首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies indicate that the histaminergic system, which is critical for wakefulness, also influences learning and memory by interacting with cholinergic systems in the brain. Histamine-containing neurones of the tuberomammillary nucleus densely innervate the cholinergic and GABAergic nucleus of the medial septum/diagonal band of Broca (MSDB) which projects to the hippocampus and sustains hippocampal theta rhythm and associated learning and memory functions. Here we demonstrate that histamine, acting via H1 and/or H2 receptor subtypes, utilizes direct and indirect mechanisms to excite septohippocampal GABA-type neurones in a reversible, reproducible and concentration-dependent manner. The indirect mechanism involves local ACh release, is potentiated by acetylcholinesterase inhibitors and blocked by atropine methylbromide and 4-DAMP mustard, an M3 muscarinic receptor selective antagonist. This indirect effect, presumably, results from a direct histamine-induced activation of septohippocampal cholinergic neurones and a subsequent indirect activation of the septohippocampal GABAergic neurones. In double-immunolabelling studies, histamine fibres were found in the vicinity of both septohippocampal cholinergic and GABAergic cell types. These findings have significance for Alzheimer's disease and other neurodegenerative disorders involving a loss of septohippocampal cholinergic neurones as such a loss would also obtund histamine effects on septohippocampal cholinergic and GABAergic functions and further compromise hippocampal arousal and associated cognitive functions.  相似文献   

2.
Nuclei of the medial septum/diagonal band region of the mammalian forebrain contain neurons that give rise to the septohippocampal pathway, which has separate cholinergic and GABAergic components. This pathway is known to influence hippocampal-dependent memory and learning processes, but the precise role of each component is unclear. In this study, we tested the hypothesis that fast-firing, non-bursting medial septum/diagonal band neurons are GABAergic. We used brain slice preparations from young adult guinea-pigs and rats, or from weanling rats, to perform current-clamp recordings from medial septum/diagonal band neurons. Recorded neurons were injected with biocytin for subsequent visualization with fluorescent avidin, and then hybridized with a 35S-labeled riboprobe for glutamate decarboxylase-67 messenger RNA. As a positive control, guinea-pig cerebellar Purkinje cells were labeled and hybridized with the riboprobe. As expected, labeled Purkinje cells were glutamate decarboxylase-67 messenger RNA positive. Slow-firing, cholinergic (choline acetyltransferase-positive) guinea-pig medial septum/diagonal band neurons were glutamate decarboxylase-67 messenger RNA negative. Contrary to our hypothesis, of the guinea-pig neurons, only three of 11 fast-firing neurons were glutamate decarboxylase-67 positive. Of the rat medial septum/diagonal band neurons, three of four were positive for glutamate decarboxylase-67 messenger RNA.These data suggest that fast-firing, non-bursting neurons of the medial septum/diagonal band, as sampled by sharp-electrode intracellular recordings in brain slices, may be a heterogeneous group of neurons, some of which are GABAergic. Together with recent data demonstrating the presence of another GABAergic marker, parvalbumin, in fast-firing septal neurons, we conclude that GABAergic septohippocampal neurons include a population of fast-firing, non-bursting neurons. The influence of these neurons on the hippocampus is likely to occur on a shorter time-scale and over a wider range of firing frequencies as compared to slowly firing cholinergic septohippocampal neurons.  相似文献   

3.
Forebrain acetylcholine regulates adult hippocampal neurogenesis and learning   总被引:20,自引:0,他引:20  
Hippocampus-mediated learning enhances neurogenesis in the adult dentate gyrus (DG), and this process has been suggested to be involved in memory formation. The hippocampus receives abundant cholinergic innervation and acetylcholine (ACh) plays an important role in learning and Alzheimer's disease (AD) pathophysiology. Here, we show that a selective neurotoxic lesion of forebrain cholinergic input with 192 IgG-saporin reduces DG neurogenesis with a concurrent impairment in spatial memory. Conversely, systemic administration of the cholinergic agonist physostigmine increases DG neurogenesis. We find that changes of forebrain ACh levels primarily influence the proliferation and/or the short-term survival rather than the long-term survival or differentiation of the new neurons. We further demonstrate that these newly born cells express the muscarinic receptor subtypes M1 and M4. Our data provide evidence that forebrain ACh promotes neurogenesis, and suggest that the impaired cholinergic function in AD may in part contribute to deficits in learning and memory through reductions in the formation of new hippocampal neurons.  相似文献   

4.
Acetylcholine (ACh), acting at muscarinic ACh receptors (mAChRs), modulates the excitability and synaptic connectivity of hippocampal pyramidal neurons. CA1 pyramidal neurons respond to transient ("phasic") mAChR activation with biphasic responses in which inhibition is followed by excitation, whereas prolonged ("tonic") mAChR activation increases CA1 neuron excitability. Both phasic and tonic mAChR activation excites pyramidal neurons in the CA3 region, yet ACh suppresses glutamate release at the CA3-to-CA1 synapse (the Schaffer-collateral pathway). Using mice genetically lacking specific mAChRs (mAChR knockout mice), we identified the mAChR subtypes responsible for cholinergic modulation of hippocampal pyramidal neuron excitability and synaptic transmission. Knockout of M1 receptors significantly reduced, or eliminated, most phasic and tonic cholinergic responses in CA1 and CA3 pyramidal neurons. On the other hand, in the absence of other G(q)-linked mAChRs (M3 and M5), M1 receptors proved sufficient for all postsynaptic cholinergic effects on CA1 and CA3 pyramidal neuron excitability. M3 receptors were able to participate in tonic depolarization of CA1 neurons, but otherwise contributed little to cholinergic responses. At the Schaffer-collateral synapse, bath application of the cholinergic agonist carbachol suppressed stratum radiatum-evoked excitatory postsynaptic potentials (EPSPs) in wild-type CA1 neurons and in CA1 neurons from mice lacking M1 or M2 receptors. However, Schaffer-collateral EPSPs were not significantly suppressed by carbachol in neurons lacking M4 receptors. We therefore conclude that M1 and M4 receptors are the major mAChR subtypes responsible for direct cholinergic modulation of the excitatory hippocampal circuit.  相似文献   

5.
Cholinergic influences on hippocampal glucose metabolism   总被引:1,自引:0,他引:1  
2-Deoxy-D-[3H]glucose autoradiography was employed to investigate the effects of acute cholinergic manipulations on hippocampal glucose metabolism. In general, manipulations designed to reduce cholinergic activity (medial septal ablation, atropine treatment) reduced hippocampal glucose metabolism. Maximal decrements were found in the terminal fields of the septohippocampal projection after medial septal lesions, while maximal deficits after atropine treatment correlated with muscarinic receptor binding. Electrical stimulation of the medial septum resulted in increased glucose utilization in some terminal fields of the septohippocampal projection and decreased utilization in the terminal fields of the perforant pathway. Our data clearly indicate that acute alterations in cholinergic activity can affect hippocampal glucose metabolism but the distribution, direction and degree of these changes is dependent on the specific treatment.  相似文献   

6.
Orexin-saporin lesions of the medial septum impair spatial memory   总被引:2,自引:0,他引:2  
Smith HR  Pang KC 《Neuroscience》2005,132(2):261-271
The medial septum and diagonal band of Broca (MSDB) provide a major input to the hippocampus and are important for spatial learning and memory. Although electrolytic MSDB lesions have prominent memory impairing effects, selective lesions of either cholinergic or GABAergic MSDB neurons do not or only mildly impair spatial memory. MSDB neurons are targets of orexin-containing neurons from the hypothalamus. At present, the functional significance of orexin afferents to MSDB is unclear, and the present study investigated a possible involvement of orexin innervation of the MSDB in spatial memory. Orexin-saporin, a toxin that damages neurons containing the hypocretin-2 receptor, was administered into the MSDB of rats. Rats were subsequently tested on a water maze to assess spatial reference memory and a plus maze to assess spatial working memory. At 100 ng/microl, orexin-saporin destroyed primarily GABAergic septohippocampal neurons, sparing the majority of cholinergic neurons. At 200 ng/microl, orexin-saporin almost totally eliminated GABAergic septohippocampal neurons and destroyed many cholinergic neurons. Spatial reference memory was impaired at both concentrations of orexin-saporin with a dramatic impairment observed for 24-h retention. Short-term reference memory was also impaired at both concentrations. Rats treated with 200 ng/microl, but not 100 ng/microl, of orexin-saporin were also impaired on a spontaneous alternation task, showing a deficit in spatial working memory. Our results, together with previous studies, suggest that orexin innervation of the MSDB may modulate spatial memory by acting on both GABAergic and cholinergic septohippocampal neurons.  相似文献   

7.
The modulation of the firing discharge of medial septal neurons and of the hippocampal electroencephalogram (EEG) mediated by actions on alpha2-adrenoreceptors (ARs) was investigated in awake rabbits. Bilateral i.c.v. infusion of a relatively low dose (0.5 microg) of the alpha2-AR agonist clonidine produced a reduction in the theta rhythmicity of both medial septal neurons and the hippocampal EEG. In contrast, a high dose of clonidine (5 microg) increased the percentage and degree of rhythmicity of theta bursting medial septal neurons as well as the theta power of the hippocampal EEG. On the other hand, administration of alpha2-AR antagonist idazoxan produced the opposite dose-dependent effect. While a low dose of the antagonist (20 microg) produced an increase in both the theta rhythmicity of medial septal neurons and the theta power of the hippocampal EEG, a high dose (100 microg) caused a reduction of theta rhythmicity in both the medial septum and hippocampus. These results suggest that low doses of alpha2-ARs agents may act at autoreceptors regulating the synaptic release of noradrenaline, while high doses of alpha2-ARs drugs may have a predominant postsynaptic action. Similar results were observed after local injection of the alpha2-AR drugs into the medial septum suggesting that the effects induced by the i.c.v. infusion were primarily mediated at the medial septal level. We suggest that noradrenergic transmission via the postsynaptic alpha2-ARs produces fast and strong activation of the septohippocampal system in situations that require urgent selective attention to functionally significant information (alert, aware), whereas the action via the presynaptic alpha2-ARs allows a quick return of the activity to the initial level.  相似文献   

8.
Medial septal neurons innervate the entire hippocampal formation. This input provides a potent regulation of hippocampal formation physiology (e.g. theta) and memory function. Medial septal neurons are rich in cholinergic receptors and thus are potential targets for the development of cognitive enhancers. Direct intraseptal infusion of cholinomimetics alters hippocampal physiology and can produce either promnestic or amnestic effects. Several variables (e.g. age of animal, integrity of septohippocampal circuits, task difficulty) may influence treatment outcome. We have previously demonstrated that intraseptal carbachol (12.5-125 ng) infusion immediately after the sample session of a delayed-non-match-to-sample radial maze paradigm produces a dose-dependent amnesia. The present study examined whether manipulating the timing of intraseptal carbachol infusion with respect to the sample session would alter the amnestic effect. A within-subjects design was used to examine the effect of intraseptal carbachol (125 ng/0.5 microl) in a delayed-non-match to sample radial maze task. During a sample session, rats retrieved rewards from six of 12 maze arms. At the test session (3 h later), only the alternate set contained reward and entries into the sample set arms constituted errors. Intraseptal carbachol was administered: 1) 30 min prior; 2) immediately prior; 3) immediately after and 4) 90 min after the sample session. Intraseptal carbachol prior to the sample had no effect on any index of accuracy. Infusion immediately after the sample, or delayed 90 min into the retention interval, produced an acute amnesia. These findings demonstrate that the timing of treatment is a critical variable in determining the memory effects of septohippocampal manipulations and that dynamic changes in cholinergic tone are important for memory.  相似文献   

9.
Cholinergic and GABAergic neurons in the medial septal/vertical limb of the diagonal band of Broca (MS/vDB) area project to the hippocampus and constitute the septohippocampal pathway, which has been implicated in learning and memory. There is also evidence for extrinsic and intrinsic glutamatergic neurons in the MS/vDB, which by regulating septohippocampal neurons can influence hippocampal functions. The potential role of glutamatergic N-methyl-D-aspartate (NMDA) receptors within the MS/vDB for spatial and emotional learning was studied using the water maze and step-through passive avoidance (PA) tasks, which are both hippocampal-dependent. Blockade of septal NMDA receptors by infusion of the competitive NMDA receptor antagonist D-(-)-2-amino-5-phosphonopentanoic acid (D-AP5) (0.3-5 microg/rat), infused 15 min prior to training, impaired spatial learning and memory at the 5 microg dose of D-AP5, while doses of 0.3 and 1 microg per rat had no effect. The impairment in spatial learning appears not to be caused by sensorimotor or motivational disturbances, or anxiogenic-like behavior. Thus, d-AP5-treated rats were not impaired in swim performance or visuospatial abilities and spent more time in the open arms of the elevated plus-maze. In the PA task, intraseptal D-AP5 infused 15 min before training impaired retention as examined 24 h after training. This impairment was observed already at the 0.3 microg dose, suggesting that NMDA receptors within the MS/vDB may be more important for emotional than spatial memory. In summary, the present data indicate that changes in septal glutamate transmission and NMDA receptor activity can influence activity-dependent synaptic plasticity in the hippocampus and thereby learning and memory.  相似文献   

10.
Occlusal disharmony induces chronic stress, which results in learning deficits in association with the morphologic changes in the hippocampus, e.g., neuronal degeneration and increased hypertrophied glial fibrillary acidic protein-positive cells. To investigate the mechanisms underlying impaired hippocampal function resulting from occlusal disharmony, we examined the effects of the bite-raised condition on the septohippocampal cholinergic system by assessing acetylcholine release in the hippocampus and choline acetyltransferase immunoreactivity in the medial septal nucleus in aged SAMP8 mice that underwent the bite raising procedure. Aged bite-raised mice showed decreased acetylcholine release in the hippocampus and a reduced number of choline acetyltransferase-immunopositive neurons in the medial septal nucleus compared to age-matched control mice. These findings suggest that the bite-raised condition in aged SAMP8 mice enhances the age-related decline in the septohippocampal cholinergic system, leading to impaired learning.  相似文献   

11.
The role of the septohippocampal pathway in working memory was investigated by direct microinfusion of compounds into the medial septal area (MSA). Behavior was measured by performance in a continuous spatial alteration task in a T maze, and hippocampal theta rhythm was also recorded. Intraseptal saline had no effect on choice accuracy or hippocampal theta rhythm. Tetracaine decreased choice accuracy and theta rhythm 10 min, but not 90 min, after infusion. Likewise, muscimol and scopolamine produced a transient, dose-dependent suppression of hippocampal theta rhythm and a simultaneous dose-dependent impairment in choice accuracy. A significant correlation (r = .78) emerged between a compound's influence on theta rhythm and its effect on choice accuracy. The data support a role for the septohippocampal projection in working memory and suggest that gamma-aminobutyric acid and acetylcholine may have opposing influences on neurons in the MSA.  相似文献   

12.
The cholinergic septohippocampal pathway has long been known to be important for learning and memory. Prolonged intake of ethanol causes enduring memory deficits, which are paralleled by partial depletion of hippocampal cholinergic afferents. We hypothesized that exogenous supply of nerve growth factor (NGF), known to serve as a trophic substance for septal cholinergic neurons, can revert the ethanol-induced changes in the septohippocampal cholinergic system. Adult rats were given a 20% ethanol solution as their only source of fluid for 6 months. During the first 4 weeks after the animals were withdrawn from ethanol, they were intraventricularly infused with either NGF or vehicle alone via implanted osmotic minipumps. The vehicle-infused withdrawn animals showed impaired performance on a spatial reference memory version of the Morris water maze task, both during the task acquisition and on the retention test. In contrast, NGF-treated withdrawn rats were able to learn the task as well as controls, and significantly outperformed the vehicle-infused withdrawn rats. The histological analysis revealed that, in the latter group, the length density of fibers immunoreactive to choline acetyltransferase was reduced relative to control values by approximately 25%, as measured in the dentate gyrus and regio superior of the hippocampal formation. However, in NGF-treated withdrawn rats, the length density of these fibers was identical to that of control rats. These data provide support to the notion that NGF is capable of ameliorating memory deficits and restoring septohippocampal cholinergic projections following chronic treatment with ethanol. Electronic Publication  相似文献   

13.
Rats were administered 192-IgG saporin (SAP) or vehicle into the medial septum-vertical limb of the diagonal band (MS-vDB). Starting 1 week later, the effects of intraseptal scopolamine, oxotremorine, and muscimol were tested in a T-maze alternation task. Choice accuracy in the absence of infusions did not differ between control and SAP-treated rats. Intraseptal scopolamine or muscimol impaired the choice accuracy of SAP-treated but not control rats. Oxotremorine impaired accuracy similarly in control and SAP-treated rats. The enhanced effects of scopolamine and muscimol produced by SAP are consistent with the hypothesis that cholinergic MS-vDB neurons are used in spatial working memory. The finding that SAP alone did not alter choice accuracy provides further evidence that cholinergic MS-vDB neurons are not necessary for spatial working memory. Thus, cholinergic MS-vDB neurons are involved in but not necessary for spatial working memory.  相似文献   

14.
Septohippocampal cholinergic neurons innervate the hippocampus and provide it with almost its entire acetylcholine. Axon collaterals of these neurons also release acetylcholine within the septum and thereby maintain the firing activity of septohippocampal GABAergic neurons. A loss of septohippocampal cholinergic neurons occurs in various neurodegenerative disorders associated with cognitive dysfunctions. group I metabotropic glutamate receptors have been implicated in septohippocampal-dependent learning and memory tasks. In the present study, we examined the physiological and pharmacological effects of a potent and selective group I metabotropic glutamate receptor (mGluR) agonist S-3,5-dihydroxyphenylglycine (DHPG) on rat septohippocampal cholinergic neurons that were identified in brain slices using a selective fluorescent marker. In whole cell recordings, DHPG produced a reversible, reproducible and a direct postsynaptic and concentration-dependent excitation in 100% of septohippocampal cholinergic neurons tested with an EC(50) of 2.1 microM. Pharmacologically, the effects of DHPG were partially/completely reduced by the mGluR1 antagonists, 7-hydrox-iminocyclopropan[b]chromen-1a-carboxylic acid ethyl ester and (+)-2-methyl-4-carboxyphenylglycine. Addition of the mGluR5 antagonist, 2-methyl-6-(phenylethnyl)pyridine hydrochloride, reduced the remaining response to DHPG, suggesting involvement of both receptor subtypes in a subpopulation of septohippocampal cholinergic neurons. In double-immunolabeling studies, 74% of septohippocampal cholinergic neurons co-localized mGluR1alpha-immunoreactivity and 35% co-localized mGluR5-immunoreactivity. Double-immunolabeling studies at the light and electron-microscopic levels showed that vesicular glutamate transporter 2 terminals make asymmetric synaptic contacts with septohippocampal cholinergic neurons. These findings may be of significance in treatment of cognitive deficits associated with neurodegenerative disorders as a group I mGluR-mediated activation of septohippocampal cholinergic neurons would enhance the release of acetylcholine both in the hippocampus and in the septum.  相似文献   

15.
We tested the influence of continuous high-K+ treatment on acetylcholine (ACh) release and choline acetyltransferase (ChAT) activity on septal cell culture, and septal and hippocampal cell co-culture obtained from rat embryos. Continuous 9 mM K+ treatment did not affect ACh release and ChAT activity in septal culture, but increased ACh release in co-culture without affecting ChAT activity. A slight increase in extracellular K+ concentration, therefore, induced neuronal excitation. Continuous 55 mM K+ treatment increased ACh release in septal culture. This effect was due to direct excitation of septal neurons. In co-culture, 55 mM K+ treatment increased both ACh release and ChAT activity. These results indicate that hippocampal neurons are indispensable for the depolarization-induced increase in ChAT activity in the early stage of developing septal cholinergic neurons.  相似文献   

16.
The neuropeptide galanin coexists with acetylcholine (ACh) in the basal forebrain cholinergic neurons and modulates cholinergic activity in the forebrain. The cholinergic forebrain neurons appear to play a significant role in learning and memory, as suggested by a severe loss of these neurons in Alzheimer's disease. The involvement of endogenous galanin in learning is demonstrated here by the use of the recently synthesized high-affinity galanin antagonist M35 [galanin(1-13)-bradykinin(2-9) amide] (Kd = 0.1 nM). Intracerebroventricular (i.c.v.) administration of M35 (6 but not 3 nmol) produced a significant (P < 0.025) facilitation of acquisition in a spatial learning test (Morris swim maze) without any increase in swim speed. Thus, M35 (6 nmol) shortened the escape latency, reduced the number of failures to reach the platform, and shortened the path length to reach the hidden platform. M35 (3 and 6 nmol) tended to enhance retention performance seven days after the last training session. Receptor autoradiographic studies on the distribution of [125I]M35 following i.c.v. administration show that it binds preferentially in the periventricular regions including the hippocampus. These results suggest that galanin may modulate spatial learning and memory and that galanin antagonists may provide a new principle in the treatment of Alzheimer's disease.  相似文献   

17.
Nelson CL  Sarter M  Bruno JP 《Neuroscience》2005,132(2):347-359
Attentional processing is a crucial early stage in cognition and is subject to "top-down" regulation by prefrontal cortex (PFC). Top-down regulation involves modification of input processing in cortical and subcortical areas, including the posterior parietal cortex (PPC). Cortical cholinergic inputs, originating from the basal forebrain cholinergic system, have been demonstrated to mediate important aspects of attentional processing. The present study investigated the ability of cholinergic and glutamatergic transmission within PFC to regulate acetylcholine (ACh) release in PPC. The first set of experiments demonstrated increases in ACh efflux in PPC following AMPA administration into the PFC. These increases were antagonized by co-administration of the AMPA receptor antagonist DNQX into the PFC. The second set of experiments demonstrated that administration of carbachol, but not nicotine, into the PFC also increased ACh efflux in PPC. The effects of carbachol were attenuated by co-administration (into PFC) of a muscarinic antagonist (atropine) and partially attenuated by the nicotine antagonist mecamylamine and DNQX. Perfusion of carbachol, nicotine, or AMPA into the PPC did not affect PFC ACh efflux, suggesting that these cortical interactions are not bi-directional. These studies demonstrate the capacity of the PFC to regulate ACh release in the PPC via glutamatergic and cholinergic prefrontal mechanisms. Prefrontal regulation of ACh release elsewhere in the cortex is hypothesized to contribute to the cognitive optimization of input processing.  相似文献   

18.
The septal region of the basal forebrain plays a critical role modulating hippocampal excitability and functional states. Septal circuits may also play a role in controlling abnormal hippocampal hyperexcitability in epilepsy. Both lateral and medial septal neurons are targets of hippocampal axons. Since the hippocampus is an important epileptogenic area in temporal lobe epilepsy, we hypothesize that excessive excitatory output will promote sustained neurodegeneration of septal region neurons. Pilocarpine-induced status epilepticus (SE) was chosen as a model to generate chronic epileptic animals. To determine whether septal neuronal populations are affected by hippocampal seizures, immunohistochemical assays were performed in brain sections obtained from age-matched control, latent period (7 days post-SE) and chronically epileptic (more than one month post-SE survival) rats. An anti-NeuN (neuronal nuclei) antibody was used to study total neuronal numbers. Anti-ChAT (choline acetyltransferase), anti-GAD (glutamic acid decarboxylase) isoenzymes (65 and 67), and anti-glutamate antibodies were used to reveal cholinergic, GABAergic and glutamatergic neurons, respectively. Our results revealed a significant atrophy of medial and lateral septal areas in all chronically epileptic rats. Overall neuronal density in the septum (medial and lateral septum), assessed by NeuN immunoreactivity, was significantly reduced by approximately 40% in chronically epileptic rats. The lessening of neuronal numbers in both regions was mainly due to the loss of GABAergic neurons (80-97% reduction in medial and lateral septum). In contrast, populations of cholinergic and glutamatergic neurons were spared. Overall, these data indicate that septal GABAergic neurons are selectively vulnerable to hippocampal hyperexcitability, and suggest that the processing of information in septohippocampal networks may be altered in chronic epilepsy.  相似文献   

19.
Summary Long Evans female rats sustained aspirative lesions of the septohippocampal pathways; subsequently, they received intrahippocampal suspension grafts of fetal septal-diagonal band or hippocampal tissue. The long term (8–10 months post-surgery) effects of these treatments were examined in the hippocampus for the following variables: concentration of hippocampal acetylcholine (ACh), muscarinic-stimulated (carbachol) formation of inositol monophosphate, accumulation of tritiated choline, noradrenaline (3H-NA) and serotonin (3H-5-HT), electrically evoked release of 3H-acetylcholine (3H-ACh), 3H-NA and 3H-5-HT, and choline acetyltransferase (ChAT) activity. The lesions decreased the levels of endogeneous ACh, the accumulation of 3H-choline and 3H-5-HT and the evoked release of both 3H-ACh and 3H-5-HT as well as the ChAT activity, but they failed to significantly affect the muscarinic-stimulated formation of inositol monophosphate and the accumulation and release of 3H-NA. Grafts of hippocampal cells were found to be ineffective on all lesion-induced effects. In contrast, grafts of septal-diagonal band origin attenuated the deficit of hippocampal concentrations of ACh and accumulation of 3H-choline without, however, improving release of 3H-ACh, accumulation and release of 3H-5-HT, and ChAT activity. These observations suggest that: (i) denervation-induced hippocampal muscarinic supersensitivity might not be long-lasting or the lesions, which in some cases spared the lateral edges of the fimbria, failed to induce any muscarinic supersensitivity, (ii) intrahippocampal grafts rich in cholinergic neurons do not foster recovery from the lesion-induced noncholinergic deficits we assessed, (iii) recovery of function may be expressed by some but not all biochemical or pharmacological cholinergic variables and (iv) graft-derived hippocampal reinnervation may be less efficient than the endogenous innervation of intact rats as indicated by the restoration of only some of the variables related to cholinergic function by intrahippocampal septal-diagonal band grafts.  相似文献   

20.
The influence of the medial septal nucleus and the nucleus of the diagonal band of Broca (MS-DB) on the hippocampal theta rhythm includes both cholinergic and γ-aminobutyric acid (GABAergic) components. To understand the intrinsic septal interactions and the separate contributions of the cholinergic and GABAergic septohippocampal neurons to the theta rhythm in behaving animals, it is essential to be able to identify these two classes from extracellular recordings. Here the durations of extracellularly recorded action potentials are compared with the other characteristics of the neurons. Extracellular recordings were taken from neurons of the MS-DB both in freely moving rats (114 cells) and in urethane-anesthetized rats (112 cells). These were compared with intracellular recordings taken from MS-DB neurons in urethane-anesthetized rats (58 cells). Hippocampal EEG was recorded from above the CA1 pyramidal cell layer (CA1 theta) and near the hippocampal fissure (dentate theta) to compare the firing phase across cells. Here it is shown that two major types of rhythmically bursting cells in the MS-DB that had been distinguished previously in intracellular recordings in vivo are also separable in extracellular recordings in vivo on the basis of the durations of their action potentials. In both awake and anesthetized rats the main properties of the two cell types were found to differ: firing rate, phase-relation to the hippocampal theta rhythm and sensitivity of their rhythmicity to blockade of muscarinic transmission. As was previously shown for intracellular recordings in anesthetized rats, it is shown here that in awake rats, too, the more rapidly firing brief-spike (putative GABAergic) cells fired with highest probability on the negative phase of the dentate theta, whereas the more slowly firing long-spike (putative cholinergic) cells fired mostly on the positive phase. Previous work showed that in intracellular recordings from anesthetized rats the rhythmic firing of most brief-spike cells was still retained even during muscarinic blockade, but that of most long-spike cells was lost. Here we also report a recategorization according to spike duration of existing extracellular recordings taken from anesthetized rats, confirming the above observation with much larger numbers of cells. Three additional major new findings are also reported here. (1) In awake rats, muscarinic blockade has relatively little effect on either cell type. (2) Under anesthesia, the firing rates of both cell types are lower than in awake rats, but the effect is greater on the long-spike cells, where the anesthesia also reduces the rhythmicity of the cell firing. (3) Rhythmicity of the putative GABAergic cells is also retained after local injection of GABA-A antagonist, whereas that of the putative cholinergic cells is eliminated. We conclude that either systemic muscarinic blockade or urethane anesthesia alone have relatively little effect on neurons in the defined above MS-DB, but a combination of the two has profound effects on the rhythmicity of the cholinergic cells, largely sparing the GABAergic cells. Taken together, the results suggest that generation of theta rhythm requires a background of excitatory influences on the hippocampus (that can be maintained by either muscarinic or glutamatergic inputs) in combination with the phasic disinhibitory action mediated by the GABAergic MS-DB projection. They also provide additional support for the notion that the phasic activity in local collaterals of GABAergic MS-DB cells contributes to the phasic modulation of the firing of cholinergic septohippocampal neurons. Received: 13 October 1998 / Accepted: 15 March 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号