首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We previously observed that IL-4 gene transduction into a mouse colon 26 adenocarcinoma cell line abrogated its tumorigenicity due to the generation of anti-tumor CTL. DEC-205- and CD11c-double positive cells were increased in the lymph nodes of mice injected with IL-4-transfected cells between 2 and 3 days after the tumor injection, compared with those injected with parental cells. Most of these double positive cells expressed CD86 antigen. Among the chemokines with chemotactic activities against dendritic cells, monocyte chemoattractant protein (MCP)-1/CCL2, ABCD-1/CCL22, and liver and activation-regulated chemokine (LARC)/CCL20 gene expression was enhanced no later than 3 days after the tumor injection, in the draining lymph nodes of IL-4-transfected cell bearing mice. Moreover, gene expression of the receptor for MCP-1/CCL2, CCR2, was enhanced in the draining lymph nodes of the mice injected with IL-4-transfected cells, and most DEC-205-positive cells in the lymph nodes expressed CCR2. Finally, the administration of anti-MCP-1/CCL2 antibodies retarded the rate of tumor regression in mice injected with IL-4-tranfected cells, concomitantly with a decrease in DEC-205- and CD11c-double positive cell number in the draining lymph nodes. Thus, locally produced MCP-1/CCL2 may be responsible for IL-4-mediated tumor rejection presumably based on the induction of dendritic cell migration into the draining lymph nodes.  相似文献   

2.
CC and CXC chemokines coinduced in fibroblasts and leukocytes by cytokines and microbial agents determine the number of phagocytes infiltrating into inflamed tissues. Interleukin-8/CXCL8 and stromal cell-derived factor-1/CXCL12 significantly and dose-dependently increased the migration of monocytes, expressing the corresponding CXC chemokine receptors CXCR2 and CXCR4, toward suboptimal concentrations of the monocyte chemotactic proteins CCL2 or CCL7. These findings were confirmed using different chemotaxis assays and monocytic THP-1 cells. In contrast, the combination of two CC chemokines (CCL2 plus CCL7) or two CXC chemokines (CXCL8 plus CXCL12) did not provide synergy in monocyte chemotaxis. These data show that chemokines competing for related receptors and using similar signaling pathways do not synergize. Receptor heterodimerization is probably not essential for chemokine synergy as shown in CXCR4/CCR2 cotransfectants. It is noteworthy that CCL2 mediated extracellular signal-regulated kinase 1/2 phosphorylation and calcium mobilization was significantly enhanced by CXCL8 in monocytes, indicating cooperative downstream signaling pathways during enhanced chemotaxis. Moreover, in contrast to intact CXCL12, truncated CXCL12(3-68), which has impaired receptor signaling capacity but can still desensitize CXCR4, was unable to synergize with CCL2 in monocytic cell migration. Furthermore, AMD3100 and RS102895, specific CXCR4 and CCR2 inhibitors, respectively, reduced the synergistic effect between CCL2 and CXCL12 significantly. These data indicate that for synergistic interaction between chemokines binding and signaling of the two chemokines via their proper receptors is necessary.  相似文献   

3.
4.
The participation of the chemokine CCL2 (monocyte chemoattractant protein-1) in inflammatory and neuropathic pain is well established. Furthermore, the release of CCL2 from a NCTC 2472 cells-evoked tumor and its involvement in the upregulation of calcium channel α2δ1 subunit of nociceptors was demonstrated. In the present experiments, we have tried to determine whether the increase in CCL2 levels is a common property of painful tumors and, in consequence, the administration of a chemokine receptor type 2 (CCR2) antagonist can inhibit tumoral hypernociception. CCL2 levels were measured by ELISA in the tumoral region of mice intratibially inoculated with NCTC 2472 or B16-F10 cells, and the antihyperalgesic and antiallodynic effects evoked by the administration of the selective CCR2 antagonist RS 504393 were assessed. Cultured NCTC 2472 cells release CCL2 and their intratibial inoculation evokes the development of a tumor in which CCL2 levels are increased. Moreover, the systemic or peritumoral administration of RS 504393 inhibited thermal and mechanical hyperalgesia, but not mechanical allodynia evoked after the inoculation of these cells. Thermal hyperalgesia was also inhibited by the peritumoral administration of a neutralizing CCL2 antibody. In contrast, no change in CCL2 levels was observed in mice inoculated with B16-F10 cells, and RS 504393 did not inhibit the hypernociceptive reactions evoked by their intratibial inoculation. The peripheral release of CCL2 is involved in the development of thermal and mechanical hyperalgesia, but not mechanical allodynia evoked by the inoculation of NCTC 2472 cells, whereas this chemokine seems unrelated to the hypernociception induced by B16-F10 cells.  相似文献   

5.
Chemokines are an extensive family of small proteins which, in conjunction with their receptors, guide the chemotactic activity of various immune cells throughout the body. CCL28, β- or CC chemokine, is involved in the host immunity at various epithelial and mucosal linings. The unique roles of CCL28 in several facets of immune responses have attracted considerable attention and may represent a promising approach to combat various infections. CCL28 displays a broad spectrum of antimicrobial activity against gram-negative and gram-positive bacteria, as well as fungi. Here, we will summarize various research findings regarding the antimicrobial activity of CCL28 and the relevant mechanisms behind it. We will explore how the structure of CCL28 is involved with this activity and how this function may have evolved. CCL28 displays strong homing capabilities for B and T cells at several mucosal and epithelial sites, and orchestrates the trafficking and functioning of lymphocytes. The chemotactic and immunomodulatory features of CCL28 through the interactions with its chemokine receptors, CCR10 and CCR3, will also be discussed in detail. Thus, in this review, we emphasize the dual properties of CCL28 and suggest its role as an anchoring point bridging the innate and adaptive immunity.  相似文献   

6.
The roles of immune cells and their soluble products during myocardial infarction (MI) are not completely understood. Here, we observed that the percentages of IL-17, but not IL-22, producing cells are reduced in mice splenocytes after developing MI. To correlate this finding with the functional activity of IL-17, we sought to determine its effect on monocytes. In particular, we presumed that this cytokine might affect the chemotaxis of monocytes important for cardiac inflammation and remodeling. We observed that IL-17 tends to reduce the expression of two major chemokine receptors involved in monocyte chemotaxis, namely CCR2 and CXCR4. Further analysis showed that monocytes pretreated with IL-17 have reduced in vitro chemotaxis towards the ligand for CCR2, i.e., MCP-1/CCL2, and the ligand for CXCR4, i.e., SDF-1α/CXCL12. Our results support the possibility that IL-17 may be beneficial in MI, and this could be due to its ability to inhibit the migration of monocytes.  相似文献   

7.
The multiple faces of CCL13 in immunity and inflammation   总被引:1,自引:0,他引:1  
CCL13/MCP-4, is a CC family chemokine that is chemoattractant for eosinophils, basophils, monocytes, macrophages, immature dendritic cells, and T cells, and its capable of inducing crucial immuno-modulatory responses through its effects on epithelial, muscular and endothelial cells. Similar to other CC chemokines, CCL13 binds to several chemokine receptors (CCR1, CCR2 and CCR3), allowing it to elicit different effects on its target cells. A number of studies have shown that CCL13 is involved in many chronic inflammatory diseases, in which it functions as a pivotal molecule involved in the selective recruitment of cell lineages to the inflamed tissues and their subsequent activation. Based on these studies, we suggest that blocking the actions of CCL13 can serve as a novel strategy for the generation of agents with anti-inflammatory activity. The main goal of this review is to present the current information about CCL13, its gene and protein structure and the roles of this chemokine during innate/adaptive immune responses in inflammatory diseases.  相似文献   

8.
9.
CC趋化因子受体2(CCR2)是趋化因子受体中的重要一员,与其配体CC趋化因子配体2(CCL2)在神经炎症中发挥着重要的作用。本文综述了CCR2/CCL2的表达及功能,并探讨抑制CCR2/CCL2对脑缺血再灌注损伤的影响及其机制。抑制CCR2/CCL2可降低血脑屏障通透性,并通过影响单核/巨噬细胞、小胶质细胞和星形胶质细胞抑制炎症反应,进而减轻脑缺血再灌注损伤。因此,抑制CCR2/CCL2可能是治疗脑缺血损伤的潜在靶点,为相关药物研发提供依据。  相似文献   

10.
Ulcerative colitis (UC) is a chronic inflammatory disease of unknown aetiology and pathogenesis. The presence in the colonic mucosa of reactive cells expressing proinflammatory cytokines and chemokines is associated with high levels of IL-10, an anti-inflammatory cytokine. Our aim was to investigate the role of IL-10 and the beta chemokine LEC/CCL16 selectively up-regulated by IL-10 in inflammatory cell recruitment and cytokine and chemokine production during UC. We studied histologically, immunohistochemically and ultrastructurally colonic biopsies from 20 active UC patients and 10 control specimens taken far from any macroscopically detectable lesion in age and sex-matched patients with noninflammatory bowel disease. In active UC, immature dendritic cells (DCs) in the LP are associated with IL-10 in the T cell rich area. Furthermore, most of the LP-infiltrating macrophages strongly expressed LEC/CCL16, a chemokine upregulated by IL-10. To evaluate if LEC/CCL16 plays a role in the inflammatory reaction present in UC, we performed morphological studies in mice injected s.c. with syngeneic tumor cells engineered to produce LEC/CCL16. We found that the LEC protein locally released by LEC-gene-transfected tumor cells is a potent proinflammatory chemokine that induces the recruitment of a reactive infiltrate, and an angiogenic process mirroring that in human UC.  相似文献   

11.
12.
Lipids through regulation of chronic inflammation play key roles in the development of various diseases. Here, we report that a mixed population of human primary monocytes migrated towards LPC, as well as oxidized linoleic acid isoforms 9-S-HODE, 9-R-HODE and 13-R-HODE. Incubation with 9-R-HODE, 13-R-HODE and LPC resulted in increased expression of CXCR4, the receptor for SDF-1α/CXCL12, correlated with increased monocyte migration towards SDF-1α/CXCL12. Further, we report increased expression of CCR9, the receptor for TECK/CCL25, after stimulation with these lipids. Upon examining the migratory response towards TECK/CCL25, it was observed that an increase in CCR9 expression upon pre-treatment with 9-S-HODE, 9-R-HODE, 13-R-HODE and LPC resulted in increased migration of monocytes expressing CCR9. Only LPC but not any other lipid examined increased the influx of intracellular Ca2+ in monocytes. Finally, 9-S-HODE, 9-R-HODE, 13-R-HODE, or LPC inhibited the release of IL-6 from monocytes suggesting that these lipids may play important role in controlling inflammatory responses.  相似文献   

13.
Allergic asthma and allergic dermatitis are chronic inflammatory diseases and are characterized by an accumulation of eosinophils at sites of inflammation. Eotaxin-1/CCL11 and eotaxin-3/CCL26 are members of the CC chemokine family, which are known to be potent chemoattractants for eosinophils. We observed that a human lung fibroblast, HFL-1 produces eotaxin-1 and -3 in response to TNF-alpha plus IL-4 stimulation, accompanied with NF-kappaB and STAT6 activation. We explored which signaling pathways are operative in the production of eotaxin-1 and -3 using several inhibitors. Eotaxin-1/CCL11 production was inhibited by a p38 mitogen-activated protein kinase (MAPK) inhibitor, SB203580, but not by the MEK (MAPK/ERK kinase) inhibitors, PD98059 and U0126. In contrast, eotaxin-3/CCL26 production was inhibited similarly by PD98059 as well as U0126 and SB203580. In addition, two proteasome inhibitors, N-acetyl-leucyl-leucyl-norleucinal (ALLN) and bortezomib with significant inhibitory activity on NF-kappaB activation, inhibited eotaxin-1/CCL11 production with IC(50) 8 muM for ALLN and IC(50) 16 nM for bortezomib. In contrast, eotaxin-3/CCL26 production was not inhibited significantly up to 10 muM of ALLN (IC(50 )16 muM) and up to 10 nM of bortezomib (IC(50) 11 nM), giving inhibition of eotaxin-3/CCL26 less sensitive than eotaxin-1/CCL11 production by the proteasome inhibitors. Synergistic inhibition was observed among lower doses of SB203580 and proteasome inhibitors, particularly in the eotaxin-1/CCL11 production. No such prominent synergism was found on the eotaxin-3/CCL26 production. The suppression of eotaxin family production by these inhibitors may be efficacious against allergic diseases.  相似文献   

14.
Chemokines are members of the chemoattractant cytokine family. They play key roles in the trafficking of leukocytes and in the induction of chemotaxis through the activation of G protein-coupled receptor. Considerable interest has been paid to these molecules to elucidate their roles in the unique inflammatory responses elicited in the central nervous system (CNS). Chemokine CCL2 (also known as monocyte chemoattractant protein-1, MCP-1) is one of the vital chemokines that control the migration and infiltration of monocytes/macrophages. CCL2 and its receptor CCR2 have been shown to be induced and involved in various neurodegenerative disorders including Alzheimer’s disease, multiple sclerosis, and ischemic brain injury. The present review will focus on the biological and pathophysiological aspects of CCL2 and CCR2 in the CNS and the possible therapeutic approaches for targeting these two proteins to combat neurodegenerative diseases.  相似文献   

15.
The chemokine receptor, CCR5, responds to several chemokines leading to changes in activity in several signalling pathways. Here, we investigated the ability of different chemokines to provide differential activation of pathways. The effects of five CC chemokines acting at CCR5 were investigated for their ability to inhibit forskolin-stimulated 3'-5'-cyclic adenosine monophosphate (cAMP) accumulation and to stimulate Ca(2+) mobilisation in Chinese hamster ovary (CHO) cells expressing CCR5. Macrophage inflammatory protein 1alpha (D26A) (MIP-1alpha (D26A), CCL3 (D26A)), regulated on activation, normal T-cell expressed and secreted (RANTES, CCL5), MIP-1beta (CCL4) and monocyte chemoattractant protein 2 (MCP-2, CCL8) were able to inhibit forskolin-stimulated cAMP accumulation, whilst MCP-4 (CCL13) could not elicit a response. CCL3 (D26A), CCL4, CCL5, CCL8 and CCL13 were able to stimulate Ca(2+) mobilisation through CCR5, although CCL3 (D26A) and CCL5 exhibited biphasic concentration-response curves. The Ca(2+) responses induced by CCL4, CCL5, CCL8 and CCL13 were abolished by pertussis toxin, whereas the response to CCL3 (D26A) was only partially inhibited by pertussis toxin, indicating G(i/o)-independent signalling induced by this chemokine. Although the rank order of potency of chemokines was similar between the two assays, certain chemokines displayed different pharmacological profiles in cAMP inhibition and Ca(2+) mobilisation assays. For instance, whilst CCL13 could not inhibit forskolin-stimulated cAMP accumulation, this chemokine was able to induce Ca(2+) mobilisation via CCR5. It is concluded that different chemokines acting at CCR5 can induce different pharmacological responses, which may account for the broad spectrum of chemokines that can act at CCR5.  相似文献   

16.
Abstract: The CCL15 is a human CC chemokine that activates the receptors, CCR1 and CCR3. Unlike other chemokines, it contains an unusually long N‐terminal domain of 31 amino acids preceding the first cysteine residue and a third disulfide bond. To elucidate the functional role of distinct structural determinants, a series of sequential amino‐terminal truncated and point‐mutated CCL15 derivatives as well as mutants lacking the third disulfide bond and the carboxy‐terminal α‐helix were synthesized using 9‐fluorenylmethoxycarbonyl (Fmoc) chemistry. We demonstrate that a truncation of 24 amino acid residues (Δ24‐CCL15) converts the slightly active 92‐residue Δ0‐CCL15 into a potent agonist of CC chemokine receptor 1 (CCR1) and a weak agonist of CCR3 in cell‐based assays. The biological activity decreases from Δ24‐CCL15 to Δ29‐CCL15, and re‐increases from Δ29‐CCL15 to Δ30‐CCL15. Thus, an exocyclic N‐terminal region of only one amino acid residue is sufficient for efficient CCR1 activation. As none of the peptides investigated except for Δ24‐CCL15 activates CCR3, we suggest that CCR1 is the major receptor for CCL15 in vivo. Further we demonstrate that the third disulfide bond of CCL15 and an exchange of tyrosine in position 70 by a leucine residue, which is conserved in CXC chemokines, do not alter the interaction with CCR1. In contrast, a CCL15 derivative lacking the carboxy‐terminal α‐helix exhibits a complete loss of tertiary structure and hence loss of CCR1 agonistic and binding activity. This study demonstrates that specific protein residues in chemokines, which contribute to receptor–ligand interaction, vary significantly between chemokines and cannot be extrapolated using data from functionally related chemokines.  相似文献   

17.
One of the hallmark features underlying the pathogenesis of HIV encephalitis is the disruption of blood–brain barrier (BBB). Cocaine, often abused by HIV-infected patients, has been suggested to worsen the HIV-associated dementia (HAD) via unknown mechanisms. The objective of the present study was to explore the effects of cocaine on BBB permeability using human brain microvascular endothelial cells (HBMECs). Additionally, because the chemokine CCL2 and its receptor CCR2 play a crucial role in the recruitment of inflammatory cells into the central nervous system in HAD brains, we tested for the effect of cocaine in modulating the CCL2/CCR2 axis. Our findings suggest that exposure of HBMECs to cocaine correlated with the breakdown of ZO-1 tight junction protein and reorganization of the cytoskeleton resulting in stress fiber formation. Furthermore, cocaine also modulated upregulation of the CCL2/CCR2 axis in monocytes. These findings conform to the multifaceted effects of cocaine leading to accelerated progression of HIV-1 neuropathogenesis.  相似文献   

18.
BackgroundChemokine signaling has been implicated in the pathogenesis of diabetic neuropathy; however, the involvement of the chemokine CC motif ligand 1 (CCL1)-chemokine CC motif receptor 8 (CCR8) interaction remains unknown. The goal of this study was to examine the role of CCL1-CCR8 signaling interplay in the development of hypersensitivity and in opioid effectiveness in diabetic neuropathy.MethodsPrimary glial cell cultures and a streptozotocin (STZ; 200 mg/kg, intraperitoneal)-induced mouse model of diabetic neuropathy were used. Analysis of mRNA/protein expression of glial markers and CCL1/CCR8 was performed by qRT-PCR, Western blotting and/or protein arrays. The co-localization of CCL1/CCR8 with neural/glial cells was visualized by immunofluorescence. The pharmacological tools were injected intrathecally, and pain behavior was evaluated by von Frey/cold plate tests.ResultsSingle STZ injection increased blood glucose levels and induced the development of hypersensitivity as measured on days 7–21. On day 7 after STZ, the protein levels of CCL1 and IBA1 but not of CCR8 or GFAP were elevated. Immunofluorescent staining revealed that CCR8 was predominantly localized in neurons, which are also the main source of spinal CCL1. Lipopolysaccharide stimulation of primary microglial cultures resulted in decreases in the levels of CCL1 and CCR8. Single intrathecal injection of CCL1 (10–500 ng) induced the development of hypersensitivity, whereas on day 7 after STZ, a CCL1-neutralizing antibody dose-dependently (2–8 μg) delayed pain behavior. Repeated administration of the CCL1-neutralizing antibody (4 μg) also enhanced the effectiveness of morphine and buprenorphine (1 μg).ConclusionThese results reveal that CCL1/CCR8 neuronal signaling plays an important role in the development of diabetic neuropathy and the effectiveness of opioids.  相似文献   

19.
20.
We have investigated the signalling properties of the chemokine receptor, CCR5, using several assays for agonism: stimulation of changes in intracellular Ca(2+) or CCR5 internalisation in CHO cells expressing CCR5 or stimulation of [(35)S]GTPgammaS binding in membranes of CHO cells expressing CCR5. Four isoforms of the chemokine CCL3 with different amino termini (CCL3, CCL3(2-70), CCL3(5-70), CCL3L1) were tested in these assays in order to probe structure/activity relationships. Each isoform exhibited agonism. The pattern of agonism (potency, maximal effect) was different in the three assays, although the rank order was the same with CCL3L1 being the most potent and efficacious. The data show that the amino terminus of the chemokine is important for signalling. A proline at position 2 (CCL3L1) provides for high potency and efficacy but the isoform with a serine at position 2 (CCL3(2-70)) is as efficacious in some assays showing that the proline is not the only determinant of high efficacy. We also increased the sensitivity of CCR5 signalling by treating cells with sodium butyrate, thus increasing the receptor/G protein ratio. This allowed the detection of a change in intracellular Ca(2+) after treatment with CCL7 and Met-RANTES showing that these ligands possess measurable but low efficacy. This study therefore shows that sodium butyrate treatment increases the sensitivity of signalling assays and enables the detection of efficacy in ligands previously considered as antagonists. The use of different assay systems, therefore, provides different estimates of efficacy for some ligands at this receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号