首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RATIONALE: Contrast-enhanced magnetic resonance imaging (MRI) of lung perfusion requires a high spatial and temporal resolution. Partially parallel MRI offers an improved spatial and temporal resolution. OBJECTIVE: To assess the feasibility of partially parallel MRI for the assessment of lung perfusion. METHODS: Two healthy volunteers and 14 patients were examined with a contrast-enhanced 3D gradient-echo pulse sequence with partially parallel image acquisitions (TE/TR/alpha: 0.8/1.9 milliseconds/40 degrees; voxel size 3.6 x 2.0 x 5.0 mm3, TA: 1.5 seconds). The image analysis included an analysis of the signal-to-noise ratio in the lungs in areas with normal and impaired perfusion. 3D MR perfusion image data were analyzed for perfusion defects and compared with radionuclide perfusion scans, which were available for 10 of 14 patients. RESULTS: The analysis of the 3D perfusion-weighted data allowed a clear differentiation of perfusion abnormalities: MRI showed normal lung perfusion in 9 of 16 cases, whereas perfusion abnormalities were observed in 7 cases. When compared with the radionuclide perfusion scans, a good intermodality agreement was shown (kappa = 0.74). When compared with normally perfused lung a significantly lower signal to noise ratio was observed in hypoperfused lung (7 versus 17; P = 0.02). CONCLUSION: Partially parallel MRI might be used for the assessment of lung perfusion. Future studies are required to further evaluate the diagnostic impact of this technique.  相似文献   

2.
RATIONALE AND OBJECTIVES: The purpose of this study was to implement ultrafast, multiphase three-dimensional (3D) magnetic resonance (MR) angiography and perfusion imaging after bolus injection of contrast medium to generate preliminary validation of parameters in a pig model and to illustrate potential applications in patients with lung abnormalities. MATERIALS AND METHODS: Five healthy volunteers, five patients, and three pigs underwent rapid, time-resolved pulmonary MR angiography and perfusion imaging on a 1.5-T MR imager. All patients had undergone correlative computed tomographic or conventional angiography. The pulse sequence was a 3D spin-warp, gradient-echo acquisition with a repetition time of 1.6 msec and an echo time of 0.6 msec. Each 3D acquisition lasted 2-3 seconds, and 8-16 sequential measurements were made in each study. Artificial pulmonary emboli were generated in pigs with gelatin sponge. All patients had diseases of the pulmonary circulation (as confirmed with other studies). RESULTS: Multiphasic, time-resolved pulmonary parenchymal enhancement was demonstrated in all healthy subjects and animals. All segmental (n = 100) and subsegmental (n = 200) branches were identified in the healthy subjects. Perfusion deficits were clearly demonstrated in all pigs after gelatin embolization. Perfusion defects were identified in two patients with lung disease. Abnormalities of the pulmonary vasculature were clearly identified in the patient group. CONCLUSION: Dynamic time-resolved 3D pulmonary MR angiography and perfusion imaging is feasible in humans as well as in animals. Induced perfusion deficits are identifiable after artificial embolization in pigs. Combined pulmonary MR angiography and parenchymal (perfusion) imaging may improve evaluation of the pulmonary circulation in a variety of conditions.  相似文献   

3.
OBJECTIVES: We sought to assess the agreement between lung perfusion ratios calculated from pulmonary perfusion magnetic resonance imaging (MRI) and those calculated from radionuclide (RN) perfusion scintigraphy. MATERIALS AND METHODS: A retrospective analysis of MR and RN perfusion scans was conducted in 23 patients (mean age, 60 +/- 14 years) with different lung diseases (lung cancer = 15, chronic obstructive pulmonary disease = 4, cystic fibrosis = 2, and mesothelioma = 2). Pulmonary perfusion was assessed by a time-resolved contrast-enhanced 3D gradient-echo pulse sequence using parallel imaging and view sharing (TR = 1.9 milliseconds; TE = 0.8 milliseconds; parallel imaging acceleration factor = 2; partition thickness = 4 mm; matrix = 256 x 96; in-plane spatial resolution = 1.87 x 3.75 mm; scan time for each 3D dataset = 1.5 seconds), using gadolinium-based contrast agents (injection flow rate = 5 mL/s, dose = 0.1 mmol/kg of body weight). The peak concentration (PC) of the contrast agent bolus, the pulmonary blood flow (PBF), and blood volume (PBV) were computed from the signal-time curves of the lung. Left-to-right ratios of pulmonary perfusion were calculated from the MR parameters and RN counts. The agreement between these ratios was assessed for side prevalence (sign test) and quantitatively (Deming-regression). RESULTS: MR and RN ratios agreed on side prevalence in 21 patients (91%) with PC, in 20 (87%) with PBF, and in 17 (74%) with PBV. The MR estimations of left-to-right perfusion ratios correlated significantly with those of RN perfusion scans (P < 0.01). The correlation was higher using PC (r = 0.67) and PBF (r = 0.66) than using PBV (r = 0.50). The MR ratios computed from PBF showed the highest accuracy, followed by those from PC and PBV. Independently from the MR parameter used, in some patients the quantitative difference between the MR and RN ratios was not negligible. CONCLUSIONS: Pulmonary perfusion MRI can be used to assess the differential blood flow of the lung. Further studies in a larger group of patients are required to fully confirm the clinical suitability of this imaging method.  相似文献   

4.
PURPOSE: To determine prospectively the accuracy of a magnetic resonance (MR) perfusion imaging and MR angiography protocol for differentiation of chronic thromboembolic pulmonary arterial hypertension (CTEPH) and primary pulmonary hypertension (PPH) by using parallel acquisition techniques. MATERIALS AND METHODS: The study was approved by the institution's internal review board, and all patients gave written consent prior to participation. A total of 29 patients (16 women; mean age, 54 years +/- 17 [+/- standard deviation]; 13 men; mean age, 57 years +/- 15) with known pulmonary hypertension were examined with a 1.5-T MR imager. MR perfusion imaging (temporal resolution, 1.1 seconds per phase) and MR angiography (matrix, 512; voxel size, 1.0 x 0.7 x 1.6 mm) were performed with parallel acquisition techniques. Dynamic perfusion images and reformatted three-dimensional MR angiograms were analyzed for occlusive and nonocclusive changes of the pulmonary arteries, including perfusion defects, caliber irregularities, and intravascular thrombi. MR perfusion imaging results were compared with those of radionuclide perfusion scintigraphy, and MR angiography results were compared with those of digital subtraction angiography (DSA) and/or contrast material-enhanced multi-detector row computed tomography (CT). Sensitivity, specificity, and diagnostic accuracy of MR perfusion imaging and MR angiography were calculated. Receiver operator characteristic analyses were performed to compare the diagnostic value of MR angiography, MR perfusion imaging, and both modalities combined. For MR angiography and MR perfusion imaging, kappa values were used to assess interobserver agreement. RESULTS: A correct diagnosis was made in 26 (90%) of 29 patients by using this comprehensive MR imaging protocol. Results of MR perfusion imaging demonstrated 79% agreement (ie, identical diagnosis on a per-patient basis) with those of perfusion scintigraphy, and results of MR angiography demonstrated 86% agreement with those of DSA and/or CT angiography. Interobserver agreement was good for both MR perfusion imaging and MR angiography (kappa = 0.63 and 0.70, respectively). CONCLUSION: The combination of fast MR perfusion imaging and high-spatial-resolution MR angiography with parallel acquisition techniques enables the differentiation of PPH from CTEPH with high accuracy.  相似文献   

5.
The purpose of this study was to prospectively use a whole-heart three-dimensional (3D) coronary magnetic resonance (MR) angiography technique specifically adapted for use at 3 T and a parallel imaging technique (sensitivity encoding) to evaluate coronary arterial anomalies and variants (CAAV). This HIPAA-compliant study was approved by the local institutional review board, and informed consent was obtained from all participants. Twenty-two participants (11 men, 11 women; age range, 18-62 years) were included. Ten participants were healthy volunteers, whereas 12 participants were patients suspected of having CAAV. Coronary MR angiography was performed with a 3-T MR imager. A 3D free-breathing navigator-gated and vector electrocardiographically-gated segmented k-space gradient-echo sequence with adiabatic T2 preparation pulse and parallel imaging (sensitivity encoding) was used. Whole-heart acquisitions (repetition time msec/echo time msec, 4/1.35; 20 degrees flip angle; 1 x 1 x 2-mm acquired voxel size) lasted 10-12 minutes. Mean examination time was 41 minutes +/- 14 (standard deviation). Findings included aneurysms, ectasia, arteriovenous fistulas, and anomalous origins. The 3D whole-heart acquisitions developed for use with 3 T are feasible for use in the assessment of CAAV.  相似文献   

6.
PURPOSE: To compare MR perfusion imaging with perfusion scintigraphy in the evaluation of patients with pulmonary emphysema being considered for lung volume reduction surgery. PATIENTS AND METHODS: Six patients with pulmonary emphysema and two normal individuals were evaluated by MR perfusion imaging, perfusion scintigraphy, and selective bilateral pulmonary angiography. MR images were obtained with an enhanced fast gradient recalled echo with three-dimensional Fourier transformation technique (efgre 3D) (6.3/1.3; flip angle, 30 degrees; field of view, 45-48 cm; matrix, 256 x 160). The presence or absence of perfusion defects in each segment was evaluated by two independent observers. RESULTS: Using angiography as the gold standard, the sensitivity, specificity, and accuracy of MR perfusion imaging in detecting focal perfusion abnormalities were 90%, 87%, and 89%, respectively, while those of perfusion scintigraphy were 71%, 76%, and 71%, respectively. The diagnostic accuracy of MR perfusion imaging was significantly higher than that of scintigraphy (p<0.001, McNemar test). There was good agreement between two observers for MR perfusion imaging (kappa statistic, 0.66) and only moderate agreement for perfusion scintigraphy (kappa statistic, 0.51). CONCLUSION: MR perfusion imaging is superior to perfusion scintigraphy in the evaluation of pulmonary parenchymal perfusion in patients with pulmonary emphysema.  相似文献   

7.
PURPOSE: To assess regional differences in quantitative pulmonary perfusion parameters, i.e., pulmonary blood flow (PBF), mean transit time (MTT), and pulmonary blood volume (PBV) in the entire lung on a pixel-by-pixel basis in normal volunteers and pulmonary hypertension patients. MATERIALS AND METHODS: Three-dimensional ultrafast dynamic contrast-enhanced MR imaging was performed in 15 normal volunteers and 25 patients with pulmonary hypertension. From the signal intensity-time course curves, PBF, MTT and PBV maps were generated using deconvolution analysis, indicator dilution theories, and the central volume principle, on a pixel-by-pixel basis. From pulmonary perfusion parameter maps of normal volunteers and pulmonary hypertension patients, regional PBF, MTT, and PBV were statistically evaluated. RESULTS: Regional PBF, MTT, and PBV showed significant differences in the gravitational and isogravitational directions (P < 0.05). The quantitative pulmonary perfusion parameter maps demonstrated significant differences between normal volunteers and pulmonary hypertension patients (P < 0.05). CONCLUSION: Three-dimensional ultrafast dynamic contrast-enhanced MR imaging is feasible for the assessment of regional quantitative pulmonary perfusion parameters in the entire lung on a pixel-by-pixel basis in normal volunteers and pulmonary hypertension patients.  相似文献   

8.
Pulmonary ventilation-perfusion MR imaging in clinical patients   总被引:2,自引:0,他引:2  
The purpose of this study was to evaluate the feasibility of comprehensive magnetic resonance (MR) assessment of pulmonary perfusion and ventilation in patients. Both oxygen-enhanced ventilation MR images and first-pass contrast-enhanced perfusion MR images were obtained in 16 patients with lung diseases, including pulmonary embolism, lung malignancy, and bulla. Inversion recovery single-shot fast spin-echo images were acquired before and after inhalation of 100% oxygen. The overall success rate of perfusion MR imaging and oxygen-enhanced MR imaging was 94% and 80%, respectively. All patients with pulmonary embolism showed regional perfusion deficits without ventilation abnormality on ventilation-perfusion MR imaging. The results of the current study indicate that ventilation-perfusion MR imaging using oxygen inhalation and bolus injection of MR contrast medium is feasible for comprehensive assessment of pulmonary ventilation-perfusion abnormalities in patients with lung diseases.  相似文献   

9.
目的 用FAIR序列评价重力对MRI肺灌注血流分布的影响.资料与方法 对10例健康志愿者在仰卧位时,分别对5个冠状面FAIR图像的肺血流量(PBF)间进行分析.结果 在重力方向上存在灌注梯度,5个冠状面的PBF间的差异均有统计学意义(P<0.05),PBF由后至前是逐渐减小的.在非重力方向上,肺灌注不存在灌注梯度.右肺的回归系数是-4.98,左肺的回归系数是-5.16.结论 FAIR评价肺灌注在重力方向的灌注梯度是比较敏感的,可提高灌注缺损的检出率.  相似文献   

10.
目的评价3D并行采集动态对比增强MRI(dynamic contrast-enhanced MRI,DCE-MRI)技术对肺实质局部灌注成像的可行性。资料与方法采用GE 1.5 T MRI系统,对10名健康志愿者及47例肺部疾病患者行灌注成像;评价肺灌注图像的均匀度,若存在灌注异常区域则计算其与正常肺组织的信号强度之比(RSI)。结果DCE-MRI可以清楚地显示肺实质灌注情况:10名健康志愿者的灌注图像较均匀,未见灌注缺损区。10例肺动脉栓塞(pulmonary embolism,PE)共出现12个楔形灌注缺损区,其中1例双侧PE出现3个灌注缺损区;12例侵犯邻近肺动脉的肺癌,在相应供血区均出现灌注缺损;RSI经单样本t检验差异具有明显的统计学意义(t=-24.74,P<0.05);另25例(20例未侵犯邻近肺动脉的肺癌和5例炎性病变)在对比剂首过肺实质强化达峰值时,病灶局部均呈低信号改变。结论 3D并行采集DCE-MRI技术可在单次屏气状态下完成动态多期扫描,获得全肺的容积灌注成像数据,对MR肺灌注图像采用半量化分析可明显区分出灌注异常区与灌注正常区。  相似文献   

11.
目的 用血流敏感性交替反转恢复(FAIR)序列评价重力和肺容积对MR肺灌注血流分布的影响.方法 应用GE 1.5 T MR系统,10名健康志愿者取仰卧位呼气末屏气时,用FAIR序列自背侧至腹侧每隔3 cm依次进行5个冠状面(依次标记为P3、P6、P9、P12、P15)扫描,之后再对P3层面在吸气末屏气时扫描.对5个冠状面的相对肺血流量(rPBF)进行方差分析,同一层面左、右肺rPBF间进行配对t检验,并对5个层面和rPBF进行线性回归分析;分析P3层面在不同呼吸相时反转脉冲标记前、后双肺信号强度变化率(⊿SI%)、rPBF及P3层面肺面积(Area)的变化情况,并进行配对t检验.结果 (1)5个不同冠状面:在重力方向上,右肺由后至前的rPBF依次为:100.57±18.22、79.57±12.36、61.65±11.15、48.92±9.96、41.20±9.88;左肺为:106.61±26.99、78.89±11.98、64.00±13.64、51.27±8.95、43.04±12.18;除P12与P15间差异无统计学意义外(P>0.05),其余两两之间差异均有统计学意义(F值分别为27.43、15.83,P值均<0.05),rPBF由后至前是逐渐减小的;在非重力方向上,即同一冠状面,左、右肺rPBF之间差异无统计学意义(P>0.05);回归系数(r值)右肺为-4.98,左肺为-5.16.(2)P3层面在不同呼吸相时:右肺呼气相和吸气相的⊿SI%、rPBF、Area分别为1.12±0.31和0.71±0.18、90.78±17.35和52.85±8.75、(12.59±3.23)×103mm2和(17.77±4.24)×103mm2;左肺呼气相和吸气相的⊿SI%、rPBF、Area分别为1.01±0.24和0.70±0.11、91.08±18.68和54.58±10.70、(12.34±3.08)×103mm2和(17.34±4.98)×103mm2.不同呼吸相时⊿SI%、rPBF、Area间差异均有统计学意义(P<0.05),呼气末的⊿SI%及rPBF明显高于吸气末;吸气末Area明显大于呼气末.结论 FAIR评价肺灌注在重力方向的灌注梯度是比较敏感的,不同呼吸相时肺灌注之间存在差异,所以检查时将感兴趣区置于重力依赖性区域,并在呼气末屏气可以提高灌注缺损的检出率.  相似文献   

12.
Yamada I  Aung W  Himeno Y  Nakagawa T  Shibuya H 《Radiology》1999,210(3):617-623
PURPOSE: To determine the true diffusion coefficients of abdominal organs and hepatic lesions with intravoxel incoherent motion (IVIM) echo-planar magnetic resonance (MR) imaging. MATERIALS AND METHODS: Seventy-eight patients suspected of having hepatic lesions were examined with IVIM echo-planar MR imaging at 1.5 T. There were 77 hepatic masses (27 hepatocellular carcinomas, 10 metastatic tumors, eight hemangiomas, and 32 cysts) in the 78 patients. The true diffusion coefficient D and the perfusion fraction f were calculated and compared with the apparent diffusion coefficient (ADC). RESULTS: Specific values of D were found for abdominal organs (liver, 0.72 x 10(-3) mm2/sec; spleen, 0.80 x 10(-3) mm2/sec; kidney, 1.38 x 10(-3) mm2/sec; gallbladder, 2.82 x 10(-3) mm2/sec) and for hepatic lesions (hepatocellular carcinoma, 1.02 x 10(-3) mm2/sec; metastasis, 1.16 x 10(-3) mm2/sec; hemangioma, 1.31 x 10(-3) mm2/sec; cysts, 3.03 x 10(-3) mm2/sec). The ADCs of solid organs and solid lesions were significantly higher than their D values, indicating a high contribution of perfusion to the ADCs. CONCLUSION: Perfusion contributes to the ADCs of abdominal organs and hepatic lesions. The D and f values are useful for the characterization of hepatic lesions.  相似文献   

13.
Three-dimensional (3D) dynamic contrast-enhanced magnetic resonance imaging (3D DCE-MRI) has been proposed for the assessment of regional perfusion. The aim of this work was the implementation of an algorithm for a 3D parametric visualization of lung perfusion using different cutting planes and volume rendering. Our implementation was based on 3D DCE-MRI data of the lungs of five patients and five healthy volunteers. Using the indicator dilution theory, the regional perfusion parameters, tissue blood flow, blood volume and mean transit time were calculated. Due to the required temporal resolution, the volume elements of dynamic MR data sets show a reduced spatial resolution in the z-direction. Therefore, perfusion parameter volumes were interpolated. Linear interpolation and a combination of linear and nearest-neighbor interpolation were evaluated. Additionally, ray tracing was applied for 3D visualization. The linear interpolation algorithm caused interpolation errors at the lung borders. Using the combined interpolation, visualization of perfusion information in arbitrary cutting planes and in 3D using volume rendering was possible. This facilitated the localization of perfusion deficits compared with the coronal orientated source data. The 3D visualization of perfusion parameters using a combined interpolation algorithm is feasible. Further studies are required to evaluate the additional benefit from the 3D visualization.  相似文献   

14.
PURPOSE: To assess semiquantitatively the regional distribution of lung perfusion using magnetic resonance (MR) perfusion imaging.MATERIALS AND METHODS: Subjects were 20 consecutive patients with bronchogenic carcinoma, who underwent MR imaging (MRI) and radionuclide (RN) perfusion scans for preoperative evaluation. Three-dimensional (3D) images of whole lungs were obtained before and 7 seconds after bolus injection of contrast material (5 ml of Gd-DTPA). Subtraction images were constructed from these dynamic images. Lung areas enhanced with the contrast material were measured and multiplied by changes in signal intensity, summed for the whole lung, and the right-to-left lung ratios were calculated. The predicted postoperative forced expiratory volume in 1 second (FEV1) was estimated using MR and RN perfusion ratios.RESULTS: The correlation between perfusion ratios derived from the MR and RN studies was excellent (r = 0.92). Sixteen of 20 patients underwent surgery, and 12 patients had postoperative pulmonary function tests. The predicted FEV1 derived from the MR perfusion ratio correlated well with the postoperative FEV1 in the 12 patients (r = 0.68).CONCLUSION: Perfusion MRI is suitable for semiquantitative evaluation of regional pulmonary perfusion.  相似文献   

15.
PURPOSE: Pathological changes of the peripheral pulmonary arteries induce pulmonary arterial hypertension (PAH). Aim of this study was to quantitatively assess the effect of PAH on pulmonary perfusion by 3D-MR-perfusion techniques and to compare findings to healthy controls. Furthermore, quantitative perfusion data were correlated with invasive pressure measurements. MATERIAL AND METHODS: Five volunteers and 20 PAH patients (WHO class II or III) were examined using a 1.5T MR scanner. Measurement of pulmonary perfusion was done in an inspiratory breathhold (FLASH3D; 3.5 mm x 1.9 mm x 4mm; TA per 3D dataset 1.5s). Injection of contrast media (0.1 mmol Gd-DTPA/kg BW) and image acquisition were started simultaneously. Evaluation of 3D perfusion was done using singular value decomposition. Lung borders were outlined manually. Each lung volume was divided into three regions (anterior, middle, posterior), and the following parameters were assessed: Time-to-Peak (TTP), blood flow (PBF), blood volume (PBV), and mean transit time (MTT). In 10 patients invasive pulmonary artery pressure measurements were available and correlated to the perfusion measurements. RESULTS: In both, controls and patients, an anterior-to-posterior gradient with higher PBF and PBV posterior was observed. In the posterior lung region, a significant difference (p<0.05) was found for TTP (12s versus 16s) and MTT (4s versus 6s) between volunteers and patients. PBF and PBV were lower in patients than in volunteers (i.e. dorsal regions: 124 versus 180 ml/100 ml/min and 10 versus 12 ml/100 ml), but the difference failed to be significant. The ratio of PBF and PBV between the posterior and the middle or ventral regions showed no difference between both groups. A moderate linear correlation between mean pulmonary arterial pressure (mPAP) and PBV (r=0.51) and MTT (r=0.56) was found. CONCLUSION: The only measurable effect of PAH on pulmonary perfusion is a prolonging of the MTT. There is only a moderate linear correlation of invasive mPAP with PBV and MTT.  相似文献   

16.
RATIONALE AND OBJECTIVES: To compare 1.0 M gadobutrol and 0.5 M Gd-DTPA for contrast-enhanced three-dimensional pulmonary perfusion magnetic resonance imaging (3D MRI). MATERIALS AND METHODS: Ten healthy volunteers (3 females; 7 males; median age, 27 years; age range, 18-31 years) were examined with contrast-enhanced dynamic 3D MRI with parallel acquisition technique (FLASH 3D; reconstruction algorithm: generalized autocalibrating partially parallel acquisitions; acceleration factor: 2; TE/TR/alpha: 0.8/1.9 milliseconds/40 degrees; FOV: 500 x 375 mm; matrix: 256 x 86; slab thickness: 180 mm; 36 partitions; voxel size: 4.4 x 2 x 5 mm; TA: 1.48 seconds). Twenty-five consecutive data sets were acquired after intravenous injection of 0.025, 0.05, and 0.1 mmol/kg body weight of gadobutrol and Gd-DTPA. Quantitative measurements of peak signal-to-noise ratios (SNR) of both lungs were performed independently by 3 readers. Bolus transit times through the lungs were assessed from signal intensity time curves. RESULTS: The peak SNR in the lungs was comparable between gadobutrol and Gd-DTPA at all dose levels (15.7 vs. 15.5 at 0.1 mmol/kg bw; 12.9 vs. 12.5 at 0.05 mmol/kg bw; 7.6 vs. 8.9 at 0.025 mmol/kg bw). A dose of 0.1 mmol/kg achieved the highest peak SNR compared with all other dose levels (P < 0.05). A higher peak SNR was observed in gravity dependent lung (P < 0.05). Despite different injection volumes, transit times of the contrast bolus did not differ between both agents. CONCLUSION: Higher concentrated gadolinium chelates offer no advantage over standard 0.5 M Gd-DTPA for contrast-enhanced 3D MRI of lung perfusion.  相似文献   

17.
BACKGROUND AND PURPOSE: Our aim was to assess dynamic half-Fourier acquired single-shot turbo spin-echo (HASTE) MR imaging of the temporomandibular joint (TMJ) using parallel imaging, in comparison with static proton density (Pd) imaging. MATERIALS AND METHODS: Thirty-four TMJs from 17 subjects (7 volunteers, 10 patients) were imaged in a multichannel head coil on a 1.5 T magnet by using a 35-second dynamic sagittal HASTE acquisition (TR/TE, 1180/65 msec; matrix, 128 x 128; section thickness, 7 mm; 30 images) and sagittal oblique Pd in closed- and open-mouthed positions (TR/TE, 1800/12 msec; matrix, 256 x 256; section thickness, 2 mm; 15 sections). Images were reviewed by 3 readers and rated for confidence of disk position, presence of motion artifact, range of motion, and presence of disk displacement on a 5-point scale. Consensus review of cases was also performed to assess disk dislocation and limited range of motion. RESULTS: More static examinations were rated as having motion artifact (19.6% versus 6.9%, P=.016), limited range of motion (30.4% versus 17.7%, P=.016), and disk dislocations (31.4% versus 22.6%, P=.071). Confidence ratings were higher on dynamic examinations (4.11 versus 3.74, P=.018). Chi-squared tests demonstrated no significant difference in consensus reviews of the 2 examination types. CONCLUSION: Dynamic HASTE TMJ MR imaging is a time-efficient adjunct to standard MR imaging protocols, producing fewer motion artifacts, additional range of motion information, and a dynamic assessment of disk position, when compared with static imaging. Further study is needed to evaluate the role of this sequence in diagnosing disk displacement.  相似文献   

18.
OBJECTIVE: The purpose of this study was to show the feasibility of oxygen-enhanced MR ventilation imaging in a clinical setting with correlation to standard pulmonary function tests, high-resolution CT, and (81m)Kr ventilation scintigraphy. SUBJECTS AND METHODS: Seven healthy volunteers, 10 lung cancer patients, and eight lung cancer patients with pulmonary emphysema were studied. A respiratory synchronized inversion-recovery single-shot turbo-spin-echo sequence (TE, 16; inversion time, 720 msec; interecho spacing, 4 msec) was used for data acquisition. The following paradigm of oxygen inhalation was used: 21% oxygen (room air), 100% oxygen, 21% oxygen. MR imaging data including maximum mean relative enhancement ratio and mean slope of relative enhancement were correlated with forced expiratory volume in 1 sec, diffusing lung capacity, high-resolution CT emphysema score, and mean distribution ratio of (81m)Kr ventilation scintigraphy. RESULTS: Oxygen-enhanced MR ventilation images were obtained in all subjects. Maximum mean relative enhancement ratio and mean slope of relative enhancement of lung cancer patients were significantly decreased compared with those of the healthy volunteers (p < 0.0001, p < 0.0001). The mean slope of relative enhancement in lung cancer patients with pulmonary emphysema was significantly lower than that of lung cancer patients without pulmonary emphysema (p < 0.0001). Maximum mean relative enhancement ratio (r(2) = 0.81) was excellently correlated with diffusing lung capacity. Mean slope of relative enhancement (r(2) = 0.74) was strongly correlated with forced expiratory volume in 1 sec. Maximum mean relative enhancement had good correlation with the high-resolution CT emphysema score (r(2) = 0.38). The maximum mean relative enhancement had a strong correlation with the distribution ratio (r(2) = 0.77). CONCLUSION: Oxygen-enhanced MR ventilation imaging in human subjects showed regional changes in ventilation, thus reflecting regional lung function.  相似文献   

19.
PURPOSE: To prospectively evaluate the clinical feasibility of magnetic resonance (MR) imaging of the lungs with fast volumetric interpolated three-dimensional (3D) gradient-recalled-echo (GRE) sequences and to compare this examination with standard computed tomography (CT) in patients with lung abnormalities. MATERIALS AND METHODS: Twenty-five patients with different lung abnormalities were examined with 3D GRE MR imaging. The small pulmonary nodules in seven, TNM stage of large intrapulmonary tumors in eight, and benign bronchial disease in five patients were evaluated. MR imaging-based diagnoses were compared with diagnoses made at CT and at discharge from the hospital. Contingency tables and the McNemar test were used to evaluate the significance of differences between MR imaging- and CT-based diagnoses. RESULTS: The MR imaging- and CT-based diagnoses were identical in 24 of 25 patients. In the remaining patient, clinical findings confirmed the accuracy of the MR imaging finding of pleural empyema. Ten of 15 solid pulmonary nodules smaller than 10 mm in diameter were detected at MR imaging (P >.1). Tumor stages at MR imaging and CT were identical, but lymph node stages at the two examinations differed in two of eight patients owing to overestimation of lymph node size at MR imaging (P >.2). In the five patients with bronchiectasis, MR imaging depicted 26 of 33 affected lung segments; differences between MR imaging and CT findings of bronchial dilatation (P >.05) and bronchial wall thickening (P >.2) were not significant. Peribronchial fibrosis was overestimated at MR imaging owing to image artifacts (P <.05). CONCLUSION: Study results confirmed the feasibility of fast breath-hold 3D GRE MR imaging of the lung.  相似文献   

20.
PURPOSE: To compare the accuracy of real-time magnetic resonance (MR) imaging with that of standard echo-planar MR imaging for detecting myocardial wall-motion abnormalities at rest and during dobutamine hydrochloride-induced stress in patients with coronary arterial disease. MATERIALS AND METHODS: In 22 patients with coronary arterial disease, left ventricular wall motion was examined at rest and during dobutamine hydrochloride stress, by using echo-planar MR imaging and a new technique with real-time segmented k-space turbo gradient-echo echo-planar MR imaging (repetition time, 16.5 msec; echo time, 6.8 msec). Wall-motion abnormalities were determined visually for each perfusion territory, and Cohen kappa coefficients were calculated for real-time imaging in comparison with echo-planar imaging. Coronary angiography was performed in all patients. Sensitivity and specificity for real-time and echo-planar imaging were calculated for detecting significant coronary arterial stenosis. RESULTS: kappa values for detecting wall-motion abnormalities at real-time imaging, in comparison with echo-planar MR imaging, were 0.97 at rest and 0.94 at maximum dobutamine hydrochloride stress. At comparison with those of angiography, the sensitivity and specificity for detecting significant coronary arterial stenosis were 88% (14 of 16 patients) and 83% (five of six patients), respectively, for echo-planar imaging and 81% (13 of 16 patients) and 83% (five of six patients), respectively, for real-time imaging. CONCLUSION: Real-time MR imaging is possible under stress conditions and allows accurate detection of wall-motion abnormalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号