首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pontin is a highly conserved DNA helicase/ATPase which is a component of several macromolecular complexes with functions that include DNA repair, telomere maintenance and tumor suppression. While Pontin is known to be essential in yeast, fruit flies and frogs, its physiological role in mammalian organisms remains to be determined. We here find that Pontin is highly expressed in embryonic stem cells and hematopoietic tissues. Through germline inactivation of Ruvbl1, the gene encoding Pontin, we found it to be essential for early embryogenesis, as Ruvbl1 null embryos could not be recovered beyond the blastocyst stage where proliferation of the pluripotent inner cell mass was impaired. Conditional ablation of Ruvbl1 in hematopoietic tissues led to bone marrow failure. Competitive repopulation experiments showed that this included the loss of hematopoietic stem cells through apopotosis. Pontin is, therefore, essential for the function of both embryonic pluripotent cells and adult hematopoietic stem cells.  相似文献   

2.
In our previous microarray analysis searching for genes differentially regulated by androgens in the rat ventral prostate, we identified GADD45gamma (growth arrest and DNA damage inducible, gamma) as one of the genes up-regulated by androgens. GADD45gamma was initially identified to be a gene involved in negative growth control and its overexpression induced cycle arrest and apoptosis in vitro. In this study, we showed that GADD45gamma was transiently up-regulated by androgens in the androgen-responsive human prostate cancer cell line LNCaP. The GADD45gamma up-regulation was blocked by an androgen receptor (AR) antagonist, bicalutamide, suggesting the involvement of the androgen receptor. However, this up-regulation was inhibited by cycloheximide, indicating that GADD45gamma induction by androgens requires new protein synthesis. Overexpression of GADD45gamma inhibited cell growth of LNCaP and PC3 cells and resulted in dramatic morphological changes in both cell lines, arguing that GADD45gamma is likely to participate in the differentiation program induced by androgens in the prostate. The above observations provide evidence that GADD45gamma is an androgen-responsive gene with growth-inhibitory activity in human prostate cancer cells.  相似文献   

3.
Diapause, the dormancy common to overwintering insects, evokes a unique pattern of gene expression. In the flesh fly, most, but not all, of the fly's heat shock proteins (Hsps) are up-regulated. The diapause up-regulated Hsps include two members of the Hsp70 family, one member of the Hsp60 family (TCP-1), at least four members of the small Hsp family, and a small Hsp pseudogene. Expression of an Hsp70 cognate, Hsc70, is uninfluenced by diapause, and Hsp90 is actually down-regulated during diapause, thus diapause differs from common stress responses that elicit synchronous up-regulation of all Hsps. Up-regulation of the Hsps begins at the onset of diapause, persists throughout the overwintering period, and ceases within hours after the fly receives the signal to reinitiate development. The up-regulation of Hsps appears to be common to diapause in species representing diverse insect orders including Diptera, Lepidoptera, Coleoptera, and Hymenoptera as well as in diapauses that occur in different developmental stages (embryo, larva, pupa, adult). Suppressing expression of Hsp23 and Hsp70 in flies by using RNAi did not alter the decision to enter diapause or the duration of diapause, but it had a profound effect on the pupa's ability to survive low temperatures. We thus propose that up-regulation of Hsps during diapause is a major factor contributing to cold-hardiness of overwintering insects.  相似文献   

4.
Profilins are thought to play a central role in the regulation of de novo actin assembly by preventing spontaneous actin polymerization through the binding of actin monomers, and the adding of monomeric actin to the barbed actin-filament ends. Other cellular functions of profilin in membrane trafficking and lipid based signaling are also likely. Binding of profilins to signaling molecules such as Arp2/3 complex, Mena, VASP, N-WASP, dynamin I, and others, further implicates profilin and actin as regulators of diverse motile activities. In mouse, two profilins are expressed from two distinct genes. Profilin I is expressed at high levels in all tissues and throughout development, whereas profilin II is expressed in neuronal cells. To examine the function of profilin I in vivo, we generated a null profilin I (pfn1(ko)) allele in mice. Homozygous pfn1(ko/ko) mice are not viable. Pfn1(ko/ko) embryos died as early as the two-cell stage, and no pfn1(ko/ko) blastocysts were detectable. Adult pfn1(ko/wt) mice show a 50% reduction in profilin I expression with no apparent impairment of cell function. However, pfn1(ko/wt) embryos have reduced survival during embryogenesis compared with wild type. Although weakly expressed in early embryos, profilin II cannot compensate for lack of profilin I. Our results indicate that mouse profilin I is an essential protein that has dosage-dependent effects on cell division and survival during embryogenesis.  相似文献   

5.
Endometrial cancer is the most common invasive gynecologic malignancy but the molecular mechanisms underlying its onset and progression are poorly understood. Paradoxically, endometrial tumors exhibit increased apoptosis, correlating with disease progression and poor patient prognosis. Endometrial tumors also show altered activity and expression of protein kinase C (PKC) isoforms, implicated in the regulation of programmed cell death; however, PKC modulation of apoptosis in endometrial cancer cells has not been investigated. We detected nine out of ten PKC isoforms in Ishikawa endometrial cancer cell lines, and demonstrated expression of both PKCalpha and delta in human endometrial tumors. To determine the functional roles of PKCalpha and delta in apoptosis in endometrial cancer, Ishikawa cells were treated with selective PKC inhibitors or adenoviral constructs encoding wild-type or isoform-specific, dominant-negative mutants. Apoptosis was assessed by DNA fragmentation and caspase-mediated poly-(ADP-ribose)-polymerase cleavage. The inhibition of PKCdelta suppressed etoposide-induced apoptosis, while overexpression of PKCdelta enhanced it. In contrast, inhibition of PKCalpha elevated basal levels of apoptosis and potentiated etoposide-induced cell death. Etoposide treatment also selectively activated PKCdelta, but resulted in both cytosolic translocation and decreased activity of PKCalpha. A fraction of PKCdelta also underwent caspase-dependent cleavage, in response to etoposide. Our results suggest that changes in apoptosis and PKC expression in endometrial cancer are mechanistically linked, such that PKCdelta is required for DNA damage-induced apoptosis, while PKCalpha mediates a survival response. Thus, PKCalpha and delta expression and signaling may be important in endometrial tumorigenesis and could serve as potential prognostic indicators and/or novel targets for therapeutic intervention.  相似文献   

6.
7.
8.
To complete the molecular characterization of coatomer, the preformed cytosolic complex that is involved in the formation of biosynthetic transport vesicles, we have cloned and characterized the gene for non-clathrin-coat protein alpha (alpha-COP) from Saccharomyces cerevisiae. The derived protein, molecular weight of 135,500, contains four WD-40 repeated motifs (Trp/Asp-containing motifs of approximately 40 amino acids). Disruption of the yeast alpha-COP gene is lethal. Comparison of the DNA-derived primary structure with peptides from bovine alpha-COP shows a striking homology. alpha-COP is localized to coated transport vesicles and coated buds of Golgi membranes derived from CHO cells.  相似文献   

9.

Aims/hypothesis

Diabetes is characterised by pancreatic beta cell death and dysfunction, resulting from unbalanced pro-survival and pro-death signalling. The 14-3-3 proteins are molecular adaptors that integrate numerous signalling pathways, including the v-raf-leukaemia viral oncogene 1 (RAF1)/B cell leukaemia/lymphoma 2 (BCL-2)-associated agonist of cell death (BAD) pathway, which we have previously implicated in insulin-dependent beta cell survival. Nevertheless, the roles of 14-3-3 proteins in beta cell fate and function have not been investigated.

Methods

We examined the abundance, localisation, modulation and roles of 14-3-3 proteins using quantitative RT-PCR, immunoblot or imaging. MIN6 cells or mouse islets cells were manipulated with inhibitors, short interfering RNA (siRNA) or plasmids overexpressing 14-3-3.

Results

We first characterised the abundance and subcellular location of all seven 14-3-3 isoforms in mouse and human beta cells. Most isoforms were cytoplasmic, except 14-3-3σ, which appeared to be nuclear. Analysis of 14-3-3 abundance under stress conditions revealed distinct modulation in mouse islets and MIN6 cells. Generalised 14-3-3 inhibition promoted apoptosis and dysfunction, and siRNA-mediated knockdown revealed isoform-specific roles in caspase-3-dependent beta cell apoptosis, with a clear role for 14-3-3ζ. Overabundance of 14-3-3ζ sequestered BAD–BCL2-associated X protein (BAX) from mitochondria, attenuated Dp5 (also known as Hrk) and Puma (also known as Bbc3) induction, and increased survival in response to pro-inflammatory cytokines or thapsigargin. Anti-apoptotic insulin treatment increased the sequestration of BAD/BAX by 14-3-3ζ. BAD mutants that were unable to bind 14-3-3ζ localised to mitochondria and induced apoptosis.

Conclusions/interpretation

This first study of the 14-3-3 family in beta cells revealed specific regulation, localisation and anti-apoptotic roles among the isoforms. Focus on 14-3-3ζ revealed its importance in preventing BAD–BAX mitochondrial localisation and protecting beta cells from multiple stresses. Thus, some 14-3-3 proteins are pro-survival signalling hubs.  相似文献   

10.
Pica F  Volpi A  Serafino A  Fraschetti M  Franzese O  Garaci E 《Blood》2000,95(9):2905-2912
High levels of nerve growth factor (NGF) are found in sera from individuals infected with human herpesvirus 8 (HHV-8). BC-1 and BCBL-1 cells are primary effusion lymphoma-derived B-cell lines; BC-1 cells are infected by HHV-8 and the Epstein-Barr virus (EBV), and BCBL-1 cells are infected only by HHV-8. Both cells express NGF receptors and produce NGF, whereas RAMOS cells (a B-cell line that is negative for HHV-8 and EBV) express NGF receptors but do not produce detectable NGF. Neutralization of endogenous NGF results in cell growth inhibition and apoptosis in BCBL-1 cells and, to a minor extent, in BC-1 cells. When the HHV-8 lytic cycle is induced in BCBL-1 cells by tetradecanoyl phorbol acetate (TPA), an initial reduction of endogenous NGF production is observed, and many cells undergo apoptosis. However, at 48 hours, TPA-treated cells produce significantly more NGF than untreated controls, and a subsequent recovery of cell viability is observed. Consistent with this finding, the addition of exogenous NGF or anti-NGF antibodies to TPA-treated cells reduces or increases, respectively, the rate of apoptosis in response to TPA. Finally, electron microscopy of TPA-treated BCBL-1 cells shows that the addition of exogenous NGF increases the number of cells producing and releasing complete virions as compared with the controls (25% versus 5%). On the contrary, NGF neutralization leads to the production of defective viral progeny in about 2% of cells. These data indicate that NGF is essential for both cell survival and virus maturation in HHV-8-infected cell lines. (Blood. 2000;95:2905-2912)  相似文献   

11.
Formins are present in all eukaryotes and are essential for the creation of actin-based structures responsible for diverse cellular processes. Because multicellular organisms contain large formin gene families, establishing the physiological functions of formin isoforms has been difficult. Using RNAi, we analyzed the function of all 9 formin genes within the moss Physcomitrella patens. We show that plants lacking class II formins (For2) are severely stunted and composed of spherical cells with disrupted actin organization. In contrast, silencing of all other formins results in normal elongated cell morphology and actin organization. Consistent with a role in polarized growth, For2 are apically localized in growing cells. We show that an N-terminal phosphatase tensin (PTEN)-like domain mediates apical localization. The PTEN-like domain is followed by a conserved formin homology (FH)1-FH2 domain, known to promote actin polymerization. To determine whether apical localization of any FH1-FH2 domain mediates polarized growth, we performed domain swapping. We found that only the class II FH1-FH2, in combination with the PTEN-like domain, rescues polarized growth, because it cannot be replaced with a similar domain from a For1. We used in vitro polymerization assays to dissect the functional differences between these FH1-FH2 domains. We found that both the FH1 and the FH2 domains from For2 are required to mediate exceptionally rapid rates of actin filament elongation, much faster than any other known formin. Thus, our data demonstrate that rapid rates of actin elongation are critical for driving the formation of apical filamentous actin necessary for polarized growth.  相似文献   

12.
13.
14.
BACKGROUND AND OBJECTIVE: Stem cell factor (SCF), and its receptor (c-kit) play key roles in the expansion and differentiation of hematopoietic progenitor cells, in melanoblasts and primordial germ cells, making it possible that SCF and c-kit are involved in neoplastic processes deriving from these cells. C-kit has been described to be expressed at different levels in neuroblastoma and in soft tissue sarcoma of neuroectodermal origin, and seems to be required for survival processes. In this study we investigate how c-kit expression is regulated and whether a SCF autocrine loop is essential for survival of sarcoma cell lines. DESIGN AND METHODS: C-kit modulation and internalization was evaluated incubating cells with rhSCF. Cell differentiation and proliferation experiments were performed to test whether c-kit expression is related to cell cycle progression or to differentiation processes. Cell cultures were treated with neutralizing antibody and antisense oligonucleotides in order to assess the possible significance of the SCF autocrine loop. RESULTS: In vitro SCF stimulation induces c-kit down-regulation; this phenomenon could be connected with receptor internalization, and new protein synthesis is necessary for its re-expression. The cell proliferation arrest in G0/G1 does not modify c-kit expression while down-regulation of c-kit was demonstrated after cells had been treated with differentiating agents. SCF neutralization does not influence either the S phase or apoptosis in sarcoma cell lines. INTERPRETATION AND CONCLUSIONS: In sarcoma cell lines, c-kit is regulated by differentiation processes; moreover our results suggest that c-kit activity, but probably not the SCF autocrine loop, is essential for survival of these cell lines.  相似文献   

15.
Nerve growth factor (NGF) is a neurotrophin with the ability to exert specific effects on cells of the immune system. Human monocytes/macrophages (M/M) infected in vitro with HIV type 1 (HIV-1) are able to produce substantial levels of NGF that are associated with enhanced expression of the high-affinity NGF receptor (p140 trkA) on the M/M surface. Treatment of HIV-infected human M/M with anti-NGF Ab blocking the biological activity of NGF leads to a marked decrease of the expression of p140 trkA high-affinity receptor, a concomitant increased expression of p75(NTR) low-affinity receptor for NGF, and the occurrence of apoptotic death of M/M. Taken together, these findings suggest a role for NGF as an autocrine survival factor that rescues human M/M from the cytopathic effect caused by HIV infection.  相似文献   

16.
17.
Glutathione (GSH) is a major source of reducing equivalents in mammalian cells. To examine the role of GSH synthesis in development and cell growth, we generated mice deficient in GSH by a targeted disruption of the heavy subunit of gamma-glutamylcysteine synthetase (gammaGCS-HS(tm1)), an essential enzyme in GSH synthesis. Embryos homozygous for gammaGCS-HS(tm1) fail to gastrulate, do not form mesoderm, develop distal apoptosis, and die before day 8.5. Lethality results from apoptotic cell death rather than reduced cell proliferation. We also isolated cell lines from homozygous mutant blastocysts in medium containing GSH. These cells also grow indefinitely in GSH-free medium supplemented with N-acetylcysteine and have undetectable levels of GSH; further, they show no changes in mitochondrial morphology as judged by electron microscopy. These data demonstrate that GSH is required for mammalian development but dispensable in cell culture and that the functions of GSH, not GSH itself, are essential for cell growth.  相似文献   

18.
Anaplastic thyroid carcinomas are a highly aggressive and extremely lethal form of human cancer, but the biological characteristics related to their aggressive nature are not understood. Moreover, Gadd45 family proteins have been implicated in a variety of growth-regulatory mechanisms, including DNA replication and repair, G(2)/M checkpoint control, and apoptosis. In this study we found that Gadd45gamma RNA was present at significantly lower levels in anaplastic cancer cells, compared with normal primary cultured thyrocytes. In addition, the adenovirus-mediated reexpression of Gadd45gamma significantly inhibited the proliferation of anaplastic thyroid carcinoma cells, ARO, FRO, and NPA cells, which was attributed to apoptosis. Furthermore, the adenovirus-mediated delivery of Gadd45gamma gene in anaplastic thyroid cancer resulted in the inhibition of tumor growth in vivo. This in vitro and in vivo activity of the adenovirus-mediated transduction of CR6/Gadd45gamma, on anaplastic thyroid cancer cell growth suppression, was reminiscent of the effects of p53. This study demonstrates that the Gadd45gamma gene has potential use as a candidate gene for gene therapy in anaplastic thyroid cancer.  相似文献   

19.
20.
Gonadotrope and null cell pituitary tumors cause significant morbidity, often presenting with signs of hypogonadism together with visual disturbances due to mass effects. Surgery and radiation are the only therapeutic options to date. To identify dysregulated genes and pathways that may play a role in tumorigenesis and/or progression, molecular profiling was performed on 14 gonadotrope tumors, with nine normal human pituitaries obtained at autopsy serving as controls. Bioinformatic analysis identified putative downstream effectors of tumor protein 53 (p53) that were consistently repressed in gonadotrope pituitary tumors, including RPRM, P21, and PMAIP1, with concomitant inhibition of the upstream p53 regulator, PLAGL1(Zac1). Further analysis of the growth arrest and DNA damage-inducible (GADD45) family revealed no change in the p53 target, GADD45α, but identified repression of GADD45β in pituitary tumors in addition to the previously reported inhibition of GADD45γ. Overexpression of GADD45β in LβT2 mouse gonadotrope cells blocked tumor cell proliferation and increased rates of apoptosis in response to growth factor withdrawal. Stable gonadotrope cell transfectants expressing increased GADD45β showed decreased colony formation in soft agar, confirming its normal role as a tumor suppressor. Unlike previous studies of GADD45γ in pituitary tumors and α and β in other tumors, bisulfite sequencing showed no evidence of hypermethylation of the GADD45β promoter in human pituitary tumor samples to explain the repression of its expression. Thus, GADD45β is a novel pituitary tumor suppressor whose reexpression blocks proliferation, survival, and tumorigenesis. Together these studies identify new targets and mechanisms to explore in pituitary tumor initiation and progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号