首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S O Ha  J K Kim  H S Hong  D S Kim  H J Cho 《Neuroscience》2001,107(2):301-309
Chronic constriction injury of the sciatic nerve and lumbar L5 and L6 spinal nerve ligation provide animal models for pain syndromes accompanying peripheral nerve injury and disease. In the present study, we evaluated changes in brain-derived neurotrophic factor (BDNF) immunoreactivity in the rat L4 and L5 dorsal root ganglia (DRG) and areas where afferents from the DRG terminates (the L4/5 spinal cord and gracile nuclei) in these experimental models of neuropathic pain. Chronic constriction injury induced significant increase in the percentage of small, medium and large BDNF-immunoreactive neurons in the ipsilateral L4 and L5 DRG. Following spinal nerve ligation, the percentage of large BDNF-immunoreactive neurons increased significantly, and that of small BDNF-immunoreactive neurons decreased markedly in the ipsilateral L5 DRG, while that of BDNF-immunoreactive L4 DRG neurons of all sizes showed marked increase. Both chronic constriction injury and spinal nerve ligation induced significant increase in the number of BDNF-immunoreactive axonal fibers in the superficial and deeper laminae of the L4/5 dorsal horn and the gracile nuclei on the ipsilateral side.Considering that BDNF may modulate nociceptive sensory inputs and that injection of antiserum to BDNF significantly reduces the sympathetic sprouting in the DRG and allodynic response following sciatic nerve injury, our results also may suggest that endogenous BDNF plays an important role in the induction of neuropathic pain after chronic constriction injury and spinal nerve ligation. In addition, the increase of BDNF in L4 DRG may contribute to evoked pain which is known to be mediated by input from intact afferent from L4 DRG following L5 and L6 spinal nerve ligation.  相似文献   

2.
目的:观察加巴喷丁干预后疼痛大鼠痛阈变化及背根神经节(DRGs)中交感神经芽生的改变。方法:将SD雄性大鼠随机分为正常对照组、模型组和加巴喷丁组,于术前及术后5 d每天检测大鼠痛阈变化;术后5 d取各组大鼠手术侧腰5和腰4及对侧腰5 DRG,观察DRGs中交感纤维数量及篮状结构的变化。结果:加巴喷丁可以显著抑制脊神经结扎引起的痛觉过敏;模型组(手术侧腰5及腰4)表现为交感神经节后纤维的异常增生,加巴喷丁干预后,手术侧腰5和腰4 DRGs TH-IR纤维及篮状结构的数量明显低于模型组。结论:加巴喷丁能提高疼痛大鼠痛阈,其机制可能是通过降低脊髓DRG中交感神经的芽生而产生镇痛作用。  相似文献   

3.
To characterize various animal models of neuropathic pain, we compared three previously developed rat models using the same behavioral testing methods. These models involve: (1) chronic constriction injury by loose ligation of the sciatic nerve (CCI); (2) tight ligation of the partial sciatic nerve (PSL); and (3) tight ligation of spinal nerves (SNL). Comparisons were made for the time course of behavioral signs representing various components of neuropathic pain as well as for the effects of surgical sympathectomy. In general, all three methods of peripheral nerve injury produced behavioral signs of both ongoing and evoked pain with similar time courses. However, there was a considerable difference in the magnitude of each pain component between models. Signs of mechanical allodynia were largest in the SNL injury and smallest in the CCI model. On the other hand, behavioral signs representing ongoing pain were much more prominent in the CCI model than in the other two. Although the behavioral signs of neuropathic pain tended to decrease after sympathectomy in all three models, the change was most evident in the SNL model. The results of the present study suggest that the three rat models tested have contrasting features, yet all are useful neuropathic pain models, possibly representing different populations of human neuropathic pain patients.  相似文献   

4.
Inhibition of neuropathic pain by a potent disintegrin--triflavin   总被引:1,自引:0,他引:1  
Injury to peripheral nerves may result in severe and intractable neuropathic pain. Many efforts have been focused on the elucidation of the mechanisms of neuropathic pain. It was found here that integrin plays an important role in the induction of neuropathic pain and treatment of disintegrin is able to attenuate neuropathic pain. The rats were induced hyperalgesia by tightly ligating the L5 spinal nerve and cut just distal to the ligature on one side. Mechanical and thermal stimuli were applied in the middle dermatome of the hind paw. Epidural administration of triflavin (TFV), an arginine-glycine-aspartic acid (RGD) containing disintegrin, inhibited hyperalgesia induced by either mechanical or thermal stimulation. Immunohistochemistry showed that the sprouting of sympathetic nerves into DRG by neuropathic surgery was markedly inhibited by TFV. Beta 1 integrin mRNA of L5 DRG increased immediately 1 day after tight ligation and cut of L5 spinal nerve. However, beta 1 integrin mRNA in uninjured L4 DRG increased later on Day 3 after surgery. On the other hand, alpha-CGRP precursor mRNA decreased in ipsilateral L5 DRG but increased in L4 DRG after neuropathic surgery. Immunohistochemistry shows that beta 3 integrins of L5 as well as L4 increased in response to neuropathic surgery and administration of triflavin antagonized the increasing action. These results suggest that there is interaction between injured and uninjured neurons and the induction of neuropathic pain is related to neuronal sprouting. Disintegrin is able to inhibit neuronal sprouting and the induction of hyperalgesia induced by peripheral nerve injury and may thus be a new category of drugs to be developed for the treatment of neuropathic pain.  相似文献   

5.
Semaphorins, one of the repulsive axonal guidance factors during development, are produced under pathological conditions in adult animals. In the neuropathic pain state associated with peripheral nerve injury, synaptic reorganization occurs in spinal cord dorsal horn. In the present study, we investigated the roles of intrathecal administration of Sema3A, a secreted semaphorin, in the spinal cord of chronic constriction injury (CCI) model rat. Neuropilin 1 (NPR1) and Plexin A (PlexA), co-receptors of Sema3A, were expressed in the dorsal horn of na?ve rats. NPR1, and not PlexA, protein expression increased in the dorsal spinal cord of CCI rats. Recombinant Sema3A protein attenuated mechanical allodynia and heat hyperalgesia in CCI rats, whereas heat-inactivated Sema3A had no effect. Immunohistochemistry revealed that Sema3A partially restored the decrease of isolectin B4-positive unmyelinated nerve terminals in lamina II of the ipsilateral dorsal horn of CCI rats. Contrary to our expectations, Sema3A did not change the distribution of myelinated fibers in lamina II at 7 days after CCI. Those results suggested that the suppressive role for Sema3A in the development of neuropathic pain associated with peripheral nerve injury in adult rats, which seemed to be independent from prevention of the myelinated fiber sprouting into lamina II.  相似文献   

6.
Recent data indicate that peripheral T-type Ca2+ channels are instrumental in supporting acute pain transmission. However, the function of these channels in chronic pain processing is less clear. To address this issue, we studied the expression of T-type Ca2+ currents in small nociceptive dorsal root ganglion (DRG) cells from L4-5 spinal ganglia of adult rats with neuropathic pain due to chronic constrictive injury (CCI) of the sciatic nerve. In control rats, whole cell recordings revealed that T-type currents, measured in 10 mM Ba2+ as a charge carrier, were present in moderate density (20 +/- 2 pA/pF). In rats with CCI, T-type current density (30 +/- 3 pA/pF) was significantly increased, but voltage- and time-dependent activation and inactivation kinetics were not significantly different from those in controls. CCI-induced neuropathy did not significantly change the pharmacological sensitivity of T-type current in these cells to nickel. Collectively, our results indicate that CCI-induced neuropathy significantly increases T-type current expression in small DRG neurons. Our finding that T-type currents are upregulated in a CCI model of peripheral neuropathy and earlier pharmacological and molecular studies suggest that T-type channels may be potentially useful therapeutic targets for the treatment of neuropathic pain associated with partial mechanical injury to the sciatic nerve.  相似文献   

7.
Some chronic pain conditions are maintained or enhanced by sympathetic activity. In animal models of pathological pain, abnormal sprouting of sympathetic fibers around large- and medium-sized sensory neurons is observed in dorsal root ganglia (DRGs). Large- and medium-sized cells are also more likely to be spontaneously active, suggesting that sprouting may be related to neuron activity. We previously showed that sprouting could be reduced by systemic or locally applied lidocaine. In the complete sciatic nerve transection model in rats, spontaneous activity initially originates in the injury site; later, the DRGs become the major source of spontaneous activity. In this study, spontaneous activity reaching the DRG soma was reduced by early nerve blockade (local perfusion of the transected nerve with TTX for the 1st 7 days after injury). This significantly reduced sympathetic sprouting. Conversely, increasing spontaneous activity by local nerve perfusion with K(+) channel blockers increased sprouting. The hyperexcitability and spontaneous activity of DRG neurons observed in this model were also significantly reduced by early nerve blockade. These effects of early nerve blockade on sprouting, excitability, and spontaneous activity were all observed 4-5 wk after the end of early nerve blockade, indicating that the early period of spontaneous activity in the injured nerve is critical for establishing the more long-lasting pathologies observed in the DRG. Individual spontaneously active neurons, labeled with fluorescent dye, were five to six times more likely than quiescent cells to be co-localized with sympathetic fibers, suggesting a highly localized correlation of activity and sprouting.  相似文献   

8.
Chronic constriction injury (CCI) is a peripheral mononeuropathic pain model that is caused by an injury to the peripheral nervous system and refractory to available conventional treatment. Mechanisms involved in neuropathic pain are still unclear. Previous studies reveal that proinflammatory cytokines contribute to CCI-induced peripheral nerve pathology. Ghrelin, a novel identified gastric peptide, has been shown to have antinociceptive activity and also anti-inflammatory properties by decreasing proinflammatory cytokines. Therefore, the aim of the present study was to investigate the effects of ghrelin on the CCI and its relationship with proinflammatory cytokines in rats. Wistar rats underwent sciatic nerve ligation to induce CCI fallowed by repeated ghrelin administrations (50 and 100 μg/kg i.p., once daily) for a period of 14 days. Mechanical hyperalgesia was assessed before surgery and at day 14 after CCI. TNF-α, IL-1β and IL-6 were measured in blood and spinal cord. The changes of sciatic nerve was assessed histologically by both light and electron microscopy. Ghrelin attenuated mechanical hyperalgesia, reduced spinal TNF-α and IL-1β levels and enhanced sciatic nerve injury with correlated morphometric recovery. These results indicate that the protective effect by ghrelin in the spinal cord is mediated through the suppression of TNF-α and IL-1β. Thus ghrelin may be a promising peptide in the management of neuropathic pain.  相似文献   

9.
The proinflammatory cytokine tumor necrosis factor-alpha (TNF) is an important mediator in neuropathic pain. We investigated the temporal pattern of TNF mRNA expression in the sciatic nerve, in dorsal root ganglia (DRG) and spinal cord in the mouse chronic constriction injury model of neuropathy with quantitative real-time polymerase chain reaction. Neuropathic pain-like behaviour was monitored by evaluating thermal hyperalgesia and mechanical allodynia. Pain-related behaviour and TNF expression were evaluated 6 h, 1, 3, 7 and 14 days after injury. Naive animals and sham-operated mice were used as controls. We found an early upregulation of sciatic nerve TNF mRNA levels in chronic constriction injury (CCI) and sham-operated animals 6 h after surgery: 1 day later TNF overexpression was present in CCI mice only and disappeared 3 days after injury. The mRNA cytokine levels were elevated in DRG 1 and 3 days after surgery in CCI animals only, while the cytokine was not modulated in the spinal cord. A significant hyperalgesia was present in CCI and sham-operated mice at 6 h and 1 day, while at later time point only CCI mice presented lower thresholds. Mechanical allodynia was already present only in CCI animals 6 h from surgery and remained constant up to the 14 th day. The results indicate that a transient early TNF upregulation takes place in peripheral nervous system after CCI that can activate a cascade of proinflammatory/pronociceptive mediators.  相似文献   

10.
The Fischer 344 (F344) rat strain differs from the Lewis strain in the response to neuropathic pain. Recently, we found that F344 rats totally recover from mechanical allodynia induced by chronic constriction injury (CCI) of the sciatic nerve 28 days after surgery whereas Lewis rats are initiating their recovery at this time point. Thus, the use of this neuropathic pain model in these different rat strains constitutes a good strategy to identify possible target genes involved in the development of neuropathic pain. Since differences between Lewis and F344 rats in their response to pain stimuli in acute pain models have been related to differences in the endogenous opioid and noradrenergic systems, we aimed to determine the levels of expression of key genes of both systems in the spinal cord and dorsal root ganglia (DRG) of both strains 28 days after CCI surgery. Real time RT-PCR revealed minimal changes in gene expression in the spinal cord after CCI despite the strain considered, but marked changes in DRG were observed. A significant upregulation of prodynorphin gene expression occurred only in injured DRG of F344 rats, the most resistant strain to neuropathic pain. In addition, we found a significant downregulation of tyrosine hydroxylase and proenkephalin gene expression levels in both strains whereas δ-opioid receptor was found to be significantly downregulated only in injured DRG of Lewis rats although the same trend was observed in F344 rats. The data strongly suggest that dynorphins could be involved in strain differences concerning CCI resistance.  相似文献   

11.
The Fischer 344 (F344) rat strain differs from the Lewis strain in the response to neuropathic pain. Recently, we found that F344 rats totally recover from mechanical allodynia induced by chronic constriction injury (CCI) of the sciatic nerve 28 days after surgery whereas Lewis rats are initiating their recovery at this time point. Thus, the use of this neuropathic pain model in these different rat strains constitutes a good strategy to identify possible target genes involved in the development of neuropathic pain. Since differences between Lewis and F344 rats in their response to pain stimuli in acute pain models have been related to differences in the endogenous opioid and noradrenergic systems, we aimed to determine the levels of expression of key genes of both systems in the spinal cord and dorsal root ganglia (DRG) of both strains 28 days after CCI surgery. Real time RT-PCR revealed minimal changes in gene expression in the spinal cord after CCI despite the strain considered, but marked changes in DRG were observed. A significant upregulation of prodynorphin gene expression occurred only in injured DRG of F344 rats, the most resistant strain to neuropathic pain. In addition, we found a significant downregulation of tyrosine hydroxylase and proenkephalin gene expression levels in both strains whereas delta-opioid receptor was found to be significantly downregulated only in injured DRG of Lewis rats although the same trend was observed in F344 rats. The data strongly suggest that dynorphins could be involved in strain differences concerning CCI resistance.  相似文献   

12.
The mechanisms underlying neuropathic pain induction are very complex but might involve abnormal spontaneous activity in the sensory dorsal root ganglion (DRG). Voltage‐gated sodium channels in the DRG are essential for the genesis of abnormal spontaneous neuronal activity. In this study, we examined the changes in expression of the voltage‐gated sodium channel Nav1.1 in the DRG after peripheral nerve injury. Western blot analysis showed that the level of Nav1.1 protein in the ipsilateral L5 DRG was significantly increased on Days 3 and 7 after fifth lumbar spinal nerve ligation. Immunohistochemical study further confirmed a marked increase in the percentage of Nav1.1‐positive cells in the ipsilateral DRG on Day 3 after fifth lumbar spinal nerve ligation. Similarly, on Day 7 after sciatic nerve axotomy, the amount of Nav1.1 protein and the percentage of Nav1.1‐positive cells in the ipsilateral L5 DRG were also significantly increased. Our results suggest that an early increase in DRG Nav1.1 expression after peripheral nerve injury might be involved in the induction of neuropathic pain. Anat Rec, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

13.
Background: Peripheral nerve injury can result in neuropathic pain, a chronic condition of unclear cause often poorly responsive to current treatments. One possibility is that nerve injury disrupts large A-fiber-mediated inhibition of C-fiber-evoked responses in spinal dorsal horn neurons, leading to central sensitization. A recent study provided a potential molecular mechanism; large dorsal root ganglion (DRG) neurons secrete neuregulin-1 (NRG1), which binds to erbB4 receptors on interneurons and promotes GABA release to inhibit C-fiber-evoked nociceptive transmission. Thus, reduced NRG1 expression following nerve injury could induce chronic pain by disinhibition. We examined if DRG expression of NRG1 is in fact reduced in a rat model of neuropathic pain and if exogenous NRG1 alleviates behavioral signs of this condition. Methods: Three neuropathic pain models were established in rats: spared nerve injury of the tibial and common peroneal nerves (SNI model), intraplantar injection of complete Freund’s adjuvant (CFA model), and subcutaneous formalin injection. NRG1 expression was assessed by immunofluorescent staining, hyperalgesia by paw withdrawal threshold to von Frey filament stimulation, and pain-like behavior by spontaneous flinching. Results: NRG1 protein immunoreactivity was reduced in the rat DRG after SNI. Intrathecal administration of neuregulin-1beta 1 (NRG1-1), a 62 amino acid NRG1 mimetic, transiently increased paw withdrawal threshold in SNI model and reduced flinching in the formalin injection model. Conclusion: Our results are consistent with a model of neuropathic pain whereby peripheral nerve injury reduces NRG1-mediated inhibition of nociceptive signaling. Modulating NRG1 may have therapeutic potential for treating neuropathic pain.  相似文献   

14.
目的:观察前列腺酸性磷酸酶(prostatic acid phosphatase,PAP)在多种慢性痛大鼠脊髓背角(spinaldorsal horn,SDH)和背根神经节(dorsal root ganglion,DRG)内的表达变化。方法:应用免疫组织化学染色法以及免疫荧光多重染色技术在多种慢性痛模型大鼠观察PAP的表达变化。结果:在正常大鼠,PAP阳性反应产物主要位于DRG的中、小型的非肽能神经元,PAP阳性神经元约占DRG神经元总数的64±4.3%;在脊髓背角,PAP阳性纤维和终末主要位于Ⅱ层。在神经病理性痛模型大鼠,术侧脊髓背角Ⅱ层的PAP阳性初级传入终末较对侧减少甚至消失,DRG内PAP阳性神经元较对侧明显减少。在慢性炎性痛模型大鼠,双侧脊髓背角和DRG内PAP的表达未见明显改变。结论:PAP特异地定位于DRG神经元以及脊髓背角Ⅱ层,可能与神经病理性痛信号的传递和加工密切相关。  相似文献   

15.
建立一个类似临床的后根损伤诱发慢性痛的动物模型,探讨交感神经活动在诱发慢性痛中的作用。在腰5 部分后根结扎损伤的方法建立一个后根损伤大鼠模型,观察损伤诱发的慢性痛形成的行为和电生理学特征及交感节后神经元在慢性痛形成中的作用。结果表明:(1) 腰5 部分后根结扎损伤后,损伤侧后肢出现机械性痛性感觉异常,持续约30 天。(2)提前12 天行腰交感神经干和神经节切除术,部分后根损伤侧后肢不出现机械性痛性感觉异常。(3) 腹腔注射肾上腺素能a 受体阻断剂酚妥拉明(4mg/kg)使机械性痛性感觉异常显著降低,维持约30min。( 4)后根的部分损伤诱发损伤神经21.7%(162/746)的A 类纤维来自背根节细胞的异位放电活动;全身或局部应用去甲肾上腺素可使异常自发电活动产生改变,其中64.1%的(25/39)A 类纤维兴奋,33.3%(13/390 的A 类纤维抑制。提示交感神经参与后根损伤诱发的机械性痛性感觉异常。  相似文献   

16.
目的:观察电压门控性氯通道(voltage-gated chloride channel,ClC)3型在腓总神经结扎神经病理性痛模型大鼠脊髓背角(spinal dorsal horn,SDH)和背根神经节(dorsal root ganglion,DRG)内的表达变化及阻断氯离子通道后痛行为的改变。方法:应用免疫组织化学染色法、蛋白印迹法以及痛行为检测观察ClC-3在神经病理性痛大鼠SDH和DRG的变化和作用。结果:在正常大鼠,ClC-3主要位于DRG神经元胞膜;在SDH,ClC-3阳性纤维主要位于Ⅰ层。在腓总神经结扎大鼠,1周内结扎侧背角Ⅰ层及DRG的ClC-3表达增加,2~4周表达逐渐减少,在DRG也观察到相同的现象。给予氯离子通道阻断剂后,腓总神经结扎大鼠的痛阈下降。结论:ClC-3在神经病理性痛早期表达上调,随病程发展逐渐下降;阻断ClC-3可使大鼠痛阈下降。  相似文献   

17.
Peripheral nerve injury is associated with local inflammation and neuropathic pain. In this study we investigated the local expression of the inducible isoform of nitric oxide synthase (iNOS) following a chronic constriction injury (CCI) to the sciatic nerve, a rat model of neuropathic pain. Western blot analysis and immunohistochemical co-localization methods were used to identify temporal and spatial expression of iNOS and its cells of origin. Changes in mRNA were analyzed by RT-PCR and iNOS specific primers. We report that CCI injury induced local iNOS expression in both macrophages and Schwann cells within and distal to the injury site. The local increase in iNOS mRNA expression paralleled both the temporal and spatial protein expression. This study supports the hypothesis that CCI is associated with a local inflammatory reaction mediated at least in part by iNOS. Local activation of the iNOS-NO system may play an important role in the pathogenesis of peripheral nerve injury and neuropathic pain.  相似文献   

18.
Dorsal root ganglia, sodium channels, and fibromyalgia sympathetic pain   总被引:1,自引:0,他引:1  
Fibromyalgia (FM) is the most frequent cause of generalized pain in the community. Trauma and infection are frequent FM triggering events. A consistent line of investigation suggests that autonomic dysfunction may explain the multi-system features of FM, and that FM is a sympathetically maintained neuropathic pain syndrome. Dorsal root ganglia (DRG) are potential sympathetic-nociceptive short-circuit sites. Sodium channels located in DRG (particularly Nav1.7) act as molecular gatekeepers of pain detection at peripheral nociceptors. Different infecting agents may lie dormant in DGR. Trauma or infection can induce neuroplasticity with an over-expression of sympathetic fibers and sodium channels in DRG. Nerve growth factor (NGF) mediates these phenotypic changes, which enable catecholamines and/or sympathetic impulses to activate nociceptors. Several DRG sodium "channelopathies" have been recently associated to rare painful-dysautonomic syndromes, such as primary erythermalgia and paroxysmal extreme pain disorder (formerly familial rectal pain syndrome). We propose that enhanced DRG excitability may play a key role in FM pain. Individuals at risk would be those with genetically determined sympathetic hyperactivity, or those with inherent sodium channelopathies. Today's stressful environment may contribute to permanent sympathetic hyperactivity. Trauma or infection would induce sodium channels up-regulation and sympathetic sprouting in DRG through NGF over-expression. High levels of NGF have been reported in the cerebro-spinal fluid of FM patients. These post-traumatic (or post-infective) phenotypic changes would induce a sympathetically maintained neuropathic pain syndrome resulting in widespread pain, allodynia and paresthesias - precisely, the key clinical features of FM. If this hypothesis proves to be true, then sodium channel blockers could become therapeutic options for FM pain.  相似文献   

19.
20.
Chronic neuropathic pain caused by peripheral nerve injury is associated with global changes in gene expression in damaged neurons. To understand the molecular mechanisms underlying neuropathic pain, it is essential to elucidate how nerve injury alters gene expression and how the change contributes to the development and maintenance of chronic pain. MicroRNAs are non-protein-coding RNA molecules that regulate gene expression in a wide variety of biological processes mainly at the level of translation. This study investigated the possible involvement of microRNAs in gene regulation relevant to neuropathic pain. The analyses focused on a sensory organ-specific cluster of microRNAs that includes miR-96, −182, and −183. Quantitative real-time polymerase chain reaction (qPCR) analyses confirmed that these microRNAs were highly enriched in the dorsal root ganglion (DRG) of adult rats. Using the L5 spinal nerve ligation (SNL) model of chronic neuropathic pain, we observed a significant reduction in expression of these microRNAs in injured DRG neurons compared to controls. In situ hybridization and immunohistochemical analyses revealed that these microRNAs are expressed in both myelinated (N52 positive) and unmyelinated (IB4 positive) primary afferent neurons. They also revealed that the intracellular distributions of the microRNAs in DRG neurons were dramatically altered in animals with mechanical hypersensitivity. Whereas microRNAs were uniformly distributed within the DRG soma of non-allodynic animals, they were preferentially localized to the periphery of neurons in allodynic animals. The redistribution of microRNAs was associated with changes in the distribution of the stress granule (SG) protein, T-cell intracellular antigen 1 (TIA-1). These data demonstrate that SNL induces changes in expression levels and patterns of miR-96, −182, and −183, implying their possible contribution to chronic neuropathic pain through translational regulation of pain-relevant genes. Moreover, SGs were suggested to be assembled and associated with microRNAs after SNL, which may play a role in modification of microRNA-mediated gene regulation in DRG neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号