reduced ability to modulate activity in appropriate motor networks when required may contribute to age-related decline in motor performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号