首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epigenetic changes in pilocytic astrocytomas and medulloblastomas   总被引:1,自引:0,他引:1  
Aberrant methylation of CpG islands located in promoter regions represents one of the major mechanisms for silencing of cancer-related genes in tumour cells. We determined the frequency of aberrant CpG island methylation of several tumour-associated genes: MGMT, GSTP1, DAPK, p14ARF, THBS1, TIMP-3, p73, p16INK4A, RB1 and TP53 in 24 neurogenic tumours consisting of pilocytic astrocytomas (n=13) and medulloblastomas (n=11). The methylation index (number methylated genes/total genes analysed) displayed slight differences (0.18 and 0.25, respectively), and the profile of methylated genes in the two neoplasms was distinct, as predicted. The main differences involved the methylation rate of GSTP1 (0% in pilocytic astrocytomas vs. 18% medulloblastomas) and p14ARF (0% in pilocytic astrocytomas vs. 45% in medulloblastomas) genes. Pilocytic astrocytomas also demonstrated some differences when compared to methylation data from other astrocytic tumours, primarily regarding the MGMT methylation rate. Despite the fact that these differences do not show specific tumour-associated gene methylation patterns, our findings should help us understand the pathogenic mechanisms of both neurogenic neoplasm types.  相似文献   

2.
The aberrant methylation of the CpG island promoter regions acquired by tumor cells is one mechanism for loss of gene function. The high methylation rate for RB1 and death-associated protein-kinase gene (DAP-kinase) (60 and 90%, respectively) previously found in brain metastases suggests this mechanism could be non-randomly associated to tumor progression and metastasis. Thus, in addition to these two genes, we determined the methylation status of the genes p16INK4a, glutathione S-transferase P1 (GSTP1), O6-methylguanine DNA methyltransferase (MGMT), thrombospondin-1 (THBS1), p14ARF, TP53, p73, and tissue inhibitor of metalloproteinase 3 (TIMP-3), in 18 brain metastases of solid tumors, with methylation specific PCR. The metastases were derived from malignant melanoma (three cases), lung carcinoma (six cases), breast carcinoma (three cases), ovarian carcinoma (two cases) and one each from colon, kidney, bladder and undifferentiated carcinoma. We detected methylation levels in the tumor samples of 83% in p16INK4a, 72% in DAP-kinase, 56% in THBS1, 50% in RB1, 39% in MGMT, 33% in GSTP1 and p14ARF each, 22% in p73 and TIMP-3 each, and 11% in TP53. The methylation index (number of genes methylated/number of genes tested) varied between 0.1 and 0.6, with an average of 0.42, indicating that a high grade of gene methylation accumulates parallel to the tumor metastasis process. Our data suggest an important role for gene methylation in the development of brain metastases, primarily involving epigenetic silencing of DAP-kinase, THBS1 and the cell-cycle regulators RB1/p16INK4a.  相似文献   

3.
Promoter hypermethylation represents a primary mechanism in the inactivation of tumor suppressor genes during tumorigenesis. To determine the frequency and timing of hypermethylation during carcinogenesis of nonastrocytic tumors, we analyzed promoter methylation status of 10 tumor-associated genes in a series of 41 oligodendrogliomas (22 World Health Organization [WHO] grade II; 13 WHO grade III; 6 WHO grade II-III oligoastrocytomas) and 7 WHO grade II-III ependymomas, as well as 2 nonneoplastic brain samples, by a methylation-specific polymerase chain reaction. Aberrant CpG island methylation was detected in 9 of 10 genes analyzed, and all but one sample displayed anomalies in at least one gene. The frequencies of hypermethylation for the 10 genes were as follows, in oligodendrogliomas and ependymomas, respectively: 80% and 28% for MGMT; 70% and 28% for GSTP1; 66% and 57% for DAPK; 44% and 28% for TP14(ARF); 39% and 0% for THBS1; 24% and 28% for TIMP3; 24% and 14% for TP73; 22% and 0% for TP16(INK4A); 3% and 14% for RB1; and 0% in both neoplasms for TP53. No methylation of these genes was detected in normal brain tissue samples. We conclude that a high frequency of aberrant methylation of the 5' CpG island of the MGMT, GSTP1, TP14(ARF), THBS1, TIMP3, and TP73 genes is observed in nonastrocytic neoplasms. This aberration seems to occur early in the carcinogenesis process (it is already present in the low-grade forms), although in some instances (DAPK, THBS1, and TP73) it appears also associated with the genesis of anaplastic forms.  相似文献   

4.
Recent studies indicate that tumor suppressor genes can be epigenetically silenced through promoter hypermethylation. To further understand epigenetic alterations in cholangiocarcinoma, we have studied the methylation profiles of 12 candidate tumor suppressor genes (APC, E-cadherin/CDH1, MGMT, RASSF1A, GSTP, RAR-beta, p14ARF, p15INK4b, p16INK4a, p73, hMLH1 and DAPK) in 72 cases of cholangiocarcinoma, including equal number cases of intrahepatic cholangiocarcinoma and extrahepatic cholangiocarcinoma. A total of 10 cases of benign biliary epithelia were included as controls. The methylation status of tumor suppressor genes was analyzed using methylation-specific PCR. We found that 85% of all cholangiocarcinomas had methylation of at least one tumor suppressor gene. The frequency of tumor suppressor gene methylation in cholangiocarcinoma was: RASSF1A (65%), p15INK4b (50%), p16INK4a (50%), APC (46%), E-cadherin/CDH1 (43%), p14(ARF) (38%), p73 (36%), MGMT (33%), hMHL1 (25%), GSTP (14%), RAR-beta (14%) and DAPK (3%). Although single tumor suppressor gene methylation can be seen in benign biliary epithelium, methylation of multiple tumor suppressor genes is only seen in cholangiocarcinoma. About 70% (50/72) of the cholangiocarcinomas had three or more tumor suppressor genes methylated and 52% (38/72) of cases had four or more tumor suppressor genes methylated. Concerted methylation of multiple tumor suppressor genes was closely associated with methylation of RASSF1A, p16 and/or hMHL1. Methylation of RASSF1A was more common in extrahepatic cholangiocarcinoma than intrahepatic cholangiocarcinoma (83 vs 47%, P=0.003) while GSTP was more frequently seen in intrahepatic compared to extrahepatic cholangiocarcinoma (31 vs 6%, P=0.012). Our study indicates that methylation of promoter CpG islands of tumor suppressor genes is a common epigenetic event in cholangiocarcinoma. Based on distinct methylation profiles, intrahepatic cholangiocarcinoma and extrahepatic cholangiocarcinoma are two closely related but biologically unique neoplastic processes. Taking advantage of the unique concurrent methylation profile of multiple genes in cholangiocarcinoma may facilitate the distinction of cholangiocarcinoma from benign biliary epithelium in clinical settings.  相似文献   

5.
The aim of the present study was to elucidate genetic alterations that are critically involved in astrocytoma progression. We characterized 27 World Health Organization grade II fibrillary astrocytomas which later underwent recurrence or progression, paying specific attention to the CpG island methylation status of critical growth regulatory genes. p14(ARF) and O(6)-methylguanine-DNA methyltransferase (MGMT) hypermethylation represented frequent events (26% and 63%, respectively), which were mutually exclusive except in one case, with alternate or simultaneous methylation of these two genes occurring in 85% of our tumor series. Seventeen tumors (63%) contained TP53 mutations, which were closely related to the presence of MGMT methylation. Methylation of the p21(Waf1/Cip1), p27(Kip1) and p73 genes and homozygous deletion of the p16(INK4a), p15(INK4b) and p14(ARF) genes were not detected in any of the primary low-grade tumors. The presence of p14(ARF) methylation at first biopsy was associated with shorter patient survival, whereas the presence of MGMT methylation carried a better clinical outcome after salvage therapy. Examination of 20 cases whose histological data for recurrent tumors were available revealed that malignant progression occurred in all of the tumors with p14(ARF) methylation but less frequently (50%) in the lesions with MGMT methylation. On analysis of their respective recurrent tumors, five of six patients whose primary low-grade tumors carried p14(ARF) methylation exhibited homozygous co-deletions of the p14(ARF), p15(INK4b) and p16(INK4a) genes, which were restricted to glioblastoma as the most malignant end point. Our findings suggest that p14(ARF) hypermethylation and MGMT hypermethylation constitute distinct molecular pathways of astrocytoma progression, which could differ in biological behavior and clinical outcome.  相似文献   

6.
Aberrant hypermethylation of promoter CpG islands is an important mechanism for the inactivation of tumor suppressor genes. CpG island hypermethylation occurs in relation to tumorigenesis or aging. Gastric cancer is one of the tumors with a high level of aberrant CpG island methylation. However, the data on the methylation status of normal gastric mucosa has been very limited. The present study attempted to compare the methylation status of nonneoplastic gastric mucosa, using clinicopathological parameters, including age, gender, Helicobacter pylori (H. pylori), acute and chronic inflammation, and intestinal metaplasia. Two hundred sixty-eight nonneoplastic gastric mucosa samples were studied for the methylation status of 11 genes (COX-2, DAP-kinase, E-cadherin, GSTP1, MGMT, hMLH1, p14, p16, THBS1, TIMP3, and RASSF1A), using methylation-specific PCR. CpG island hypermethylation was found in 53.7, 41, 37.7, 23.1, 18.7, 10.9, 10, 4.1, 3.4, 1.7, 0.4% for DAP-kinase, E-cadherin, THBS1, TIMP3, p14, MGMT, p16, COX-2, GSTP1, hMLH1 and RASSF1A, respectively. Five genes (DAP-kinase, E-cadherin, p14, THBS1, and TIMP-3) showed a general progressive increase in the methylation frequency as a function of aging, whereas the other genes (COX-2, GSTP1, MGMT, hMLH1, p16, and RASSF1A) were rarely methylated. Male patients showed higher numbers of methylated genes than females (3.2 vs. 2.1, respectively, P = 0.002). Gastritis samples with marked intestinal metaplasia, showed higher numbers of genes methylated than those without (3.7 vs. 2.6, respectively, P = 0.021). Gastritis samples with marked infiltration of mononuclear cells displayed higher numbers of genes methylated than those with mild or moderate infiltration of mononuclear cells (3.4 vs. 2.5 or 2.5, respectively, P < 0.05). Our results demonstrated that many genes are methylated in the stomach as a function of age, and suggested that male gender, intestinal metaplasia, and chronic inflammation are closely associated with increased methylation in nonneoplastic gastric mucosa samples.  相似文献   

7.
The INK4a/ARF locus on human chromosome band 9p21 carries two tumor suppressor genes, TP14ARF and TP16INK4a, and both are frequently inactivated in nonsmall cell lung carcinoma (NSCLC. TP14ARF and TP16INK4a play important roles in the TP53 and RB tumor suppressor pathways, respectively. To elucidate the genetic and epigenetic status of the TP14ARF and TP16INK4a genes in NSCLC, we comprehensively analyzed mutations, homozygous deletions, methylations in the CpG regions, and expression of the TP14ARF and TP16INK4a genes in 31 NSCLC cell lines. TP16INK4a (84%) was inactivated more frequently than TP14ARF (55%). Moreover, p16INK4a was inactivated in all 17 cell lines with TP14ARF inactivation. Three cell lines with base substitutions in exon 2 resulted in missense mutations of TP16INK4a but silent mutations of TP14ARF. There was a case of mutation in exon 1alpha unique to TP16INK4a, but not a mutation in exon 1beta unique to TP14ARF. The TP16INK4a gene was methylated in 6 cell lines, but the TP14ARF gene was not methylated in any cell line. Unlike a mutually exclusive relationship for inactivation between TP16INK4a and RB, TP14ARF and TP53 did not show such a relationship (P = 0.61, Fisher exact test). Thus, the present results indicate the TP16INK4a gene to be the primary target of INK4a/ARF locus alterations. Transient TP14ARF expression induced G1 arrest in the cells with wild-type TP53, but not in the cells with mutated TP53. Thus, the pathogenetic and biologic significance of TP14ARF inactivation is different between NSCLC cells with wild-type TP53 and those with mutated TP53.  相似文献   

8.
In this case of a dedifferentiated chondrosarcoma, we searched for genetic or epigenetic alterations in both components of the tumor, the low grade chondroblastic component, and the high grade osteosacomatouscomponent. To date, only little is known about aberrant patterns of DNA methylation in chondrosarcomas. Microdissection was used as a valuable method for clearly separating the tissues. We examined CpG island methylation of 8 tumor suppressor genes and candidate tumor suppressor genes, which are involved in different pathways: cell cycle (p21WAF1, p16INK4, p14ARF), apoptosis (DAPK, FHIT), DNA repair (hMLH1), and cell adherence (E-Cadherin). We found p16INK4 and E-cadherin promotor methylation in the low grade chondroid compartment of the dedifferentiated chondrosarcoma. P16INK4, FHIT, and E-cadherin were methylated in the highly malignant osteosarcomatous compartment of the tumor. Earlier investigations of this chondrosarcoma showed p53 mutation and p53-LOH in the anaplastic component. As shown in this case, it was accompanied by Rb-LOH. Early methylation of p16IK4 and E-cadherin in the chondroid compartment could point to the monoclonal origin of demonstrated dedifferentiated chondrosarcoma. Further alterations, as shown in p53, Rb and FHIT, are responsible for the "switch" to a high grade anaplastic sarcoma.  相似文献   

9.
The stomach is one of the organs whose epithelial cells frequently undergo aberrant methylation of CpG islands. To date, several reports on the methylation of various genes in gastric cancer (GC) have been published. However, most of these studies have focused on cancer tissues or a single gene only and gave no information about the methylation status of specific genes in the premalignant stages or the concurrent methylation of other genes in specific lesions. We attempted to investigate methylation of multiple genes in a large sample collection of GC (n = 80), gastric adenoma (GA) (n = 79), intestinal metaplasia (IM) (n = 57), and chronic gastritis (CG) (n = 74). We determined the methylation frequency of 12 genes, including APC, COX-2, DAP-kinase, E-cadherin, GSTP1, hMLH1, MGMT, p16, p14, RASSF1A, THBS1, and TIMP3, by methylation-specific PCR. Five different classes of methylation behaviors were found: (a). genes methylated in GC only (GSTP1 and RASSF1A), (b). genes showing low methylation frequency (<12%) in CG, IM, and gastric adenoma (GA) but significantly higher methylation frequency in GC (COX-2, hMLH1, p16), (c). a gene with low and similar methylation frequency (8.8-21.3%) in four-step lesions (MGMT), (d). genes with high and similar methylation frequency (53-85%) in four-step lesions (APC and E-cadherin), and (e). genes showing an increasing tendency with or without fluctuation of the methylation frequency along the progression (DAP-kinase, p14, THBS1, and TIMP-3). The average number of methylated genes was 2.7, 3.6, 3.4, and 5.2 per 12 tested genes in CG, IM, GA, and GC, respectively. Aberrant methylation at multiple loci in the same lesions suggests an overall deregulation of the methylation control, which occurs early in multistep gastric carcinogenesis. Our results suggest that tumor-suppressor genes show a gene-type specific methylation profile along the multistep carcinogenesis and that aberrant CpG island methylation tend to accumulate along the multistep carcinogenesis.  相似文献   

10.
11.
To date, several reports on methylation of various genes in gastric cancer (GC) have been published. However, most of these studies focused on cancer tissues or a single gene only and gave no information about the methylation status of specific genes in the premalignant stages or about the concurrent methylation of other genes in specific lesions. We attempted to investigate methylation of multiple genes in a large sample collection of GC (n = 80), gastric adenoma (GA) (n = 79), intestinal metaplasia (IM) (n = 57), and chronic gastritis (CG) (n = 74). We determined the methylation frequency of 12 genes, including APC, COX-2, DAP-kinase, E-cadherin, GSTP1, hMLH1, MGMT, p16, p14, RASSF1A, THBS1, and TIMP3 by methylation-specific PCR. Five different classes of methylation behaviors were found: (1) genes methylated in GC only (GSTP1 and RASSF1A); (2) genes showing low methylation frequency (<12%) in CG, IM, and GA, but significantly higher methylation frequency in GC (COX-2, hMLH1, and p16); (3) a gene with low and similar methylation frequency (8.8-21.3%) in four-step lesions (MGMT); (4) genes with high and similar methylation frequency (53-85%) in four-step lesions (APC and E-cadherin); and (5) genes showing an increasing tendency with or without fluctuation of the methylation frequency along the progression (DAP-kinase, p14, THBS1, and TIMP3). The average number of methylated genes was 2.7, 3.6, 3.4, and 5.2 per 12 tested genes in CG, IM, GA, and GC, respectively. Our results suggest that tumor suppressor genes show a gene type-specific methylation profile and that aberrant CpG island methylation tends to accumulate along the pathway of multistep carcinogenesis.  相似文献   

12.
High-frequency microsatellite instability (MSI-H) due to defective DNA mismatch repair occurs in the majority of hereditary nonpolyposis colorectal cancers (HNPCCs) and in a subset of sporadic malignant tumors. Clinicopathologic and genotypic features of MSI-H colorectal tumors in HNPCC patients and those in sporadic cases are very similar but not identical. Correlation between the MSI phenotype and aberrant DNA methylation has been highlighted recently. A strong association between MSI and CpG island methylation has been well characterized in sporadic colorectal cancers with MSI-H but not in those of hereditary origin. To address the issue, we analyzed hereditary and sporadic colorectal cancers for aberrant DNA methylation of target genes using methylation-specific polymerase chain reaction. DNA methylation of the MLH1, CDKN2A, MGMT, THBS1, RARB, APC, and p14ARF genes was found in 0%, 23%, 10%, 3%, 73%, 53%, and 33% of 30 MSI-H cancers in HNPCC patients and in 80%, 55%, 23%, 23%, 58%, 35%, and 50% of 40 sporadic colorectal cancers with MSI-H, respectively. Cases showing methylation at three or more loci of six genes other than MLH1 were defined as CpG island methylator phenotype-positive (CIMP +), and 23% of HNPCC tumors and 53% of sporadic cancers with MSI-H were CIMP+ (P = 0.018). Differences in the extent of CpG island methylation, coupled with the differential involvement of several genes by methylation, in HNPCC tumors and sporadic MSI-H colorectal cancers may be associated with diverging developmental pathways in hereditary and sporadic cancers despite similar MSI-H phenotypes.  相似文献   

13.
Cancer cells have aberrant patterns of DNA methylation including hypermethylation of gene promoter CpG islands and global demethylation of the genome. Genes that cause familial cancer, as well as other genes, can be silenced by promoter hypermethylation in sporadic tumors, but the methylation of these genes in tumors from kindreds with inherited cancer syndromes has not been well characterized. Here, we examine CpG island methylation of 10 genes (hMLH1, BRCA1, APC, LKB1, CDH1, p16(INK4a), p14(ARF), MGMT, GSTP1 and RARbeta2) and 5-methylcytosine DNA content, in inherited (n = 342) and non-inherited (n = 215) breast and colorectal cancers. Our results show that singly retained alleles of germline mutated genes are never hypermethylated in inherited tumors. However, this epigenetic change is a frequent second "hit", associated with the wild-type copy of these genes in inherited tumors where both alleles are retained. Global hypomethylation was similar between sporadic and hereditary cases, but distinct differences existed in patterns of methylation at non-familial genes. This study demonstrates that hereditary cancers "mimic" the DNA methylation patterns present in the sporadic tumors.  相似文献   

14.
We examined alterations of the p16INK4, p14ARF, p15, TP53, and MDM2 genes in 30 osteosarcomas and 24 Ewing sarcomas. Among 21 osteosarcomas and 24 Ewing sarcomas, p16INK4, p14ARF, and p15 abnormalities were found in 4 (19%), 2 (9%), and 3 (14%) osteosarcomas, respectively, and in 4 (17%), 3 (13%), and 4 (17%) Ewing sarcomas, respectively. The alterations of p16INK4, p14ARF, and p15 included homozygous deletions spanning all 3 genes, methylation of p16INK4 or p15, and a nonsense mutation of p16INK4, which simultaneously caused a missense mutation of p14ARF. Alterations of TP53 were found in 15 (50%) of 30 osteosarcomas and 1 (3%) of 24 Ewing sarcomas. None of the sarcomas showed MDM2 amplification. While TP53 abnormalities were far more frequent in osteosarcoma than in Ewing sarcoma, alterations of p16INK4, p14ARF, and p15 were present at similar frequencies in the two types of sarcoma. The event-free survival (EFS) was worse in Ewing sarcoma patients with p16INK4 and p14ARF mutation/deletion than in those without the mutation/deletion (P = 0.019), and EFS was worse in osteosarcoma patients with TP53 alterations than in those without TP53 alterations (P = 0.048). The different incidence of TP53 abnormalities in the 2 types of sarcoma may reflect differences of the molecular processes through which the 2 types of tumor develop.  相似文献   

15.
Cancer is also an epigenetic disease. The main epigenetic modification in humans is DNA methylation. Transformed cells undergo a dramatic change in their DNA methylation patterns: certain CpG islands located in the promoter regions of tumor-suppressor genes become hypermethylated and the contiguous gene rests silenced and this phenomenon occurs in an overall genomic environment of DNA hypomethylation. The profile of CpG island hypermethylation in hematologic malignancies is an epigenetic signature unique for each subtype of leukemia or lymphoma. Although the most widely studied genes are the cell-cycle inhibitors p15INK4b and p16INK4a (specially in AML and ALL), the list of methylation-repressed genes in these neoplasms is expanding very rapidly, including MGMT, RARB2, CRBP1, SOCS-1, CDH1, DAPK1, and others. A necessary cross-talk between genetic alterations and DNA methylation exists: certain chromosomal translocations may induce hypermethylation, such as the PML-RARa, or attract methylation, such as BCR-ABL, but DNA hypomethylation can be the culprit behind the genesis of certain abnormal recombination events. From a translational standpoint, hypermethylation can be used as a marker of recurrent disease or progression, for example, in MDS, or response to chemotherapy, such as MGMT methylation in B-cell non-Hodgkin's lymphoma. Furthermore, promising studies using DNA demethylating agents and histone deacetylase inhibitors are underway to awake these dormant tumor-suppressor genes for a better treatment of the patient with a hematologic malignancy.  相似文献   

16.
Aberrant methylation of promoter CpG islands of human genes has been known as an alternative mechanism of gene inactivation and contributes to the carcinogenesis in many human tumors. We attempted to determine the methylation status of 18 genes, or loci known to be frequently methylated in cancers of other organs, in 79 resected intrahepatic cholangiocarcinomas and 15 normal bile duct epithelium by methylation-specific polymerase chain reaction and correlated the data with clinicopathological findings. Methylation frequencies of the loci tested in intrahepatic cholangiocarcinomas were 59.5% for 14-3-3sigma,26.6% for APC, 21.5% for E-cadherin, 17.7% for p16, 11.4% for MGMT, 11.4% for THBS1, 8.9% for p14, 8.9% for TIMP3, 7.6% for DAP-kinase,6.3% for GSTP1, 5.1% for COX-2, 50.6% for MINT12, 40.5% for MINT1, 15.4% for MINT25, 35.4% for MINT32, and 1.3% for MINT31. Sixty-two (78.5%) of the 79 intrahepatic cholangiocarcinomas had methylation in at least one of these loci. Methylation was not detected in normal bile duct samples. There was a significant correlation between methylation and expressional decrease or loss of p16, E-cadherin, and GSTP1 proteins (P = 0.028, P = 0.044, and P < 0.001, respectively). The overall survival was poorer in the patients with CpG island methylation of APC, p16, and TIMP3 than in the patients without methylation (Kaplan-Meier log-rank test, P = 0.0128, 0.0447, and 0.0137, respectively). Age, gender, tumor stage, gross type, histological type, and differentiation had no correlation with methylation status of the specific gene. These results suggest that methylation is a frequent event in cholangiocarcinomas and contributes to the cholangiocarcinogenesis, and that CpG island methylation of APC, p16, or TIMP-3 may serve as a potential prognostic biomarker of the cholangiocarcinomas.  相似文献   

17.
We examined alterations of the p16INK4, p14ARF, p15, TP53, and MDM2 genes in 30 osteosarcomas and 24 Ewing sarcomas. Among 21 osteosarcomas and 24 Ewing sarcomas, p16INK4, p14ARF, and p15 abnormalities were found in 4 (19%), 2 (9%), and 3 (14%) osteosarcomas, respectively, and in 4 (17%), 3 (13%), and 4 (17%) Ewing sarcomas, respectively. The alterations of p16INK4, p14ARF, and p15 included homozygous deletions spanning all 3 genes, methylation of p16INK4 or p15, and a nonsense mutation of p16INK4, which simultaneously caused a missense mutation of p14ARF. Alterations of TP53 were found in 15 (50%) of 30 osteosarcomas and 1 (3%) of 24 Ewing sarcomas. None of the sarcomas showed MDM2 amplification. While TP53 abnormalities were far more frequent in osteosarcoma than in Ewing sarcoma, alterations of p16INK4, p14ARF, and p15 were present at similar frequencies in the two types of sarcoma. The event-free survival (EFS) was worse in Ewing sarcoma patients with p16INK4 and p14ARF mutation/deletion than in those without the mutation/deletion (P = 0.019), and EFS was worse in osteosarcoma patients with TP53 alterations than in those without TP53 alterations (P = 0.048). The different incidence of TP53 abnormalities in the 2 types of sarcoma may reflect differences of the molecular processes through which the 2 types of tumor develop.  相似文献   

18.
Aberrant CpG island hypermethylation of multiple genes in colorectal neoplasia   总被引:10,自引:0,他引:10  
CpG island hypermethylation is a potential means of inactivating tumor suppressor genes, and many genes have been demonstrated to be hypermethylated and silenced in colorectal cancer. However, limited data is available upon the concurrent methylation of multiple genes in colorectal cancer and in its precursor lesion. To address changes in the methylation profiles of multiple genes during colorectal carcinogenesis, we investigated the methylation of 12 genes (APC, COX-2, DAP-kinase, E-cadherin, GSTP1, hMLH1, MGMT, p14, p16, RASSF1A, THBS1, and TIMP3) in normal colon (n=24), colon adenoma (n=95), and colorectal cancer (n=149), using methylation-specific PCR. The average number of these genes methylated per sample was 0.12, 1.8, and 3.0 in normal colon mucosa, adenoma, and carcinoma, respectively, showing a stepwise increase (P<0.001). All the genes were methylated in colorectal cancer at frequencies varying from 51 to 9.4% and colon adenoma displayed methylation for the 11 genes, except for GSTP1, at frequencies varying from 40 to 1.1%. In contrast, normal colon mucosa demonstrated methylation for APC only, at a frequency of 12.5%. The total number of methylated genes per tumor showed a continuous, nonbimodal distribution in colon adenoma or cancer. CpG island hypermethylation exhibited a proclivity toward proximal colon cancer or adenoma, and the average number of genes methylated was higher in proximal colon cancer or adenoma than in distal colon cancer or adenoma, respectively (3.5 vs 2.6, P=0.018 for cancer, and 2.5 vs 1.4, P=0.003 for adenoma).In conclusion, concurrent CpG island methylation is an early and frequent event during colorectal carcinogenesis. It appears that CpG island methylation plays a more important role in proximal colon cancer development than in distal colon cancer development.  相似文献   

19.
To elucidate the role of p53/p16(INK4a)/RB1 pathways in prostate carcinogenesis, we analyzed the p14(ARF), p16(INK4a), RB1, p21(Waf1), p27(Kip1), PTEN, p73, p53, and MDM2 gene status of multiple areas within 16 histologically heterogeneous prostate carcinomas using methylation-specific polymerase chain reaction, differential polymerase chain reaction, and immunohistochemistry. All focal areas examined had Gleason scores ranging from 1 to 5. Methylation of either PTEN or p73 was undetected in any sample, whereas expression of MDM2 seemed to be an independent event within small foci of 4 of 16 tumors. Loss of p14(ARF), p16(INK4a), RB1, and p27(Kip1) expression correlated with homozygous deletion or promoter hypermethylation. One carcinoma showed co-deletion of both p14(ARF) and p16(INK4a) in two of five areas examined; two areas within another tumor demonstrated concurrent hypermethylation of the promoter regions of the same genes. Focal hypermethylation of RB1, p21(Waf1), and p27(Kip1) was detected within two, two, and three tumors, respectively. These findings indicate that both genetic and epigenetic events occur independently in intratumor foci and further suggest hypermethylation-induced loss of gene function may be as critical as specific genetic mutations in prostate carcinogenesis.  相似文献   

20.
The aberrant methylation of promoter CpG island is known to be a major inactivation mechanism of tumour-related genes. To determine the clinicopathological significance of gene promoter methylation in monoclonal gammopathies, we analysed the methylation status of 6 tumour suppressor genes and their association with loss of gene function. Methylation status of the genes p14, p15, p16, hMLH1, MGMT, and DAPK was determined by methylation-specific PCR in 52 cases: 30 MM, 13 MGUS, and 9 plasmacytomas, comparing them with their protein expression by immunohistochemistry, and association between methylation status, protein expression, and clinical characteristics was assessed. The methylation frequencies were 50% for p16, 17% for p15, 10% for hMLH1, 23% for MGMT and 30% for DAPK in MM samples, and 38%, 15%, 8%, and 15% for p16, p15, MGMT and DAPK respectively in MGUS samples. In plasmacytomas samples we found methylation of p16 in 55%, p15 in 22%, MGMT in 67% and DAPK in 44%. hMLH1 was unmethylated in all cases of MGUS and plasmacytomas. Immunohistochemistry showed that gene methylation was closely associated with a loss of protein expression. Our study demonstrates that methylation-mediated silencing is a frequent event in monoclonal gammopathies: 83% of MM, 46% of MGUS and 77% of plasmacytomas have at least one gene methylated, affecting different molecular pathways involved in cell cycle, DNA repair and apoptosis. This high prevalence of aberrant promoter hypermethylation suggests that monoclonal gammopathies carry a CpG island methylator phenotype, therefore the development of new DNA demethylation agents may be a potential therapeutic use in this disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号