首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The antiplatelet and antithrombotic activities of a newly synthesized NQ301, 2-chloro-3-(4-acetophenyl)-amino-1,4-naphthoquinone, were investigated on human platelet aggregation in vitro and rats ex vivo, and murine pulmonary thrombosis in vivo. NQ301 potently inhibited ADP-, collagen-, epinephrine- and calcium ionophore A23187-induced human platelet aggregation in a concentration-dependent manner in vitro. NQ301 significantly inhibited platelet aggregation in orally administered rats ex vivo. NQ301 prevented death due to pulmonary thrombosis in mice dose-dependently in vivo. NQ301 also showed significant prolongation of tail bleeding time in conscious mice. However, NQ301 did not alter such coagulation parameters as activated partial thromboplastin time, prothrombin time, and thrombin time in human plasma. These results suggest that NQ301 may be a promising antithrombotic agent, and the antithrombotic activity of NQ301 may be due to antiplatelet aggregation activity but not to in vitro anticoagulation.  相似文献   

2.
The effects of 2-chloro-3-(4-hexylphenyl)-amino-1,4-naphthoquinone (NQ304), an antithrombotic agent, on aggregation, binding of fibrinogen to glycoprotein IIb/IIIa and intracellular signals were investigated using human platelets. NQ304 inhibited thrombin-, arachidonic acid- and thapsigargin-induced aggregation of washed human platelets with the IC50 values of 22.2+/-0.7, 6.5+/-0.2, and 7.6+/-0.1 microM, respectively. NQ304 significantly inhibited fluorescein isothiocyanate-conjugated fibrinogen binding to human platelet surface glycoprotein IIb/IIIa receptor by 75%, but failed to inhibit the fibrinogen binding to purified glycoprotein IIb/IIIa receptor. This result suggests that NQ304 inhibit platelet aggregation by suppression of an intracellular pathway that involves exposure of the glycoprotein IIb/IIIa receptor, rather than by direct inhibition of fibrinogen-glycoprotein IIb/IIIa binding. NQ304 significantly inhibited thrombin-induced increase in intracellular Ca2+ mobilization at the dose of 30 microM and ATP secretion in a dose-dependent manner. It also inhibited thrombin- and arachidonic acid-induced thromboxane A2 formation in human platelet dose-dependently. In conclusion, the antiplatelet mechanism of NQ304 may be due to the reduction of the thromboxane A2 formation, inhibition of adenosine triphosphate release and intracellular calcium mobilization.  相似文献   

3.
The possibility of NQ12 (2-chloro-3-[4-(ethylcarboxy)-phenyl]-amino-1,4-naphthoquinone) as a novel antithrombotic agent and its mode of action were investigated. The effects of NQ12 on platelet aggregation in human platelet-rich plasma in vitro, in rats ex vivo, and on murine pulmonary thrombosis in vivo, as well as the mode of antithrombotic action were examined. NQ12 potently inhibited ADP-, collagen-, epinephrine-, and calcium ionophore-induced human platelet aggregations in vitro concentration-dependently. NQ12 significantly inhibited rat platelet aggregation in an ex vivo study. NQ12 prevented murine pulmonary thrombosis in a dose-dependent manner. However, NQ12 did not affect coagulation parameters such as activated partial thromboplastin time, prothrombin time, and thrombin time. NQ12 inhibited fibrinogen binding to the platelet surface GPIIb/IIIa receptor, but failed to inhibit binding to the purified GPIIb/IIIa receptor. Thromboxane B(2) formation caused by thrombin or collagen was inhibited significantly by NQ12. The phosphoinositide breakdown induced by thrombin or collagen was inhibited concentration-dependently by NQ12. These results suggest that NQ12 may be a promising antithrombotic agent, and its antithrombotic activity may be due to antiplatelet aggregation activity, which may result from the inhibition of phosphoinositide breakdown and thromboxane A(2) formation.  相似文献   

4.
Atherosclerosis, a disease of the large arteries, is the primary cause of heart disease and stroke. The abnormal proliferation of vascular smooth muscle cells (VSMCs) in arterial walls is an important pathogenetic factor of vascular disorders like atherosclerosis and restenosis after angioplasty. In the present study, the possible anti-proliferative effect of a synthetic 1,4-naphthoquinone derivative, 2-chloro-3-(4-hexylphenyl)-amino-1,4-naphthoquinone (NQ304) was investigated on rat aortic VSMCs. NQ304 was shown to potently inhibit 5% fetal bovine serum (FBS)-induced the growth of VSMCs. Pre-treatment of VSMCs with NQ304 (1-10 microM) for 24 h resulted in significant cell number decreases, i.e., inhibition percentages were 44.75+/-10.77, 73.85+/-6.38 and 89.77+/-6.52% at NQ304 concentrations of 1, 5 and 10 microM, respectively. NQ304 was also found to significantly inhibit 5% FBS-induced DNA synthesis in a concentration-dependent manner. Furthermore, NQ304 elevated p21(cip1) and p27(kip1) mRNA levels and caused G0/G1 phase arrest in cell cycle progression. However, no evidence of NQ304-induced apoptotic or necrotic cell death was obtained, as determined by flow cytometry analysis and DNA fragmentation assays. To investigate the mechanism underlying the anti-proliferative effect of NQ304, we examined the effects of NQ304 on c-fos mRNA expression, activator protein-1 (AP-1) binding activity and extracellular signal-regulated kinase1/2 (ERK1/2) and Akt activation. Pre-treatment of VSMCs with NQ304 (1-10 microM) was found to significantly inhibit the 5% FBS-induced phosphorylations of ERK1/2 and Akt, the activation of AP-1 and the expression of c-fos. These data suggest that the anti-proliferative and cell cycle arresting effects of NQ304 on serum-induced VSMCs may be mediated by AP-1 activation downregulation via the suppression of phosphatidylinositol 3-kinase (PI3K)/Akt and ERK1/2 signaling pathways, and it may contribute to the prevention of atherosclerosis through inhibition of VSMC proliferation.  相似文献   

5.
NQ12, an antithrombotic agent, has been reported to display a potent antiplatelet activity. This study was undertaken to reveal the effect of NQ12 on rabbit platelet aggregation and signal transduction involved in the arachidonic acid (AA) cascade. NQ12 concentration-dependently suppressed collagen-, AA-, and U46619-induced rabbit platelet aggregation, with IC(50) values of 0.71 +/- 0.2, 0.82 +/- 0.3, and 0.45 +/- 0.1 microM, respectively. In addition, the concentration-response curve of U46619 was shifted to the right after NQ12 treatment, indicating an antagonism on thromboxane (TX) A(2) receptors. The collagen-stimulated AA liberation was inhibited by NQ12 in the same pattern as its inhibition of platelet aggregation. Further study revealed that NQ12 potently suppressed AA-mediated TXA(2) formation, but had no effect on the PGD(2) production, indicating an inhibitory effect on TXA(2) synthase, which was supported by a TXA(2) synthase activity assay indicating that NQ12 concentration-dependently inhibited TXA(2) formation converted from PGH(2). On the other hand, the AA-stimulated 12-hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE) formation was also suppressed by NQ12. Taken together, these results suggest that NQ12 has a potential to inhibit TXA(2) synthase activity and TXA(2) receptors, and it can modulate AA liberation as well as 12-HETE formation in platelets. This may be a convincing mechanism for the antithrombotic action of NQ12.  相似文献   

6.
7.
BACKGROUND: Compounds bearing two independent redox centers are considered bis-bioreductive agents and usually demonstrate increased hypoxic selectivity with exposure time due to different requirements for reduction of each center. We have synthesized a novel 2-[3-(2-nitro-1-imidazolyl)propylamino]-3-chloro-1,4-naphthoquinone (NLNQ-1), through Michael addition. NLNQ-1, which combines a naphthoquinone (with a relatively high one electron reduction potential) with a 2-nitroimidazole (with a relatively low one electron reduction potential), could perform as a more potent hypoxia-selective cytotoxin and radiosensitizer. MATERIALS AND METHODS: NLNQ-1 was evaluated in V79 cells under hypoxic/normoxic conditions, alone or with radiation, by using the clonogenic assay. RESULTS: Clearly NLNQ-1 was a more potent cytotoxin than the 2-alkylsulfonyloxy-naphthoquinones (VH-compounds), developed previously in our lab, demonstrating hypoxic and aerobic IC50 values at microM rather than mM concentrations. As a radiosensitizer of hypoxic cells, NLNQ-1 was superior to the best bis-nitroimidazolic compound, NNB (which combines a 2-nitroimidazole with a 5-nitroimidazole), demonstrating a C1.6 value of 25.4 microM (ca. 25 fold lower than that of NNB), whereas its in vitro therapeutic index (IC50A/C1.6) ranged from 5.3-13.2. CONCLUSION: NLNQ-1 could be used as a novel scaffold for bis-bioreductive agents that can be properly modified for further optimization of their hypoxia-selective toxicity and radiosensitization properties.  相似文献   

8.
The effect of amlodipine, a novel calcium channel blocker of the dihydropyridine type, on rabbit platelet aggregation, and the possible antiaggregatory mechanisms of amlodipine, especially on the nitric oxide (NO) guanosine 3',5'-cyclic monophosphate (cyclic GMP)-mediated pathway, were investigated. Other effects of amlodipine on thromboxane B2 (TXB2) formation in platelets also were examined. Amlodipine concentration-dependently inhibited rabbit platelet aggregation induced by collagen (10 microg/mL) or thrombin (0.1 U/mL) with an IC50 range of 32-69 microM. Along with this inhibition, our results also demonstrated that in the presence of L-arginine (100 IM), amlodipine (50 microM) increased nitric oxide synthetase (NOS) activity (from the resting activity of 2.05+/-0.36 to 7.11+/-0.95 pmol/mg protein/min) and NO release (by 80%), accompanied by an elevation of the cyclic GMP level (from the resting platelet level of 1.27+/-0.12 to 6.21+/-0.55 pmol/10(9) platelets) induced by collagen (10 microg/mL). However, the antiaggregatory effect of amlodipine (50 microM) could be attenuated significantly by oxyhemoglobin (5 microM), a NO scavenger, or N(G)-nitro-L-arginine methyl ester (100 microM), a specific NOS inhibitor. In addition, the TXB2 production in platelets induced by collagen or thrombin was concentration-dependently inhibited by amlodipine. Therefore, we propose that the antiaggregatory mechanisms of amlodipine might be mediated, in part, by a NO-cyclic GMP process accompanied by the inhibition of TXB2 formation in platelets.  相似文献   

9.

BACKGROUND AND PURPOSE

1,4-Naphthoquinones exhibit antiplatelet activity both in vivo and in vitro. In the present study, we investigated the antiplatelet effect of a novel naphthoquinone derivative NP-313, 2-acetylamino-3-chloro-1,4-naphthoquinone and its mechanism of action.

EXPERIMENTAL APPROACH

We measured platelet aggregation, Ca2+ mobilization, thromboxane B2 formation and P-selectin expression and examined several enzymatic activities. Furthermore, we used the irradiated mesenteric venules in fluorescein sodium–treated mice to monitor the antithrombotic effect of NP-313 in vivo.

KEY RESULTS

NP-313 concentration-dependently inhibited human platelet aggregation induced by collagen, arachidonic acid, thapsigargin, thrombin and A23187. NP-313 also inhibited P-selectin expression, thromboxane B2 formation and [Ca2+]i elevation in platelets stimulated by thrombin and collagen. NP-313 at 10 µM inhibited cyclooxygenase, thromboxane A2 synthase, and protein kinase Cα, whereas it did not affect phospholipase A2 or phospholipase C activity. In the presence of indomethacin and an adenosine 5-diphosphate scavenger, NP-313 concentration-dependently inhibited thrombin- and A23187-induced [Ca2+]i increase through its inhibitory effects on Ca2+ influx, rather than blocking Ca2+ release from intracellular stores. NP-313 also inhibited thapsigargin-mediated Ca2+ influx through store-operated calcium channel but had no effect on Ca2+ influx through store-independent calcium channel evoked by the diacylglycerol analogue 1-oleoyl-2-acetyl-sn-glycerol. Nevertheless, it had little effect on cyclic AMP and cyclic GMP levels. Also, intravenously administered NP-313 dose-dependently inhibited the thrombus occlusion of the irradiated mesenteric vessels of fluorescein-pretreated mice.

CONCLUSIONS AND IMPLICATIONS

Taken together, these results indicate that NP-313 exerts its antithrombotic activity through dual inhibition of thromboxane A2 synthesis and Ca2+ influx through SOCC.  相似文献   

10.
目的:研究2-(4-氨基-3-氯-5-三氟甲基苯基)-2-(叔丁氨基)-乙醇盐酸盐(SPFF)对豚鼠气道平滑肌的松弛作用。方法:以盐酸异丙肾上腺素为对照考察SPFF对离体豚鼠气管条的松弛作用,及对离体豚鼠左心房的正性变时作用,并使用离体气管条考察特异性β2受体阻滞剂ICI118551对SPFF的拮抗作用。以沙丁胺醇为对照考察SPFF下对豚鼠药物引喘的保护作用。通过放射配基竞争结合实验,测定了SPFF对肺组织β受体的特异结合。以蛋白竞争结合法考察了SPFF对肺内CAMP含量的升高作用。结果:SPFF对离体豚鼠气管条的松弛作用与异丙肾上腺素相当,且这一作用可被ICI 118551竞争性拮抗,而SPFF对离体豚鼠左心房的正性变时效应为异丙肾上腺素的60%,SPFF对β2受体的选择性是异丙肾上腺素的163倍。SPFF下对药物引起豚鼠喘息的保护作用比沙丁胺醇强约7倍,对肺内β受体的结合能力分别是异丙肾上腺素的4倍和沙丁胺醇的约200倍,而对肺组织内cAMP的升高作用约相当于同剂量沙丁胺醇的3倍。结论:SPFF是-种强效、高选择性的β2受体激动剂。  相似文献   

11.
The effect of dopamine receptor activation on electrically- or high K+ (30 mM)-evoked neurotransmitter release and rise in intracellular Ca2+ concentration was investigated using slices of guinea-pig neostriatum. A specific D2-dopamine receptor agonist, LY-171555 (a laevorotatory enantiomer of LY-141865: N-propyl tricyclic pyrazole) at 10(-6) M inhibited electrical stimulation- and high K+-evoked release of [3H]-acetylcholine ([3H]-ACh) to 47.7 +/- 6.0% and 54.1 +/- 5.0% of control, respectively. The maximal inhibition by LY-171555 at 10(-5) M was 54.8 +/- 5.1% reduction of the control. The half-maximal effective concentration (EC50) of LY-171555 for the inhibition of [3H]-ACh release was 2.3 X 10(-7) M. A specific D2-dopamine receptor antagonist, (-)-sulpiride (10(-7) M) reversed the inhibition of [3H]-ACh release induced by LY-171555. A specific D1-dopamine receptor agonist, SK&F 38393 (2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl-1H-benzazepine) (10(-5) M) had no effect on the release of [3H]-ACh. LY-171555 (10(-6) M) also inhibited the high K+-evoked endogenous glutamate release, by 47% of control. This inhibitory effect was reversed by (-)-sulpiride (10(-7) M). We used a fluorescent, highly selective Ca2+ indicator, 'quin 2' to measure intracellular free Ca2+ concentrations ([Ca2+]i). Electrical stimulation of slices preloaded with quin 2 led to an elevation of relative fluorescence intensity and this response was reduced by the removal of Ca2+ from the bathing medium. These results indicate that the enhanced elevation in fluorescence intensity in the quin 2-loaded slices reflects the increase of intracellular free Ca2+ concentration, [Ca2+]i. The mixed D1- and D2-receptor agonist, apomorphine and LY-171555 inhibited the increase of [Ca2+]i induced by electrical stimulation or high K+ medium, in a concentration-dependent manner, while SK&F 38393 did not affect the increase of [Ca2+]i. The maximal inhibitory effect of LY-171555 at 3 X 10(-5) M was 35 +/- 3% reduction in control values. The inhibitory effect of LY-171555 was antagonized by (-)-sulpiride (10(-7) M). There was a high correlation (r = 0.997, P less than 0.05) between the D 2-receptor-mediated inhibition of the stimulated rise of [Ca2+]i and [3H]-ACh release. When the slices were superfused with the Ca2+-free medium containing EGTA (10(-4) M) for 5 min, the rise in [Ca2+]i was markedly suppressed to 18.0% of control by LY-171555 (10(-6) M). These data indicate that activation of the D2-dopamine receptor suppresses the elevation of [Ca2+]i induced by depolarizing stimuli.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
In this study the in vitro influence of 2-(diethylamino)-7-hydroxychromone (RC39II) on platelet aggregating responses, thromboxane A2 (TxA2) production, release reaction and intraplatelet cyclic AMP (cAMP) content has been investigated. The drug exerts a dose-dependent inhibitory effect on aggregating response to arachidonic acid, U46619, thrombin, collagen and calcium ionophore A23187. Inhibiting concentrations of RC39II also prevent platelet release reaction and TxA2 formation. RC39II potentiates platelet cAMP accumulation by Iloprost. Several studies, carried out on soluble cAMP phosphodiesterase (PDE) have shown that the drug inhibits phosphodiesterase in a dose-dependent manner. No effect was shown on adenylate cyclase activity from platelet membranes.  相似文献   

13.
The pyridone 1a reacts with POCl3/DMF to yield the title compound 2a. After irradiation of 2a the enolether 3 is isolated, as shown by an X-ray structure determination. The pyridine 4 obtained by dehydrogenation of 2a leads under reductive conditions to the benzo[c][2,7]naphthyridines 5-7. The reaction of 4 with o-phenylenediamine gives the benzimidazole 8, while using 2-aminophenol or 2-aminothiophene respectively the pyrido[2,3-b[1,5]benzoxazepine 11 and the corresponding benzothiazepine 12 are obtained.  相似文献   

14.
15.
Incubation of rat-liver mitochondria with menadione in the presence of succinate and rotenone resulted in rapid glutathione and NAD(P)H oxidation followed by Ca2+ release and mitochondrial swelling. Ca2+ release, NAD(P)H oxidation and mitochondrial swelling, were also observed in mitochondria from selenium-deficient rats. Glutathione was only slowly oxidized, suggesting that glutathione oxidation, and subsequent NAD(P)H oxidation via the glutathione peroxidase-glutathione reductase system were not required for Ca2+ release by menadione. Isocitrate prevented and reversed Ca2+ release dose-dependently but dicoumarol had no effect indicating that NADH-ubiquinone oxidoreductase and not DT-diaphorase was responsible for NAD(P)H oxidation. Superoxide anion radical was formed by cyanide-resistant respiration, suggesting that menadione undergoes a one-electron reduction to an autoxidizable semiquinone radical by NADH-ubiquinone oxidoreductase. The inability of menadione to oxidize glutathione in selenium-deficient mitochondria indicates that the metabolism of the superoxide dismutation product, H2O2, by glutathione peroxidase was probably responsible for the glutathione oxidation in selenium-replete mitochondria.  相似文献   

16.
17.
18.
The substituted benzamides are used clinically both as antipsychotics and as stimulants of gastric motility. The antipsychotic effects are considered to be a consequence of their central dopamine antagonist properties, but there is evidence that the gastric stimulatory effects may be mediated by other mechanisms. Clebopride (3) is a substituted benzamide that although marketed for its stimulatory effects on gastric motility, is also a potent central dopamine antagonist. The corresponding anilide, BRL 20596 (4a), where the amide bond has been reversed, has been synthesized and found to lack gastric stimulatory activity. However, the potent central dopamine antagonist activity is retained, suggesting that benzamides and anilides have similar affinities for central dopamine receptors. The implications of the conformations adopted by benzamides and anilides at such receptors are discussed. Evidence is also presented that there is a further lipophilic binding site on such receptors for which the N-benzyl group is an optimal fit.  相似文献   

19.
Syntheses of 1-amino-3-R2-2-(4-chloro-2- mercaptobenzenesulfonyl)guanidines [Va-o], 1-benzylidencimino-3-R2-2-(4-chloro-2- mercaptobenzenesulfonyl)guanidines [X, XII-XIX] and N-(4-chlorobenzylidene)-N'-(6-chloro-7-methyl-l, 1-dioxo- 1,4,2-benzodithiazin-3-yl)hydrazine [XX] have been described. The moderate anticancer and weak anti-HIV activities were observed in vitro for compounds [Va, e.g]. The obtained compounds were evaluated for their in vitro antimycobacterial activity towards a strain of Mycobacterium tuberculosis H 37 Rv.  相似文献   

20.
2-Dimethylamino-3-chloro-1,4-naphthoquinone (DCNQ) is bound to microsomal cytochrome P-450 as a type I substrate (lambda max = 391 nm, lambda min = 420 nm). The Ks is 40.5 microM. In a rat-liver microsomal system, the N-demethylation of DCNQ produces formaldehyde (rate 225 pmol/min per mg of protein). Induction by phenobarbital increases the rate of formation, while addition of metyrapone and SKF-525A into the system decreases the rate by 52% and 35%, respectively. The microsomal N-demethylation of DCNQ is not inhibited by CO. Under full anaerobiosis, the microsomal oxidation of DCNQ again gives formaldehyde (rate 416 pmol/min per mg of protein). The anaerobic oxidation of DCNQ is inhibited by metyrapone and SKF-525A. The microsomal, chemical and electrochemical reduction of DCNQ to the corresponding semiquinones and hydroquinones have been studied. Non-enzymic DCNQ reduction is insufficient for the formation of formaldehyde. Under anaerobic conditions the microsomal DCNQ oxidation is assumed to occur via the intramolecular oxazole bond which is then hydrolysed, yielding formaldehyde. This may be a new example of substrate activation by cytochrome P-450.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号