首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, amorphous FeSiCrB alloy powder, carbonyl iron powder, and high-temperature heat-resistant silicone resin were used to prepare power molding inductors, and the effects of different heat treatment procedures on the magnetic properties were investigated. Two heat treatment procedures were used. Procedure 1: Amorphous FeSiCrB alloy powder was pre-heat-treated, then mixed with carbonyl iron powder and silicone resin and uniaxially pressed to prepare power inductors. Procedure 2: A mixture of amorphous FeSiCrB alloy powder, carbonyl iron powder, and silicone resin was uniaxially pressed. After dry pressing, the compacted body was heat-treated at 500 °C. Heat treatment after compaction can reduce the internal strain caused by high-pressure compaction and promote the crystallization of superparamagnetic nano-grains simultaneously. Therefore, the compacted sample after heat treatment exhibited better magnetic properties.  相似文献   

2.
In order to study the thermal stability of coated carbonyl iron powder (CIP) and its influence on magnetic properties, carbonyl iron powder was coated with a silica layer and then annealed in an air atmosphere at elevated temperatures. Transmission electron microscopy (TEM) analysis and Fourier transform infrared spectroscopy confirmed the existence of a silicon dioxide layer with a thickness of approximately 80~100 nm. Compared with uncoated CIP, the silicon-coated CIP still maintained a higher absorption performance after annealing, and the calculated impedance matching value Z only slightly decreased. It is worth noting that when the annealing temperature reached 300 °C, coercivity (Hc) increased, and the real and imaginary parts of the permeability decreased, which means that the silicon dioxide layer began to lose its effectiveness. On the contrary, the significant decrease in microwave absorption ability and impedance matching value Z of uncoated CIP after annealing were mainly because the newly formed oxide on the interface became the active polarization center, leading to an abnormal increase in permittivity. In terms of the incremental mass ratio after annealing, 2% was a tipping point for permeability reduction.  相似文献   

3.
In order to study the synergistic effects of organic and inorganic thickening agents on the rheological properties of cement paste, the rheological parameters, thixotropy cement-paste containing limestone powder (LP), re-dispersible polymer powder (RPP), and hydroxypropyl methylcellulose ether (HPMC) were investigated using the Anton Paar MCR 102 rheometer at different resting times. The early-age hydration process, hydration products, and microstructure were also analyzed with scanning electron microscopy (SEM) and thermogravimetry analyses (TGA). The results showed that the addition of LP, RPP, and HPMC affected the rheological properties of cement paste, but the thickening mechanism between organic and inorganic thickening agents was different. The small amount of LP increased the plastic viscosity but decreased the yield stress of cement paste due to its dense filling effect. Adding 1% of RPP improved the thixotropic property of cement paste by 50%; prolonging the standing time could improve the thixotropic performance by as much as two times. Only 0.035% HPMC added to the cement paste increased the plastic viscosity by 20%, while the yield stress increased nearly twice. The more HPMC added, the more significant effect it showed. Cement paste compounds with LP, RPP, and HPMC balanced the yield stress and plastic viscosity and improved the thixotropy. The C-L6-R1.0-H0.035 paste presented as a pseudoplastic, its rheological indexes were close to one, and it was hardly affected by the resting time. The composite superposition effect of organic and inorganic thickening agents reduced the impact of resting time for all pastes. As the organic thickening component inhibited the hydration more than the LP promoted the hydration of the cement paste, indicating that the C-L6-R1.0-H0.035 paste remained in the particle fusion stage after curing for three days, as shown by the SEM images.  相似文献   

4.
The presented work investigates a novel method to manufacture 98.8% pure iron strips having high permeability and better saturation flux density for application in magnetic flux shielding. The proposed method uses electro-deposition and cold rolling along with intermediate annealing in a controlled environment to manufacture 0.05–0.5 mm thick pure iron strips. The presented approach is inexpensive, has better control over scaling/oxidation and requires low energy than that of the conventional methods of pure iron manufacturing by pyrometallurgical methods. Important magnetic and mechanical properties of the pure iron are investigated in the context of the application of the material in magnetic shielding. Magnetic properties of the material are investigated by following IEC60404-4 standard and toroidal coil test to determine hysteresis curve, magnetic permeability and core losses. The microstructure is investigated with an optical microscope and scanning electron microscopy to study grain size and defects after cold rolling and annealing. The properties derived from the experimental methods are used in finite element analysis to study the application of the material for static, low-frequency and high-frequency magnetic shielding. Theoretical simulation results for magnetic shielding around a current-carrying conductor and micro-electromechanical inductive sensor system are discussed. Further shielding performance of the material is compared with that of the other candidate materials, including that of Mu-metal and electrical steel. It is demonstrated that the pure iron strips manufactured in the present study can be used for magnetic shielding in the case of low-frequency applications. In the case of high-frequency applications, a conducting layer can be combined to ensure the required shielding effectiveness in the case of Class 2 applications.  相似文献   

5.
Mechanical ball milling was used to coat SiO2 nanopowder on a Fe-Si-B amorphous powder in this study. The Fe-Si-B/SiO2 core–shell amorphous composite powder was obtained after 6h of ball milling. At 490 °C, the amorphous powder is thermally stable. Discharge plasma sintering was used to create a Fe-Si-B/SiO2 magnetic powder core (SPS). At a sintering temperature of 420 to 540 °C, the phase composition and magnetic characteristics of the magnetic particle core were investigated. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to examine the structural features of the magnetic particle core. A precision resistance tester and a vibrating sample magnetometer were used to assess the resistivity and magnetic characteristics of the magnetic particle core. The findings showed that Fe3Si and Fe2B are the phases generated during spark plasma sintering. High-frequency power loss increases as density rises. However, at the measured frequency, the magnetic permeability of the magnetic particle core changes slightly and has excellent frequency characteristics, making it appropriate for use in high-frequency components.  相似文献   

6.
The development of bare metal powder is desirable for obtaining conductive interfaces by low-temperature sintering to be applied in various industries of 3D printing, conductive ink or paste. In our previous study, bulk Al made from Al nanopowder that was prepared with low-oxygen thermal plasma (LO-ITP), which is the original metal powder production technique, showed high electrical conductivity comparable to Al casting material. This study discusses the surface cleaning effect of Al particles expected to be obtained by peeling the surface of Al particles using the LO-ITP method. Bare metal micro-sized powders were prepared using LO-ITP by controlling the power supply rate and preferentially vaporizing the oxidized surface of the Al powder. Electrical conductivity was evaluated to confirm if there was an oxide layer at the Al/Al interface. The Al compact at room temperature produced from LO-ITP-processed Al powder showed an electrical conductivity of 2.9 · 107 S/m, which is comparable to that of cast Al bulk. According to the microstructure observation, especially for the interfaces between bare Al powder, direct contact was achieved at 450 °C sintering. This process temperature is lower than the conventional sintering temperature (550 °C) of commercial Al powder without any surface cleaning. Therefore, surface cleaning using LO-ITP is the key to opening a new gate to the powder metallurgy process.  相似文献   

7.
In this paper, the best laser powder bed fusion (L-PBF) printing conditions for FeSi steels with two different Si content (3.0% and 6.5%) are defined. Results show very strict processing window parameters, following a lack of fusion porosity at low specific energy values and keyhole porosity in correspondence with high specific energy values. The obtained microstructure consists of grains with epitaxial growth starting from the grains already solidified in the underling layer. This allows the continuous growth of the columnar grains, directed parallel to the built direction of the component. The magnetic behaviour of FeSi6.5 samples, although the performances found do not still fully reach those of the best commercial electrical steels (used to manufacture magnetic cores of electrical machines and other similar magnetic components), appears to be quite promising. An improvement of the printing process to obtain thin sheets with increased Si content, less than 0.5 mm thick, with accurate geometry and robust structures, can result to an interesting technology for specific application where complex geometries and sophisticated shapes are required, avoiding mechanical machining processes for electrical steel with high silicon content.  相似文献   

8.
The significant increase in metal costs has forced the electronics industry to provide new materials and methods to reduce costs, while maintaining customers’ high-quality expectations. This paper considers the problem of most electronic industries in reducing costly materials, by introducing a solder paste with alloy composition tin 98.3%, silver 0.3%, and copper 0.7%, used for the construction of the surface mount fine-pitch component on a Printing Wiring Board (PWB). The reliability of the solder joint between electronic components and PWB is evaluated through the dynamic characteristic test, thermal shock test, and Taguchi method after the printing process. After experimenting with the dynamic characteristic test and thermal shock test with 20 boards, the solder paste was still able to provide a high-quality solder joint. In particular, the Taguchi method is used to determine the optimal control parameters and noise factors of the Solder Printer (SP) machine, that affects solder volume and solder height. The control parameters include table separation distance, squeegee speed, squeegee pressure, and table speed of the SP machine. The result shows that the most significant parameter for the solder volume is squeegee pressure (2.0 mm), and the solder height is the table speed of the SP machine (2.5 mm/s).  相似文献   

9.
We propose a specific procedure to compute the inductance of a toroidal ferrite core as a function of the excitation current. The study includes the linear, intermediate and saturation regions. The procedure combines the use of Finite Element Analysis in 2D and experimental measurements. Through the two dimensional (2D) procedure we are able to achieve convergence, a reduction of computational cost and equivalent results to those computed by three dimensional (3D) simulations. The validation is carried out by comparing 2D, 3D and experimental results.  相似文献   

10.
S ummary . In eight peripheral blood samples from six patients with CML, part of the leucocytes obtained by spontaneous sedimentation of the red cells were incubated with carbonyl iron powder in vitro under slow rotation, and the iron-loaded phagocytes eliminated by magnetic extraction. Among the cells remaining in suspension the frequencies of alkaline-phosphatase-positive polymorphs were found to be lower than in the corresponding untreated leucocyte populations. These observations suggest that alkaline-phosphatase-positive polymorphs are more actively phagocytic than negative ones.  相似文献   

11.
In the present state of the art, highly spherical alloy powders are employed as feedstock in powder bed fusion processes. These powders are characterized by high flowability and apparent density. Their elaborate fabrication process is reflected in high powder price, adding a significant fraction to the cost of additively manufactured parts. Thus, the use of non-spherical powders, such as water atomized material, can lower costs significantly. Here, the electron beam powder bed fusion (PBF-EB) of standard water atomized iron powder used for press-and-sinter is studied. Despite raking problems, using the coating mechanism in standard configuration samples with densities exceeding 99% were fabricated. In a further step, the addition of alloying elements by powder blending is explored. Important powder properties of feedstock blended from irregular and spherical powders are characterized. The PBF-EB processing of two alloys is presented. The first represents a low carbon steel. Samples were characterized by metallographic cross-section, energy dispersive X-ray (EDX) mapping, and mechanical testing. The second alloy system is a FeCrAl. After PBF-EB processing of the powder mixture, chemical homogeneity was achieved. Besides the low cost, this approach of using water atomized powder mixed with master alloy offers the advantage of high flexibility for potential application.  相似文献   

12.
The present work explores the potential of magneto-rheological fluid assisted abrasive finishing (MRF-AF) for obtaining precise surface topography of an in-house developed β-phase Ti-Nb-Ta-Zr (TNTZ) alloy for orthopedic applications. Investigations have been made to study the influence of the concentration of carbonyl iron particles (CIP), rotational speed (Nt), and working gap (Gp) in response to material removal (MR) and surface roughness (Ra) of the finished sample using a design of experimental technique. Further, the corrosion performance of the finished samples has also been analyzed through simulated body fluid (SBF) testing. It has been found that the selected input process parameters significantly influenced the observed MR and Ra values at 95% confidence level. Apart from this, it has been found that Gp and Nt exhibited the maximum contribution in the optimized values of the MR and Ra, respectively. Further, the corrosion analysis of the finished samples specified that the resistance against corrosion is a direct function of the surface finish. The morphological analysis of the corroded morphologies indicated that the rough sites of the implant surface have provided the nuclei for corrosion mechanics that ultimately resulted in the shredding of the appetite layer. Overall results highlighted that the MRF-AF is a potential technique for obtaining nano-scale finishing of the high-strength β-phase Ti-Nb-Ta-Zr alloy.  相似文献   

13.
Cobalt–chromium–molybdenum alloys samples were obtained by the powder injection molding method (PIM). PIM is dedicated to the mass production of components and can manufacture several grades of dental screws, bolts, stabilizers, or implants. As a skeleton component, ethylene–vinyl acetate (EVA copolymer) with a low temperature of processing and softening point was used. The choice of a low-temperature binder made it necessary to use a coarse ceramic powder as a mechanical support of the green sample during sintering. The injection-molded materials were thermally degraded in N2 or Ar-5%H2 and further sintered in N2-5%H2 or Ar-5%H2 at 1300 or 1350 °C for 30 min. The structure of the obtained samples was characterized by X-ray diffraction and electron microscopy. Mechanical properties, including hardness and three-point bending tests, confirmed that a nitrogen-rich atmosphere significantly increases the bending strength compared to the material manufactured in Ar-5%H2. This is due to the precipitation of numerous fine nitrides and intermetallic phases that strengthen the ductile γ-phase matrix.  相似文献   

14.
The quality and characteristics of a powder in powder bed fusion processes play a vital role in the quality of additively manufactured components. Its characteristics may influence the process in various ways. This paper presents an investigation highlighting the influence of powder deterioration on the stability of a molten pool in a laser beam powder bed fusion (LB-PBF, selective laser melting) process and its consequences to the physical properties of the alloy, porosity of 3D-printed components and their mechanical properties. The intention in this was to understand powder reuse as a factor playing a role in the formation of porosity in 3D-printed components. Ti6Al4V (15 μm–45 μm) was used as a base material in the form of a fresh powder and a degraded one (reused 12 times). Alloy degradation is described by possible changes in the shape of particles, particle size distribution, chemical composition, surface tension, density and viscosity of the melt. An approach of 3D printing singular lines was applied in order to study the behavior of a molten pool at varying powder bed depths. Single-track cross-sections (STCSs) were described with shape parameters and compared. Furthermore, the influence of the molten pool stability on the final density and mechanical properties of a material was discussed. Electromagnetic levitation (EML) was used to measure surface tension and the density of the melt using pieces of printed samples. It was found that the powder degradation influences the mechanical properties of a printed material by destabilizing the pool of molten metal during printing operation by facilitating the axial flow on the melt along the melt track axis. Additionally, the observed axial flow was found to facilitate a localized lack of fusion between concurrent layers. It was also found that the surface tension and density of the melt are only impacted marginally or not at all by increased oxygen content, yet a difference in the temperature dependence of the surface tension was observed.  相似文献   

15.
Powder bed fusion of metals using a laser beam system (PBF-LB/M) of highly complex and filigree parts made of tool steels is becoming more important for many industrial applications and scientific investigations. To achieve high density and sufficient chemical homogeneity, pre-alloyed gas-atomized spherical powder feedstock is used. For high-performance materials such as tool steels, the number of commercially available starting powders is limited due to the susceptibility to crack formation in carbon-bearing steels. Furthermore, scientific alloy development in combination with gas-atomization is a cost-intensive process which requires high experimental effort. To overcome these drawbacks, this investigation describes the adaption of a hot work tool steel for crack-free PBF-LB/M-fabrication without any preheating as well as an alternative alloying strategy which implies the individual admixing of low-cost aspherical elemental powders and ferroalloy particles with gas-atomized pure iron powder. It is shown that the PBF-LB/M-fabrication of this powder mixture is technically feasible, even though the partly irregular-shaped powder particles reduce the flowability and the laser reflectance compared to a gas-atomized reference powder. Moreover, some high-melting alloying ingredients of the admixed powder remain unmolten within the microstructure. To analyze the laser energy input in detail, the second part of the investigation focuses on the characterization of the individual laser light reflectance of the admixed alloy, the gas-atomized reference powder and the individual alloying elements and ferroalloys.  相似文献   

16.
Research and development in the field of metal-based additive manufacturing are advancing steadily every year. In order to increase the efficiency of powder bed fusion of metals using a laser beam system (PBF LB/M), machine manufacturers have implemented extensive optimizations with regard to the laser systems and build volumes. However, the optimization of metallic powder materials using nanoparticle additives enables an additional improvement of the laser–material interaction. In this work, tool steel 1.2709 powder was coated with silicon carbide (SiC), few-layer graphene (FLG), and iron oxide black (IOB) on a nanometer scale. Subsequently, the feedstock material and the modified powder materials were analyzed concerning the reflectance of the laser radiation and processed by PBF-LB/M in a systematic and consistent procedure to evaluate the impact of the nano-additivation on the process efficiency and mechanical properties. As a result, an increased build rate is achieved, exhibiting a relative density of 99.9% for FLG/1.2709 due to a decreased reflectance of this modified powder material. Furthermore, FLG/1.2709 provides hardness values after precipitation hardening with only aging comparable to the original 1.2709 material and is higher than the SiC- and IOB-coated material. Additionally, the IOB coating tends to promote oxide-formation and lack-of-fusion defects.  相似文献   

17.
Scale model experiments are described in which the contribution to the dipole magnetic field of a conducting sphere (simulating the earth's core) by initially closed, internal flux loops is measured. A magnetic loop is maintained by constant current in a toroidal coil, in a mercury sphere. The circuit is then opened, which allows the magnetic loop to diffuse and dissipate. The time development of the magnetic effects outside the sphere is recorded, especially the contribution in the dipole mode of the sphere. In a sample application of the result, a doughnut-shaped flux loop, of major and minor radii 0.17 and 0.053 Rc (Rc = earth's core radius) and centered at 0.68 Rc, of field strength 100 gauss, in optimal orientation and in a core of conductivity 3 × 10-6 emu is assumed. If one such flux loop is set free on the average of every 40 years, the earth's dipole field is maintained. The relative intensity of the short-lived nondipole component that would accompany the process in the simplified example is estimated from the data and found not to be inconsistent with that observed in the real earth. Only the basic process of the feeding of a poloidal field by initially closed free flux loops in a static conducting sphere is investigated. The requirement that, in a real situation, the loops would have to be set free in a preferred orientation is discussed, and an existing model of a system that in some degree answers the requirement is cited.  相似文献   

18.
Silver paste is widely used for low-temperature co-fired ceramic (LTCC) electrodes. In this work, a kind of LTCC silver paste for fine-line screen-printing was developed by considering the effect of the organic vehicle on rheological behavior and screen-printing properties. A step-by-step volatilization mode was applied to screen the mixed organic solvent of α-terpineol, 2-(2-butoxyethoxy) ethyl acetate (BCA) and dibutyl phthalate (DBP). The α-terpineol:BCA:DBP ratio of 5:2:3 is selected by considering the volatility, viscosity, and pseudoplasticity of the organic vehicle. Both viscosity and pseudoplasticity of shear-thinning increase with the increase of ethyl cellulose (EC) organic binder content. Three interval thixotropy test (3ITT) was conducted to discuss the thixotropy of silver paste. The minimum printing line width of 13.27 µm is obtained using silver paste with 10 wt% EC, confirming that the homemade paste has good printability.  相似文献   

19.
Absorption and magnetic circular dichroism (MCD) spectra have been obtained for the ferrous carbonyl adducts of cytochromes P-450 and P-420 as well as synthetic model systems. Ferrous porphyrins with sodium methyl mercaptide and CO in benzene give MCD and absorption spectra which are almost identical to those of the natural enzyme, indicating that in P-450 a mercaptide serves as the fifth ligand in the ferrous carbonyl adduct. MCD spectra of models with either propyl mercaptan or N-methylimidazole as the axial ligand are identical with that of P-420. Thus, no unambiguous assignment of the axial ligand can be made in this case. The infrared stretching frequencies of ferrous porphyrin carbonyl complexes and the absorption spectrum of the CO adduct of Na[Fe1(meso-tetraphenylporphyrin dianion)] are consistent with the concept that in P-450 considerable electron density is transferred to the iron by the mercaptide ligand.  相似文献   

20.
Magnetic fields with quasi-symmetry are known to provide good confinement of charged particles and plasmas, but the extent to which quasi-symmetry can be achieved in practice has remained an open question. Recent work [M. Landreman and E. Paul, Phys. Rev. Lett. 128, 035001, 2022] reports the discovery of toroidal magnetic fields that are quasi-symmetric to orders-of-magnitude higher precision than previously known fields. We show that these fields can be accurately produced using electromagnetic coils of only moderate engineering complexity, that is, coils that have low curvature and that are sufficiently separated from each other. Our results demonstrate that these new quasi-symmetric fields are relevant for applications requiring the confinement of energetic charged particles for long time scales, such as nuclear fusion. The coils’ length plays an important role for how well the quasi-symmetric fields can be approximated. For the longest coil set considered and a mean field strength of 1 T, the departure from quasi-symmetry is of the order of Earth’s magnetic field. Additionally, we find that magnetic surfaces extend far outside the plasma boundary used by Landreman and Paul, providing confinement far from the core. Simulations confirm that the magnetic fields generated by the new coils confine particles with high kinetic energy substantially longer than previously known coil configurations. In particular, when scaled to a reactor, the best found configuration loses only 0.04% of energetic particles born at midradius when following guiding center trajectories for 200 ms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号