首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Palm oil fuel ash (POFA) has previously been used as a partial cement replacement in concrete. However, limited research has been undertaken to utilize POFA in high volume in concrete. This paper presents a study on the treatment and utilization of POFA in high volume of up to 50% by weight of cement in self-consolidating high strength concrete (SCHSC). POFA was treated via heat treatment to reduce the content of unburned carbon. Ordinary Portland cement was substituted with 0%, 10%, 20%, 30%, and 50% treated POFA in SCHSC. Tests have been conducted on the fresh properties, such as filling ability, passing ability and segregation resistance, as well as compressive strength, drying shrinkage and acid attack resistance to check the effect of high volume treated POFA on SCHSC. The results revealed that compared to the control concrete mix, the fresh properties, compressive strength, drying shrinkage, and resistance against acid attack have been significantly improved. Conclusively, treated POFA can be used in high volume as a cement replacement to produce SCHSC with an improvement in its properties.  相似文献   

2.
This paper seeks to optimize the mechanical and durability properties of ultra-high performance concrete (UHPC). To meet this objective, concrete specimens were manufactured by using 1100 kg/m3 of binder, water/binder ratio 0.20, silica sand and last generation of superplasticizer. Silica fume, metakaolin and two types of nano silica were used for improving the performances of the concrete. Additional mixtures included 13 mm long OL steel fibers. Compressive strength, electrical resistivity, mercury intrusion porosimetry tests, and differential and thermogravimetric thermal analysis were carried out. The binary combination of nano silica and metakaolin, and the ternary combination of nano silica with metakaolin and silica fume, led to the best performances of the UHPC, both mechanical and durable performances.  相似文献   

3.
Bagasse ash (BA) and rice husk ash (RHA) are by-products from electricity power plants. Ground calcium carbonate waste (GCW) is the by-product of the mining of calcium carbonate (CaCO3) in the color pigment manufacturing industry. Both BA and RHA are classified as low-quality pozzolanic materials, differing from GCW, which contains a high calcium oxide (CaO) content that leads to products equivalent to the hydration reaction. Therefore, GCW is likely able to improve the properties of self-consolidating concrete (SCC) incorporating BA and RHA. This paper discusses the production of green self-consolidating concrete (gSCC) and identifies the benefit of using GCW in gSCC prepared by triple combined GCW (10 and 20 wt%), BA (10, 20, and 30 wt%), and RHA (20 wt%). The results indicate that the majority of the gSCC retain acceptable flowability. The differences in the levels of gSCC substitution and the V-funnel flow results show general correlations with the increase in GCW. The gSCC prepared by 10 wt% GCW associated with 10 wt% BA and 20 wt% RHA was improved significantly. The filling and passing abilities of the gSCC were improved by using GCW. In addition, gSCC achieved mechanical property development and was able to minimize the consumption of OPC by up to 40%.  相似文献   

4.
Although ultra high-performance concrete (UHPC) has great performance in strength and durability, it has a disadvantage in the environmental aspect; it contains a large amount of cement that is responsible for a high amount of CO2 emissions from UHPC. Supplementary cementitious materials (SCMs), industrial by-products or naturally occurring materials can help relieve the environmental burden by reducing the amount of cement in UHPC. This paper reviews the effect of SCMs on the properties of UHPC in the aspects of material properties and environmental impacts. It was found that various kinds of SCMs have been used in UHPC in the literature and they can be classified as slag, fly ash, limestone powder, metakaolin, and others. The effects of each SCM are discussed mainly on the early age compressive strength, the late age compressive strength, the workability, and the shrinkage of UHPC. It can be concluded that various forms of SCMs were successfully applied to UHPC possessing the material requirement of UHPC such as compressive strength. Finally, the analysis on the environmental impact of the UHPC mix designs with the SCMs is provided using embodied CO2 generated during the material production.  相似文献   

5.
Recycled concrete brick (RCB) is manufactured by recycled aggregate processed from discarded concrete blocks arising from the demolishing of existing buildings. This paper presents research on the seismic performance of RCB masonry walls to assess the applicability of RCB for use in rural low-rise constructions. The seismic performance of a masonry wall is closely related to the vertical load applied to the wall. Thus, the compressive performance of RCB masonry was investigated firstly by constructing and testing eighteen RCB masonry compressive specimens with different mortar strengths. The load-bearing capacity, deformation and failure characteristic were analyzed, as well. Then, a quasi-static test was carried out to study the seismic behavior of RCB walls by eight RCB masonry walls subjected to an axial compressive load and a reversed cyclic lateral load. Based on the test results, equations for predicting the compressive strength of RCB masonry and the lateral ultimate strength of an RCB masonry wall were proposed. Experimental values were found to be in good agreement with the predicted values. Meanwhile, finite element analysis (FEA) and parametric analysis of the RCB walls were carried out using ABAQUS software. The elastic-plastic deformation characteristics and the lateral load-displacement relations were studied.  相似文献   

6.
Under the background of climate change, the steel industry is considered one of the least eco-friendly industries. Flax fiber-reinforced polymer (FFRP) is an emerging sustainable alternative to steel reinforcement bar; however, its application is much restricted due to its interior material properties. This paper proposed a novel way to form closed-shape stirrups with FFRP, which is suitable for replacing steel stirrups. A multi-disciplinary investigation was conducted concerning the structural and environmental performance of FFRP stirrups in reinforced concrete (RC) beams. Seven specimens were tested under a three-point bending load. The FFRP stirrups substantially increased the shear capacity and ultimate vertical displacement by 77% and 74%, respectively, and shifted brittle failure to ductile failure. The closed-shape stirrups avoided the stress concentration and increased the utilization of FFRP tensile capacity to over 80%. Decreasing the spacing of FFRP stirrups effectively increased the shear capacity and ductility; increasing the width or layer of FFRP stirrups improved ductility only. A life cycle assessment (LCA) was later performed to evaluate and compare the environmental performance of steel, FFRP, and carbon FRP stirrups. As compared to carbon FRP and steel ones, FFRP stirrups substantially decreased the global warming and fossil depletion potential by over 60%. The main contributors to the environmental impacts of FFRP stirrups were the heavy metal released into the water and terrestrial environment during the cultivation process.  相似文献   

7.
The internally cured material known as superabsorbent polymer (SAP) is an important innovation in concrete engineering technology. This paper investigates the effect of adding a polymer with superabsorbent capabilities on the physical and mechanical performance of concrete. The microstructure of the new hybrid concrete was also studied, and the influence of the polymer particle size and volume on the mechanical durability was evaluated. The mechanical properties of the new hybrid concrete, such as compressive strength, flexural strength, elastic modulus, and splitting tensile strength, were measured through laboratory experiments. The microstructure characteristics of the concrete were also investigated by scanning electron microscopy (SEM). The results show that shrinkage was reduced, while the volume stability of the concrete improved. Moreover, we found that cracking was reduced, while issues such as chloride penetration and freeze-thaw resistance were also improved. In addition, the SAP could effectively improve the microstructure of the concrete and refine the pore structure, as seen in the microscopic test. This paper helps to promote the development of internally cured material and improve technology for the prevention of concrete construction cracks.  相似文献   

8.
Interventions in concrete heritage deal with challenges related to conservation, and must be performed from an integrated restoration perspective. In addition to the material technical performance, the aesthetic compatibility between the repair and the structure, in terms of colour and texture, needs to be ensured. Therefore, the characterisation of the restoration mortar concerning colour match and aging, and the mechanical and durability performances, is essential. In this article, the long-term behaviour of restoration mortar, previously designed and produced by the addition of pigments to white and grey cement-based reference mortar, is evaluated. The durability properties, colour change due to aging, and service life are estimated and analysed. An experimental program is performed to characterise the following properties: (i) water capillary absorption; (ii) accelerated carbonation; (iii) migration of chloride ions; (iv) electrical resistivity; and (v) shrinkage. The colour evolution, when exposed to carbonation, is measured through image processing. The obtained results allow the establishment of a correlation between durability and design parameters. Finally, service life considering deterioration due to steel corrosion is estimated, considering the carbonation resistance and the chloride diffusion values. It is concluded that the W/C ratio influences not only most of the characterised parameters, but also the type and content of the pigment. Furthermore, no colour variation due to carbonation is detected.  相似文献   

9.
Under corrosive environments, concrete material properties can deteriorate significantly, which can seriously affect structural safety. Therefore, it has important engineering applications to improve the durability performance at a lower economic cost. This paper proposes a new, highly durable concrete using inexpensive construction materials such as basalt fiber, sodium methyl silicate, and inorganic aluminum salt waterproofing agent. With the massive application of sewage treatment projects, the problem of concrete durability degradation is becoming more and more serious. In this paper, five types of concrete are developed for the sewage environment, and the apparent morphology and fine structure of the specimens after corrosion in sewage were analyzed. The density, water absorption, and compressive strength were measured to investigate the deterioration pattern of concrete properties. It was found that ordinary concrete was subject to significant corrosion, generating large deposits of algae on the surface and accompanied by sanding. The new concrete showed superior corrosion resistance compared to conventional concrete. Among other factors, the inorganic aluminum salt waterproofing agent effect was the most prominent. The study found that the strength of ordinary concrete decreased by about 15% in the test environment, while the new concrete had a slight increase. Comprehensive evaluation showed that the combination of basalt fiber and inorganic aluminum salt waterproofing agent had the best effect. Its use is recommended.  相似文献   

10.
Polymer-modified concrete and fiber concrete are two excellent paving materials that improve the performance of some concrete, but the performance of single application material is still limited. In this paper, polymer-modified concrete with strong deformation and fiber concrete with obvious crack resistance and reinforcement effect were compounded by using the idea of composite material design so as to obtain a high-performance pavement material. The basic mechanical properties of high-content hybrid fiber–polymer-modified concrete, such as workability, compression, flexural resistance, and environmental durability (such as sulfate resistance) were studied by using the test regulations of cement concrete in China. The main results were as follows. (1) The hybrid fiber–polymer concrete displayed reliable working performance, high stiffness, and a modulus of elasticity as high as 35.93 GPa. (2) The hybrid fiber–polymer concrete had a compressive strength of 52.82 MPa, which was 31.2% higher than that of the plain C40 concrete (40.25 MPa); the strength of bending of the hybrid concrete was 11.51 MPa, 191.4% higher than that of the plain concrete (3.95 MPa). (3) The corrosion resistance value of the hybrid fiber–polymer concrete was 81.31%, indicating its adjustability to sulfate attack environments. (4) According to cross-sectional scanning electron microscope (SEM) images, the hybrid fiber–polymer concrete was seemingly more integrated with a dense layer of cementing substance on its surface along with fewer microholes and microcracks as when compared to the ordinary concrete. The research showed that hybrid fiber–polymer concrete had superior strength and environmental erosion resistance and was a pavement material with superior mechanical properties.  相似文献   

11.
Materials such as high performance (HPC) or ultra-high performance concrete (UHPC), and fibre-reinforced polymer (FRP) reinforcement can be used to improve the resource efficiency in concrete construction by, for example, enabling the production of thin-walled structures. When building filigree concrete beams two essential factors must be considered: the low stiffness of the structure and the bond between the materials. By prestressing the structural stiffness is improved while an adequate concrete cover ensures sufficient bond strength. Based on this the bending behaviour of prestressed T-shaped beams reinforced with FRP, focussing on determining the influence of four parameters on the bearing capacity, bond behaviour and failure mode, is investigated in this paper. Comprehensive experimental investigations prove the potential of the approach and show that a reduction of the web thickness down to 40 mm, a lower concrete quality, and the use of glass FRP instead of carbon FRP allow a more resource-efficient structure while the applied prestressing leads to a higher utilisation of the high performance materials.  相似文献   

12.
In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC) components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA) concrete of C30 and C40, respectively. Identical constant axial forces were applied to specimens while being subjected to simulated building fire conditions in a laboratory furnace. Several parameters from the experimental results were comparatively analyzed, including the temperature change, vertical displacement, lateral deflection, fire endurance, and failure characteristics of specimens. The temperature field of specimens was simulated with ABAQUS Software (ABAQUS Inc., Provindence, RI, USA) and the results agreed quite well with those from the experiments. Results show that the rate of heat transfer from the surface to the interior of the column increases with the increase of the concrete’s compressive strength for both RAC columns and normal concrete columns. Under the same initial axial force ratio, for columns with the same cross section, those with lower concrete compressive strengths demonstrate better fire resistance performance. The fire resistance performance of RAC columns is better than that of normal concrete columns, with the same concrete compressive strength.  相似文献   

13.
The fatigue behaviors of metals are different under different in-service environment and loading conditions. This study was devoted to investigating the combined effects of high and low cycle fatigue loads on the performance of the low alloy steel Q345. Three kinds of experiments were carried out, including the pure high cycle fatigue (HCF) tests, the pure low cycle fatigue (LCF) tests, and the combined high and low cycle fatigue (HLCF) tests. The prediction formulae were proposed for the combined high and low cycle fatigue failure. Scanning electron microscopy (SEM) and stereo microscope were used to analyze the microstructure and fracture morphology due to different fatigue loads. Case study on the combined high and low cycle fatigue damage of a steel arch bridge was carried out based on the FE method and the proposed formula. The results show that the LCF life decreases evidently due to the prior HCF damages. The HLCF fracture surface is relatively flat near the crack initiation side, and rugged at the other half part. The fatigue damages at the bridge joints increase significantly with consideration of the pre-fatigue damages caused by traffic load. In the 100th anniversary of service, the fatigue damage index without considering the HCF pre-damage is only about 50% of the coupled damage value.  相似文献   

14.
In recent decades, reinforced-concrete bridges have experienced premature deterioration and other problems during service due to severe environmental effects such as fire and corrosion. Previous studies have shown that the use of ultra-high-performance concrete (UHPC) can improve the durability of bridge structures. In this study, four-point bending tests were conducted on twelve UHPC–NC laminated beams with different UHPC-layer heights and at different temperatures in order to evaluate their flexural performance under fire conditions. The test variables were the UHPC heights (20 mm, 50 mm, 80 mm) and temperatures (20 °C, 200 °C, 400 °C, 600 °C), and the effects on the flexural load capacity of UHPC–NC laminated beams under the influence of these factors were investigated. The test results show that the increase in temperature causes the concrete color to change from grayish blue to white and leads to a significant decrease in the flexural load capacity of the stacked beams. The height of the UHPC layer has an important effect on the stiffness of the stacked beams and delays the formation of local cracks, thus improving the durability of the stacked beams.  相似文献   

15.
Nano-silica (NS) is an effective material to improve the strength and durability of high-performance concrete (HPC), but little information is available regarding its role in HPC response to long-term sulfate attack. In this study, six different dosages of NS (0%, 1%, 2%, 3%, 4%, and 5%) as cement partial replacement were mixed into HPC and the casted specimens were soaked in sulfate solution for different periods (0, 100, 200, and 300 days). The mass change, dynamic elastic modulus, compressive and splitting strength, microstructure morphology, and porosity characteristics of HPC specimens were measured by mass tests, mechanical properties tests, scanning electron microscopy (SEM), and nuclear magnetic resonance (NMR) tests. The results showed that the incorporation of NS decreased the mass loss, elevated the compressive and splitting strength, and reduced the porosity formation of HPC in front of sulfate attack. The percentage of 1% NS was among the most effective dosages as, after soaking for 300 days, it decreased the mass loss by 13.5%, elevated the elastic modulus as well as compressive and splitting strength by 50.4%, 31.7%, and 69.8% in comparison of unmodified HPC, respectively. The sulfate attack resistance was delayed in a higher (2–5%) mixed dosage, mainly due to the agglomeration of nano particles, especially after long-term reactions. This study can provide experimental references regarding the performance of HPC mixed with NS in front of sulfate attack.  相似文献   

16.
Ultra-High Performance Concretes (UHPC) are cement-based materials with a very low water-to-binder ratio that present a very-high compressive strength, high tensile strength and ductility as well as excellent durability, making them very interesting for various civil engineering applications. However, one drawback of UHPC is their pretty high autogenous shrinkage stemming from their very low water-to-binder ratio. There are several options to reduce UHPC shrinkage, such as the use of fibers (steel fibers, polypropylene fibers, wollastonite microfibers), shrinkage-reducing admixtures (SRA), expansive admixtures (EA), saturated lightweight aggregates (SLWA) and superabsorbent polymers (SAP). Other factors related to curing conditions, such as humidity and temperature, also affect the shrinkage of UHPC. The aim of this paper is to investigate the impact of various SRA, different mixing and curing conditions (low to moderate mixing temperatures, moderate to high relative humidity and water immersion) as well as different curing starting times and durations on the shrinkage of UHPC. The major importance of the initial mixing and curing conditions has been clearly demonstrated. It was shown that the shrinkage of the UHPC was reduced by more than 20% at early-age and long-term when the fresh UHPC temperature was closer to 20 °C. In addition, curing by water immersion led to drastic reductions in shrinkage of up to 65% and 30% at early-age and long-term, respectively, in comparison to a 20% reduction for fog curing at early-age. Finally, utilization of a liquid polyol-based SRA allowed for reductions of 69% and 63% of early-age and long-term shrinkages, respectively, while a powder polyol-based SRA provided a decrease of 47% and 35%, respectively.  相似文献   

17.
To investigate the dynamic compressive properties of concrete after high temperature and rapid cooling, an experimental study was carried out by considering five temperatures and four strain rates. The coupling effect of high temperature and strain rate on concrete damage morphology and mechanical parameters was comparatively analyzed. The main conclusions are as follows: the compressive damage morphology of concrete is affected by strain rate development trends of significant variability under different temperature conditions. As the strain rate increases, the compressive stress and elastic modulus of concrete are gradually increased. As the temperature increases, the increase in compressive stress is gradually reduced by the strain rate. For the temperatures of 20 °C and 800 °C, the increase in compressive stress by the strain rate is 38.69% and 7.78%, respectively. Meanwhile, SEM and CT scanning technology were applied to examine the mechanism of the effect of high temperature and strain rate on the mechanical properties of concrete from the microscopic perspective, and the corresponding constitutive model was proposed.  相似文献   

18.
In this research, high strength fiber reinforced concrete (HSFRC) was used to replace the normal strength concrete (NSC) in steel-concrete composite beams to improve their working performance, which might change the static performance of stud connectors. Firstly, push-out tests were conducted to investigation on the static performance of stud connectors in steel-HSFRC composite beams and compared with steel-NSC composite beams. Studs of 8 sizes, 13 mm, 16 mm, 19 mm and 22 mm in diameter and 80 mm and 120 mm in height were adopted to study the influence of stud dimension. The test phenomenon shown that the crack resistance of HSFRC was better than that of NSC, and there were some splitting cracks on NSC slabs whereas no visible cracks on HSFRC slabs when specimens failed. Next, the load-slip curves of studs were analyzed and a typical load-slip curve was proposed which was divided into four stages. In addition, the effects of test parameters were analyzed according to the characteristic points of load-slip curve. Compared with NSC slab, HSFRC slab could provide greater restraining force to the studs, which improved the shear capacity and stiffness of studs while suppressed the ductility of studs. The shear capacity, stiffness and ductility of studs would significantly increase with the increasement of stud diameter and the studs with large diameter were more suitable for steel-HSFRC composite beams. The stud height had no obvious influence on the static performance of studs. Finally, based on the test results, the empirical formulas for load-slip curve and shear capacity of stud connectors embedded in HSFRC were developed which considered the influence factors more comprehensively and had better accuracy and applicability than previous formulas.  相似文献   

19.
With the increasing importance of offshore wind turbines, a critical issue in their construction is the high-performance concrete (HPC) used for grouting underwater foundations, as such materials must be better able to withstand the extremes of the surrounding natural environment. This study produced and tested 12 concrete sample types by varying the water/binder ratio (0.28 and 0.30), the replacement ratios for fly ash (0%, 10%, and 20%) and silica fume (0% and 10%), as substitutes for cement, with ground granulated blast-furnace slag at a fixed proportion of 30%. The workability of fresh HPC is discussed with setting time, slump, and V-funnel flow properties. The hardened mechanical properties of the samples were tested at 1, 7, 28, 56, and 91 days, and durability tests were performed at 28, 56, and 91 days. Our results show that both fly ash (at 20%) and silica fume (at 10%) are required for effective filling of interstices and better pozzolanic reactions over time to produce HPC that is durable enough to withstand acid sulfate and chloride ion attacks, and we recommend this admixture for the best proportioning of HPC suitable for constructing offshore wind turbine foundations under the harsh underwater conditions of the Taiwan Bank. We established a model to predict a durability parameter (i.e., chloride permeability) of a sample using another mechanical property (i.e., compressive strength), or vice versa, using the observable relationship between them. This concept can be generalized to other pairs of parameters and across different parametric categories, and the regression model will make future experiments less laborious and time-consuming.  相似文献   

20.
In this research, iron ore tailing (IOT) is utilized as the cementitious material to develop an eco-friendly ultra-high performance concrete (UHPC). The UHPC mix is obtained according to the modified Andreasen and Andersen (MAA) packing model, and the applied dosage of IOT is 10%, 20%, and 30% (by weight), respectively. The calculated packing density of different mixtures is consistent with each other. Afterwards, the fresh and hardened performance of UHPC mixtures with IOT are evaluated. The results demonstrate that the workability of designed UHPC mixtures is increased with the incorporation of IOT. The heat flow at an early age of designed UHPC with IOT is attenuated, the compressive strength and auto shrinkage at an early age are consequently reduced. The addition of IOT promotes the development of long-term compressive strength and optimization of the pore structure, thus the durability of designed UHPC is still guaranteed. In addition, the ecological estimate results show that the utilization of IOT for the UHPC design can reduce the carbon emission significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号