首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The uptake of liposomes containing methotrexate by Tetrahymena pyriformis cells was investigated with the aim of producing liposome-cell association enabling methotrexate to be introduced into the cytoplasm of intact cells. Incubation of liposomes containing methotrexate with tetrahymena pyriformis cells resulted in a time and concentration-dependent uptake of entrapped methotrexate by the cells. The uptake by Tetrahymena pyriformis cells (at 1 hr) of liposomes prepared by phospholipids and gangliosides extracted from Tetrahymena pyriformis cells was approximately three fold higher than that of liposomes prepared by commercial phospholipids. Approximately 90% of liposome uptake could be inhibited by cytochalasin B and also by NaN3 and 2-deoxyglucose. This was consistent with the uptake being the result of endocytosis. The remaining uptake was probably the result of adhesion of liposomes to the cell membrane. The rate of efflux vs time of methotrexate entrapped in liposomes was much slower than that of free methotrexate which reinforces the concept that endocytosis is the main mode of liposomes uptake by the cells. Liposomes containing methotrexate at concentrations as low as 4.5 microM effectively inhibited the activity of dihydrofolate reductase which was used as a function parameter in this study. Similar inhibition of the enzyme activity by free methotrexate was achieved only at concentrations as high as 880 microM. The influence of liposomes lipid composition on the targeting of liposomes to Tetrahymena pyriformis cells was discussed.  相似文献   

2.
The effects of lipid composition and preparation conditions on the physicochemical and technological properties of gemcitabine-loaded liposomes, as well as the in vitro anti-tumoral activity of various liposome formulations were investigated. Three liposome formulations were investigated: DPPC/Chol/Oleic acid (8:3:1 molar ratio, liposomes A), DPPC/Chol/DPPS (6:3:1 molar ratio, liposomes B) and DPPC/Chol/DSPE-MPEG (6:3:1 molar ratio, liposomes C). Multilamellar liposomes were prepared by using the TLE, FAT and DRV methods, while small unilamellar liposomes were obtained by extrusion through polycarbonate filters. Light scattering techniques were used to characterize liposome formulations. Loading capacity and release profiles of gemcitabine from various liposome formulations were also investigated. Caco-2 cells were used to evaluate in vitro the antitumoral activity of gemcitabine-loaded liposomes with respect to the free drug and also the intracellular drug uptake. Preparation methods and liposome lipid composition influenced both physicochemical parameters and drug delivery features. Liposomes with a size ranging from 200 nm to 7 microm were obtained. The gemcitabine entrapment was higher than that expected probably due to an interaction with the liposome lipid components. The following decreasing loading capacity order was observed: liposome B>liposome C>liposome A. Gemcitabine release from various liposome formulations is modulated by two different processes, i.e. desorption from and permeation through liposomal bilayers. MTT assay showed a greater cytotoxic effect of gemcitabine-loaded liposomes with respect to the free drug. The following decreasing anticancer activity order was observed between the various liposome formulations: liposome C>liposome A>liposome B. The increased anticancer activity is correlated to the ability of the colloidal carrier to increase the intracellular drug uptake. Due to the encouraging results and to the high liposome modularity various applications of potential therapeutic relevance can be envisaged for liposomes.  相似文献   

3.
It is well known, that a prolonged liposome circulation time can be achieved by incorporation of lipopolymers into the lipid membrane thereby reducing interactions with destabilizing factors in the blood stream, e.g. phagocytic cells and lipoproteins. However, very little is known about the enzymatic degradation of steric hindered liposomes introduced into body fluids. In this study, the blood clearance and the PLA2 catalyzed degradation of unilamellar dipalmitoylphosphatidylcholine (DPPC) liposomes incorporated with increasing amounts of dipalmitoylphosphatidylethanolamine-polyethyleneglycol (DPPE-PEG), was investigated. The results demonstrated an increase in PLA2 activity for increasing amounts of lipopolymer in the lipid membrane, while the liposome blood clearance was prolonged by incorporation of DPPE-PEG into the liposomes. Hence, these results suggest that it may be possible for long circulating liposomes to obtain a site specific liposome degradation and release of drug substance in tissue with high levels of PLA2.  相似文献   

4.
Delivery of macromolecular drugs to airway cells after inhalation can be limited by rapid clearance, in vivo degradation, and poor intracellular targeting. Liposome carriers offer an effective method of improving drug stability, but conventional liposomes have limited intracellular targeting capacity and are cleared rapidly by the lungs. Further modification is required to improve liposome-cell interaction and intracellular targeting. Therefore, we proposed conjugating three arginine-rich membrane translocating peptides, namely, HIV-TAT, Antennapedia, and octaarginine, to neutral liposomes as a biocompatible alternative to cationic lipids for intracellular delivery of macromolecules to airway cells. Conjugation did not significantly affect liposome stability, and each system was nebulized to produce aerosols of mean aerodynamic diameter < 1.5 microm. The peptides caused a significant (p < 0.05) increase in liposome-airway cell association compared to untagged liposomes and to DOTAP liposomes. Up to 30% of the peptide-conjugated liposomes added were bound and internalized (via a temperature-dependent, endocytic process) after just 2 h. The novel carriers all delivered encapsulated dextrans rapidly and efficiently to the cytoplasm of Calu-3 cells. Once internalized by the cells, the modified carriers localize for the most part in the cytoplasm with only a small amount of nuclear localization. These peptide-conjugated liposomes were significantly (p < 0.05) less toxic than DOTAP liposomes with octaarginine-coated liposomes the least toxic. These systems, particularly octaarginine-coated liposomes, offer many advantages for drug delivery to airway epithelial cells including increased stability, improved cell binding, and cell uptake with an improved toxicity profile.  相似文献   

5.
Adenoviral vectors have been commonly used in gene therapy protocols but the success of their use is often limited by the induction of host immunity to the vector. Following exposure to the adenoviral vector, adenoviral-specific neutralising antibodies are produced, which limits further administration. This study examines the effectiveness of a novel combination of microspheres and liposomes for the shielding of adenovirus from neutralising antibodies in an in-vitro setting. We show that liposomes are effective in the protection of adenovirus from neutralising antibody and that the conjugation of these complexes to microspheres augments the level of protection. This study further reveals that previously neutralised adenovirus may still be transported into the cell via liposome-cell interactions and is still capable of expressing its genes, making this vector an effective tool for circumvention of the humoral immune response. We also looked at possible side effects of using the complexes, namely increases in cytotoxicity and reductions in transfection efficiency. Our results showed that varying the liposome:adenovirus ratio can reduce the cytotoxicity of the vector as well as increase the transfection efficiency. In addition, in cell lines that are adenoviral competent, transfection efficiencies on par with uncomplexed adenoviral vectors were achievable with the combination vector.  相似文献   

6.
Trends and developments in liposome drug delivery systems   总被引:23,自引:0,他引:23  
Since the discovery of liposomes or lipid vesicles derived from self-forming enclosed lipid bilayers upon hydration, liposome drug delivery systems have played a significant role in formulation of potent drugs to improve therapeutics. Currently, most of these liposome formulations are designed to reduce toxicity and to some extent increase accumulation at the target site(s) in a number of clinical applications. The current pharmaceutical preparations of liposome-based therapeutics stem from our understanding of lipid-drug interactions and liposome disposition mechanisms including the inhibition of rapid clearance of liposomes by controlling size, charge, and surface hydration. The insight gained from clinical use of liposome drug delivery systems can now be integrated to design liposomes targeted to tissues and cells with or without expression of target recognition molecules on liposome membranes. Enhanced safety and heightened efficacy have been achieved for a wide range of drug classes, including antitumor agents, antivirals, antifungals, antimicrobials, vaccines, and gene therapeutics. Additional refinements of biomembrane sensors and liposome delivery systems that are effective in the presence of other membrane-bound proteins in vivo may permit selective delivery of therapeutic compounds to selected intracellular target areas.  相似文献   

7.
Numerous studies have appeared over the years dealing with liposome-cell interaction mechanisms, most of them performed under in vitro conditions with isolated cell populations or cell lines. It is remarkable that, nonetheless, there hardly seem to exist established and generally accepted views on how precisely liposomes interact with cells and by what parameters this is influenced. In this article we will summarize and discuss the most relevant studies (in our opinion) on this matter in relation to in vivo conditions and with special attention to the relation between scavenger, complement and PS receptors.Researchers in the field have long been aware of the interaction of liposomes with blood proteins and their potential involvement in the process of liposome elimination from the blood circulation. A few of these 'opsonizing' proteins have been identified, but it is not clear to what extent each of them determines the fate of the liposome in the blood stream and how liposomal parameters such as size, charge and rigidity play a role in this process. We will include in this article our own recent observations on a thus far largely ignored class of such liposomal 'opsonins', the apolipoproteins. This class of plasma proteins, which physiologically are instrumental in hepatic lipoprotein clearance and processing, has been shown to contribute specifically to hepatocyte-mediated uptake of liposomes.Separately, as opposed to the fate of plain liposomes, we briefly touch on the clearance of surface-modified liposomes, which are designed to actively target specific cells or tissues. Plasma proteins are not usually supposed to play a significant role in the clearance of such liposomes. We will summarize these studies and address in this connection the question of how plasma proteins may interfere with such active targeting attempts.  相似文献   

8.
Cell-specific delivery of drug-loaded liposomal carrier systems can be achieved through the use of liposomes with covalently attached proteins. For such targeting strategies to be successful a number of potential difficulties, related to the preparation of the liposomes as well as optimization of properties that maximize in vivo access and binding to a defined target cell population, must be overcome. The studies summarized here have attempted to identify specific factors that will promote binding of targeted liposomes to defined target surfaces. Liposomes containing biotinylated phospha-tidylethanolamine were used to demonstrate that the avidity of a targeted liposome for streptavidin-coated ELISA plates and cells is influenced by liposome lipid composition, the amount of targeting molecule present per liposome, the nature of the targeting ligand, and the target surface. Specifically, it is demonstrated that the three most important factors (in order of importance) controlling the apparent affinity of targeted liposomes are (1) target ligand concentration in the liposomal membrane; (2) the presence of a spacer grout between the biotin and the phospholipid headgroup; and (3) the addition of cholesterol. Other less important factors that influence target liposome binding include whether the target ligand is attached to a saturated phospholipid compared to an unsaturated lipid and whether the bulk phospholipid species in the liposome is unsaturated versus saturated. These studies suggest that targeted liposomes exhibiting a broad range of binding avidities, as estimated by the concentration of liposomes required to achieve saturation of a target surface, can be prepared by selective design of the liposomal carrier. Advantages of the biotinylated liposome for targeting include the relative ease of preparation the possibility of preparation of large-scale batches suitable for clinical development), the ease of incorporation of the targeting ligand, and, importantly, the ability to alter the apparent affinity of the liposome for the target cell through choice of the biotin-labeled lipid and targeting molecule concentration. The potential for developing a two-step targeting strategy based on the use of biotinylated liposomes is discussed.  相似文献   

9.
Chen Y  Deng YJ  Hao YL  Hao AJ  Zhong HJ  Wang XM 《Die Pharmazie》2005,60(11):844-848
Small unilamellar liposomes (SUV) of different phospholipid/polymer composition were labeled with NBD-PC, which served as a bilayersituated fluorescence marker. Neonatal cardiomyocytes were incubated with liposomes and then the cell-associated fluorescence was measured. The factors influencing the liposome uptake by cardiomyocytes such as concentration of lipid, time of incubation, membrane fluidity of liposomes, charge lipid/polymer modification of liposomes and anoxia of cultured cardiomyocytes were investigated. The liposome uptake by cardiomyocytes increased dose-dependently and time-dependently. Liposome uptake was strongly influenced by the electrical charge and modified polymer. After 2 h incubation, the uptake of positively charged liposomes was 1.7-fold higher than that of negatively charged one and both higher than that of the neutral one. The presence of PE-PEG2000 distinctly reduced the liposome uptake and the difference between the uptake of charged and neutral liposome. Anoxia increased the uptake of liposome at the first hour (increased 20%), but after 2 h incubation the liposome uptake by hypoxia cellswas less than that of normoxia cells (decreased 18%). Mechanisms involved are also discussed.  相似文献   

10.
Liposomal drug delivery systems: an update review   总被引:3,自引:0,他引:3  
The discovery of liposome or lipid vesicle emerged from self forming enclosed lipid bi-layer upon hydration; liposome drug delivery systems have played a significant role in formulation of potent drug to improve therapeutics. Recently the liposome formulations are targeted to reduce toxicity and increase accumulation at the target site. There are several new methods of liposome preparation based on lipid drug interaction and liposome disposition mechanism including the inhibition of rapid clearance of liposome by controlling particle size, charge and surface hydration. Most clinical applications of liposomal drug delivery are targeting to tissue with or without expression of target recognition molecules on lipid membrane. The liposomes are characterized with respect to physical, chemical and biological parameters. The sizing of liposome is also critical parameter which helps characterize the liposome which is usually performed by sequential extrusion at relatively low pressure through polycarbonate membrane (PCM). This mode of drug delivery lends more safety and efficacy to administration of several classes of drugs like antiviral, antifungal, antimicrobial, vaccines, anti-tubercular drugs and gene therapeutics. Present applications of the liposomes are in the immunology, dermatology, vaccine adjuvant, eye disorders, brain targeting, infective disease and in tumour therapy. The new developments in this field are the specific binding properties of a drug-carrying liposome to a target cell such as a tumor cell and specific molecules in the body (antibodies, proteins, peptides etc.); stealth liposomes which are especially being used as carriers for hydrophilic (water soluble) anticancer drugs like doxorubicin, mitoxantrone; and bisphosphonate-liposome mediated depletion of macrophages. This review would be a help to the researchers working in the area of liposomal drug delivery.  相似文献   

11.
INTRODUCTION: Over the past several decades, liposomes have been used in a variety of applications, from delivery vehicles to cell membrane models. In terms of pharmaceutical use, they can offer control over the release of active agents encapsulated into their lipid bilayer or aqueous core, while providing protection from degradation in the body. In addition, liposomes are versatile carriers, because targeting moieties can be conjugated on the surface to enhance delivery efficiency. It is for these reasons that liposomes have been applied as carriers for a multitude of drugs and genetic material, and as contrast agents, aimed to treat and diagnose cardiovascular diseases. AREAS COVERED: This review details advancements in liposome technology used in the field of cardiovascular medicine. In particular, the application of liposomes to cardiovascular disease treatment and diagnosis, with a focus on delivering drugs, genetic material and improving cardiovascular imaging, will be explored. Advances in targeting liposomes to the vasculature will also be detailed. EXPERT OPINION: Liposomes may provide the means to deliver drugs and other pharmaceutical agents for cardiovascular applications; however, there is still a vast amount of research and clinical trials that must be performed before a formulation is brought to market. Advancements in targeting abilities within the body, as well as the introduction of theranostic liposomes, capable of both delivering treating and imaging cardiac diseases, may be expected in the future of this burgeoning field.  相似文献   

12.
《Drug delivery》2013,20(2):98-109
Abstract

Cell-specific delivery of drug-loaded liposomal carrier systems can be achieved through the use of liposomes with covalently attached proteins. For such targeting strategies to be successful a number of potential difficulties, related to the preparation of the liposomes as well as optimization of properties that maximize in vivo access and binding to a defined target cell population, must be overcome. The studies summarized here have attempted to identify specific factors that will promote binding of targeted liposomes to defined target surfaces. Liposomes containing biotinylated phospha-tidylethanolamine were used to demonstrate that the avidity of a targeted liposome for streptavidin-coated ELISA plates and cells is influenced by liposome lipid composition, the amount of targeting molecule present per liposome, the nature of the targeting ligand, and the target surface. Specifically, it is demonstrated that the three most important factors (in order of importance) controlling the apparent affinity of targeted liposomes are (1) target ligand concentration in the liposomal membrane; (2) the presence of a spacer grout between the biotin and the phospholipid headgroup; and (3) the addition of cholesterol. Other less important factors that influence target liposome binding include whether the target ligand is attached to a saturated phospholipid compared to an unsaturated lipid and whether the bulk phospholipid species in the liposome is unsaturated versus saturated. These studies suggest that targeted liposomes exhibiting a broad range of binding avidities, as estimated by the concentration of liposomes required to achieve saturation of a target surface, can be prepared by selective design of the liposomal carrier. Advantages of the biotinylated liposome for targeting include the relative ease of preparation the possibility of preparation of large-scale batches suitable for clinical development), the ease of incorporation of the targeting ligand, and, importantly, the ability to alter the apparent affinity of the liposome for the target cell through choice of the biotin-labeled lipid and targeting molecule concentration. The potential for developing a two-step targeting strategy based on the use of biotinylated liposomes is discussed.  相似文献   

13.
Introduction: Over the past several decades, liposomes have been used in a variety of applications, from delivery vehicles to cell membrane models. In terms of pharmaceutical use, they can offer control over the release of active agents encapsulated into their lipid bilayer or aqueous core, while providing protection from degradation in the body. In addition, liposomes are versatile carriers, because targeting moieties can be conjugated on the surface to enhance delivery efficiency. It is for these reasons that liposomes have been applied as carriers for a multitude of drugs and genetic material, and as contrast agents, aimed to treat and diagnose cardiovascular diseases.

Areas covered: This review details advancements in liposome technology used in the field of cardiovascular medicine. In particular, the application of liposomes to cardiovascular disease treatment and diagnosis, with a focus on delivering drugs, genetic material and improving cardiovascular imaging, will be explored. Advances in targeting liposomes to the vasculature will also be detailed.

Expert opinion: Liposomes may provide the means to deliver drugs and other pharmaceutical agents for cardiovascular applications; however, there is still a vast amount of research and clinical trials that must be performed before a formulation is brought to market. Advancements in targeting abilities within the body, as well as the introduction of theranostic liposomes, capable of both delivering treating and imaging cardiac diseases, may be expected in the future of this burgeoning field.  相似文献   

14.
Although anti-retroviral therapy is the most efficient disease management strategy for HIV-AIDS, its applications are limited by several factors including the low bioavailability and first pass metabolism of the drugs. Nanocarriers such as liposomes have been developed to circumvent some of these problems. We report here preparation of novel liposome formulations for efficient delivery of anti-retroviral drugs to mammalian cells in culture. The liposomes were prepared and surface was modified using poly (ethylene glycol). Encapsulation efficiency of the anti-retroviral drug saquinavir was found to be approximately 33% and also exhibited sustained release of the drug. Although PEGylated liposomes were more stable in protein-supplemented media, had better colloidal stability and exhibited lesser sonochemical stability due to lower cavitation threshold. The cell viability studies using Jurkat T-cells revealed that the PEGylated liposomes loaded with saquinavir were less cytotoxic as compared to the non-PEGylated liposomes or free drug confirming the potential of the liposomes as a sustained drug-release system. The drug delivery potential of the liposomes loaded with Alexa flour 647 was evaluated using Jurkat T-cells and flow cytometry showing uptake upto 74%. Collectively, our data demonstrate efficient targeting of mammalian cells using novel liposome formulations with insignificant levels of cytotoxicity.  相似文献   

15.
The influence of various formulation factors on the in vitro cellular toxicity of liposomes on human buccal cells (TR146), were studied by using the concept of statistical experimental design and multivariate evaluation. The factors investigated were the type of main phospholipid (egg-PC, DMPC, DPPC), lipid concentration, the type of charge, liposome size, and amount and nature of the charged component (diacyl-PA, diacyl-PG, diacyl-PS, stearylamine (SA), diacyl-TAP) in the liposomes. Both full factorial design and D-optimal designs were created. Several significant main factors and interactions were revealed. Positively charged liposomes were shown to be toxic. The toxicity of negatively charged liposomes was relatively low. Diacyl-TAP was less toxic than SA, and DPPC was less toxic than DMPC. Low level of positively charged component was favourable and essential when using egg-PC as the main lipid. The amount of negatively charged component, the liposome size, and the total lipid concentration did not affect the toxicity within the experimental room. DPPC appeared to be a good candidate when formulating both positively and negatively charged liposomes with low cellular toxicity. The concept of statistical experimental design and multivariate evaluation was shown to be a useful approach in cell toxicity screening studies.  相似文献   

16.
Recent literature dealing with the immunoglobulin-liposome combination as a tool for drug targeting is reviewed. Mechanisms for binding of immunoglobulins to liposomes are discussed. Results obtained so far by using this concept both to induce specific liposome-cell interactions inin vitro cell cultures and to target drug containing liposomes to selected tissues in animal studies are evaluated.  相似文献   

17.
Purpose. To improve target specificity and uptake of liposomes by macrophages, one can improve high-affinity receptor binding to mannose determinants with their 175-kDa mannose receptor (MR), which is mainly influenced by the length and flexibility of the spacer between the carbohydrate head group and liposome surface. Liposomes containing alkylmannosides with hydrophilic spacers 0 to 8 ethyleneoxy units (EO) long (Man0...Man8) were used to investigate systematically the effects of spacer length on liposome-cell interactions. Methods. Concanavalin A (ConA)-induced liposome aggregation was studied by turbidity measurement and cell uptake using PMA-induced HL-60 cells or native human macrophages by determining 6-CF after cell lysis or NBD-fluorescence with flow cytometry. Detection of MR in native cell populations was carried out by an antibody assay using flow cytometry; MR-representing cells were selected analytically. Results. Liposomes containing mannosides with more than one EO spacer length were specifically aggregated by ConA, indicating accessibility of the carbohydrate ligands of these derivatives. Increase in EO spacer units of incorporated mannosides (two or more EO) led to suppression of cellular uptake of mannosylated liposomes by phago- cytes lacking MR (HL60, U937). The extent of suppression increased with spacer length. Liposome uptake by native macrophages expressing MR was, on the contrary, improved, particularly by Man6 and Man8. Conclusions. Uptake of liposomes modified with Man6 or Man8 by native cells was enhanced but did not reach an optimum. Thus, Man6, Man8, and mannosides with even longer spacer arms are of potential use in receptor-mediated targeting.  相似文献   

18.
No HeadingPurpose. This study explores factors influencing the interactions of positively charged drugs with liposomes using liposome electrokinetic chromatography (LEKC) for the development of LEKC as a rapid screening method for drug-membrane interactions.Methods. Liposomes were prepared and the retention factors were measured for a series of basic drugs under a variety of buffer conditions, including various buffer types, concentrations, and ionic strengths as well as using different phospholipids and liposome compositions. LEKC retention is compared with octanol-water partitioning.Results. The interaction of ionizable solutes with liposomes decreased with increasing ionic strength of the aqueous buffer. The type of buffer also influences positively charged drug partitioning into liposomes. Varying the surface charge on the liposomes by the selection of phospholipids influences the electrostatic interactions, causing an increase in retention with increasing percentages of anionic lipids in the membrane. Poor correlations are observed between LEKC retention and octanol-water partitioning.Conclusions. These studies demonstrate the overall buffer ionic strength at a given pH is more important than buffer type and concentration. The interaction of positively charged drugs with charged lipid bilayer membranes is selectively influenced by the pKa of the drug. Liposomes are more biologically relevant in vitro models for cell membranes than octanol, and LEKC provides a unique combination of advantages for rapid screening of drug-membrane interactions.  相似文献   

19.
严文伟  齐宪荣  魏来  费然  丛旭  王宇 《药学学报》2003,38(9):698-701
目的制备包封荧光素钠(FS)的脂质体,考察阳离子脂质材料(DC-chol)和聚乙二醇(PEG)对脂质体包封率、细胞转染率及膜流动性的影响。方法以FS作为模型物质,制备并分离脂质体,测定脂质体包封率;通过观察荧光光谱的变化考察FS与脂质体膜之间的相互作用;以HepG2 2.2.15为细胞模型观察脂质体对FS细胞转染率的影响;通过荧光偏振技术考察阳离子脂质材料和PEG对脂质体膜流动性的影响。结果阳离子脂质材料和PEG能提高脂质体包封率(0.64%~86.57%)、细胞转染率(2.18%~48.46%)及脂质体膜流动性,PEG分子质量的增大有利于包封率、转染率的提高,并增加脂质体膜的流动性。结论在脂质体处方中加入阳离子脂质材料和高分子量的PEG有利于提高包封率、细胞转染率及增加脂质体膜的流动性。  相似文献   

20.
Virosomes: evolution of the liposome as a targeted drug delivery system   总被引:5,自引:0,他引:5  
The drug delivery system (DDS) is attractive as a therapeutic method. Liposomes are of particular interest as a DDS because they can reduce drug toxicity, and offer promise as gene carriers. An evolution has occurred in the construction of liposomes in the effort to develop efficient vectors for in vivo use. To avoid uptake by the reticuloendothelial system (RES); Lipid components have been optimized. To enhance tissue targeting, liposome surface has been modified with antibodies or ligands recognized by specific cell types. To enhance the efficiency of gene delivery by the introduction of molecules directly into cells, virosomes have been developed by combining liposomes with fusiogenic viral envelope proteins. Liposomes are now being used in the treatment of intractable human diseases such as cancer and monogenic disorders. In the future, many medical procedures will be performed using liposomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号