首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: To characterize the molecular identity of the Th/To autoantigen, which is targeted by autoantibodies in scleroderma and which is associated with the human RNase MRP and RNase P ribonucleoprotein complexes. METHODS: Proteins immunoprecipitated by anti-Th/To+ patient antisera from biotinylated total HeLa cell extracts were analyzed by immunoblotting. The association of autoantigenic proteins with the RNase MRP complex was analyzed by reconstitution experiments and ultraviolet crosslinking. The reactivity of patient sera with all known RNase MRP/RNase P proteins was analyzed by immunoprecipitation of the individual recombinant proteins. RESULTS: The previously defined Th40 autoantigen appeared to be identical to the Rpp38 protein. Paradoxically, Rpp38 did not bind to the P3 domain of the RNase MRP RNA, as suggested by previously published data for Th40, and only half of the anti-Th/To+ sera contained anti-Rpp38 reactivity. Two other RNase MRP/RNase P subunits, Rpp20 and Rpp25, were found to interact with the P3 domain. The previously reported 40-kd species associated with this domain appeared to consist of Rpp20 and/or Rpp25 associated with a nuclease-resistant RNA fragment. Finally, we demonstrated that almost all tested anti-Th/To+ patient sera contained autoantibodies to Rpp25 and hPop1, indicating that these proteins harbor the most frequently targeted Th/To determinants. CONCLUSION: Our data unequivocally define the identity of the Th/To autoantigen and demonstrate that Th/To autoepitopes are found on several protein subunits of RNase MRP/RNase P.  相似文献   

2.

Objective

To characterize the molecular identity of the Th/To autoantigen, which is targeted by autoantibodies in scleroderma and which is associated with the human RNase MRP and RNase P ribonucleoprotein complexes.

Methods

Proteins immunoprecipitated by anti‐Th/To+ patient antisera from biotinylated total HeLa cell extracts were analyzed by immunoblotting. The association of autoantigenic proteins with the RNase MRP complex was analyzed by reconstitution experiments and ultraviolet crosslinking. The reactivity of patient sera with all known RNase MRP/RNase P proteins was analyzed by immunoprecipitation of the individual recombinant proteins.

Results

The previously defined Th40 autoantigen appeared to be identical to the Rpp38 protein. Paradoxically, Rpp38 did not bind to the P3 domain of the RNase MRP RNA, as suggested by previously published data for Th40, and only half of the anti‐Th/To+ sera contained anti‐Rpp38 reactivity. Two other RNase MRP/RNase P subunits, Rpp20 and Rpp25, were found to interact with the P3 domain. The previously reported 40‐kd species associated with this domain appeared to consist of Rpp20 and/or Rpp25 associated with a nuclease‐resistant RNA fragment. Finally, we demonstrated that almost all tested anti‐Th/To+ patient sera contained autoantibodies to Rpp25 and hPop1, indicating that these proteins harbor the most frequently targeted Th/To determinants.

Conclusion

Our data unequivocally define the identity of the Th/To autoantigen and demonstrate that Th/To autoepitopes are found on several protein subunits of RNase MRP/RNase P.
  相似文献   

3.
RNase E is an endonuclease that plays a central role in RNA processing and degradation in Escherichia coli. Like its E. coli homolog RNase G, RNase E shows a marked preference for cleaving RNAs that bear a monophosphate, rather than a triphosphate or hydroxyl, at the 5' end. To investigate the mechanism by which 5'-terminal phosphorylation can influence distant cleavage events, we have developed fluorogenic RNA substrates that allow the activity of RNase E and RNase G to be quantified much more accurately and easily than before. Kinetic analysis of the cleavage of these substrates by RNase E and RNase G has revealed that 5' monophosphorylation accelerates the reaction not by improving substrate binding, but rather by enhancing the catalytic potency of these ribonucleases. Furthermore, the presence of a 5' monophosphate can increase the specificity of cleavage site selection within an RNA. Although monomeric forms of RNase E and RNase G can cut RNA, the ability of these enzymes to discriminate between RNA substrates on the basis of their 5' phosphorylation state requires the formation of protein multimers. Among the molecular mechanisms that could account for these properties are those in which 5'-end binding by one enzyme subunit induces a protein structural change that accelerates RNA cleavage by another subunit.  相似文献   

4.
F1845, the fimbrial adhesin of a diarrhea-associated Escherichia coli, confers upon the bacteria the ability to adhere to cultured epithelial cells in a diffuse pattern. The fimbrial subunit gene, daaE, is encoded on a polycistronic mRNA which is processed endoribonucleolytically to produce a stable message encoding only daaE. The processing event occurs in bacterial strains with mutations in RNase III or RNase E, the only endoribonucleases which have been implicated in the processing of E. coli mRNA. Sequences encoding a stem-loop structure downstream of daaE play an essential role in determining the stability of the daaE mRNA. Rapid degradation of the sequences upstream of the cleavage site occurs upon processing, suggesting that processing of the F1845 polycistronic mRNA results in differential expression of genes involved in the biogenesis of fimbriae.  相似文献   

5.
Serum RNase (RNase I; ribonuclease 3'-pyrimidino-oligonucleotidohydrolase, EC 3.1.4.22) activity (mean +/- SD) with polycytidine as substrate was determined in normal individuals (24.9 +/- 3.0 units/ml) and in patients with pancreatic cancer (37.3 +/- 14.8), pancreatitis (38.5 +/- 12.6), nonpancreatic diseases (48.7 +/- 14.8), or renal failure (175.8 +/- 92.8). Patients with pancreatic cancer could not be distinguished from those with pancreatitis or with nonpancreatic disease, although the RNase activities in all of these differed from the activity in normal individuals. The serum RNase activities of four patients with resectable "curable") pancreatic carcinoma and two others with advanced pancreatic cancer without obstructive jaundice were normal. After total pancreatectomy, serum RNase activity remained in the high-normal range. The data presented here and data in the literature show that serum RNase cannot be of primarily pancreatic origin. The present study also demonstrates that measurement of its activity is not useful in early detection of pancreatic cancer.  相似文献   

6.
7.
8.
An additional RNase H (EC 3.1.26.4), RNase HII, has been isolated from Escherichia coli K-12. By screening a library of E. coli DNA for clones that suppressed RNase H deficiency of an E. coli rnh mutant, a clone was obtained that produced a protein with RNase H activity. The overexpressed RNase HIII protein in E. coli was purified to near homogeneity and exhibited a strong preference for the ribonucleotide moiety of RNA-DNA hybrid as substrate. The terminal 11 amino acids were determined and were identical to those predicted from the nucleotide sequence. The rnhB gene, which encodes RNase HII, was distinct from rnhA by its map position (4.5 min on E. coli genetic map, between lpxB and dnaE) and by the lack of significant amino acid sequence similarity. The presence of a second RNase H in E. coli indicates that multiple RNase H genes per genome is a general feature of a general feature of a wide variety of organisms.  相似文献   

9.
10.
The bacteriophage lambda cIII gene product regulates the lysogenic pathway by stabilizing the lambda cII regulatory protein. Our results show that the expression of the lambda cIII gene is subject to specific requirements. Tests of a set of cIII-lacZ gene and operon fusions reveal that a sequence upstream of the cIII ribosome binding site is needed for cIII translation. The sequence contains an inefficient RNase III processing site. Furthermore, expression of cIII is drastically reduced in cells lacking RNase III. We have isolated a phage carrying a mutation (r1), which lies in the upstream sequence, that leads to a reduction in cIII translation and inactivates the RNase III processing site. The r1 mutant is nevertheless still dependent on RNase III for cIII translation; r1 reduces cIII translation by a factor of 3 in wild-type cells and by a factor of approximately equal to 30 in an RNase III mutant host. We propose that RNase III stimulates cIII translation by binding to the upstream sequence and thereby exposing the cIII ribosome binding site. This stimulation does not involve RNA cleavage. Consistent with this hypothesis is our finding that, in vitro, unprocessed cIII mRNA is translated, whereas RNase III-cleaved cIII mRNA is not.  相似文献   

11.
Ultrafast thermally induced unfolding of RNase A.   总被引:2,自引:3,他引:2       下载免费PDF全文
A temperature jump (T-jump) method capable of initiating thermally induced processes on the picosecond time scale in aqueous solutions is introduced. Protein solutions are heated by energy from a laser pulse that is absorbed by homogeneously dispersed molecules of the dye crystal violet. These act as transducers by releasing the energy as heat to cause a T-jump of up to 10 K with a time resolution of 70 ps. The method was applied to the unfolding of RNase A. At pH 5.7 and 59 degrees C, a T-jump of 3-6 K induced unfolding which was detected by picosecond transient infrared spectroscopy of the amide I region between 1600 and 1700 cm-1. The difference spectral profile at 3.5 ns closely resembled that found for the equilibrium (native-unfolded) states. The signal at 1633 cm-1, corresponding to the beta-sheet structure, achieved 15 +/- 2% of the decrease found at equilibrium, within 5.5 ns. However, no decrease in absorbance was detected until 1 ns after the T-ump. The disruption of beta-sheet therefore appears to be subject to a delay of approximately 1 ns. Prior to 1 ns after the T-jump, water might be accessing the intact hydrophobic regions.  相似文献   

12.
Sweet potato (Ipomoea batatas) is an important subsistence and famine reserve crop grown in developing countries where Sweet potato chlorotic stunt virus (SPCSV; Closteroviridae), a single-stranded RNA (ssRNA) crinivirus, synergizes unrelated viruses in co-infected sweet potato plants. The most severe disease and yield losses are caused by co-infection with SPCSV and a potyvirus, Sweet potato feathery mottle virus (SPFMV; Potyviridae). Potyviruses synergize unrelated viruses by suppression of RNA silencing with the P1/HC-Pro polyprotein; however, the SPCSV-SPFMV synergism is unusual in that the potyvirus is the beneficiary. Our data show that transformation of an SPFMV-resistant sweet potato variety with the double-stranded RNA (dsRNA)-specific class 1 RNA endoribonuclease III (RNase3) of SPCSV broke down resistance to SPFMV, leading to high accumulation of SPFMV antigen and severe disease symptoms similar to the synergism in plants co-infected with SPCSV and SPFMV. RNase3-transgenic sweet potatoes also accumulated higher concentrations of 2 other unrelated viruses and developed more severe symptoms than non-transgenic plants. In leaves, RNase3 suppressed ssRNA-induced gene silencing (RNAi) in an endonuclease activity-dependent manner. It cleaved synthetic double-stranded small interfering RNAs (siRNAs) of 21, 22, and 24 bp in vitro to products of approximately 14 bp that are inactive in RNAi. It also affected total siRNA isolated from SPFMV-infected sweet potato plants, suggesting a viral mechanism for suppression of RNAi by cleavage of siRNA. Results implicate RNase3 in suppression of antiviral defense in sweet potato plants and reveal RNase3 as a protein that mediates viral synergism with several unrelated viruses, a function previously described only for P1/HC-Pro.  相似文献   

13.
Previously we have shown that monomeric RNase A has no significant biological activity, whereas its oligomers (dimer to tetramer) prepared by lyophilizing from 50% acetic acid solutions, show remarkable aspermatogenic and antitumor activities. Furthermore, conjugates prepared by chemical binding of native RNase A to polyethylene glycol (PEG) have shown a significant aspermatogenic and antitumor activities. In this work we show that the chemical conjugation of PEG to the RNase A C-dimer, and to the two RNase A trimers (NC-trimer and C- trimer) decreases the aspermatogenic activity of the oligomers while increasing their inhibitory activity on the growth of the human UB900518 amelanotic melanoma transplanted in athymic nude mice. Moreover, the PEG-conjugated RNaseA oligomers are devoid, like the free oligomers, of any embryotoxic activity.  相似文献   

14.
A number of aminoglycosides have been reported to interact and interfere with the function of various RNA molecules. Among these are 16S rRNA, the group I intron, and the hammerhead ribozymes. In this report we show that cleavage by RNase P RNA in the absence as well as in the presence of the RNase P protein is inhibited by several aminoglycosides. Among the ones we tested, neomycin B was found to be the strongest inhibitor with a Ki value in the micromolar range (35 microM). Studies of lead(II)-induced cleavage of RNase P RNA suggested that binding of neomycin B interfered with the binding of divalent metal ions to the RNA. Taken together, our findings suggest that aminoglycosides compete with Mg2+ ions for functionally important divalent metal ion binding sites. Thus, RNase P, which is an essential enzyme, is indeed a potential drug target that can be used to develop new drugs by using various aminoglycosides as lead compounds.  相似文献   

15.
The dual-mode quaternary structure of seminal RNase.   总被引:1,自引:1,他引:0       下载免费PDF全文
Bovine seminal ribonuclease, the only dimeric ribonuclease described thus far, is found to exist in two different quaternary structure forms. In one, the N-terminal segment (residues 1-17) of each subunit is interchanged with the remaining segment of the other subunit, whereas in the second, such interchange does not occur. Functionally, they differ in that the catalytic activity of the form with interchange can be modulated by the substrate, whereas the noninterchange form exhibits no cooperativity. Each form can convert into the other, up to an equilibrium ratio, which is that found for the isolated protein. The results of refolding experiments of unfolded protein chains suggest that also in vivo the form lacking interchange may be produced first and is then partially transformed into the other dimeric form until equilibrium is reached. Although the implications of these findings may not be immediately apparent, they are intriguing and may have an impact on the unusual noncatalytic actions of the protein, such as its selective cytotoxicity toward tumor cells, activated T cells, and differentiated male germ cells.  相似文献   

16.
17.
Protein-protein interactions with subunits of human nuclear RNase P   总被引:2,自引:0,他引:2  
A yeast two-hybrid system was used to analyze interactions among the protein subunits of human nuclear RNase P themselves and with other interacting partners encoded in a HeLa cell cDNA library. Subunits hpop1, Rpp21, Rpp29, Rpp30, Rpp38, and Rpp40 are involved in extensive, but weak, protein-protein interactions in the holoenzyme complex. Rpp14, Rpp20, and Rpp30 were found to have strong interactions with proteins encoded in the cDNA library. The small heat shock protein 27, which interacts with Rpp20 in the two-hybrid assay, binds to Rpp20 during affinity chromatography and can be found to be associated with, and enhances the activity of, highly purified RNase P. RNase P activity in HeLa cell nuclei also increases under the stress of heat shock.  相似文献   

18.
RNase P, which catalyzes the magnesium-dependent 5'-end maturation of tRNAs in all three domains of life, is composed of one essential RNA and a varying number of protein subunits depending on the source: at least one in bacteria, four in archaea, and nine in eukarya. To address why multiple protein subunits are needed for archaeal/eukaryal RNase P catalysis, in contrast to their bacterial relative, in vitro reconstitution of these holoenzymes is a prerequisite. Using recombinant subunits, we have reconstituted in vitro the RNase P holoenzyme from the thermophilic archaeon Pyrococcus furiosus (Pfu) and furthered our understanding regarding its functional organization and assembly pathway(s). Whereas Pfu RNase P RNA (RPR) alone is capable of multiple turnover, addition of all four RNase P protein (Rpp) subunits to Pfu RPR results in a 25-fold increase in its k(cat) and a 170-fold decrease in K(m). In fact, even in the presence of only one of two specific pairs of Rpps, the RPR displays activity at lower substrate and magnesium concentrations. Moreover, a pared-down, mini-Pfu RNase P was identified with an RPR deletion mutant. Results from our kinetic and footprinting studies on Pfu RNase P, together with insights from recent structures of bacterial RPRs, provide a framework for appreciating the role of multiple Rpps in archaeal RNase P.  相似文献   

19.
An antibody generated to an α-keto amide containing hapten 1 catalyzes the cis-trans isomerization of peptidyl-prolyl amide bonds in peptides and in the protein RNase T1. The antibody-catalyzed peptide isomerization reaction showed saturation kinetics for the cis-substrate, Suc-Ala-Ala-Pro-Phe-pNA, with a kcat/Km value of 883 s−1M−1; the reaction was inhibited by the hapten analog 13 (Ki = 3.0 ± 0.4 μM). Refolding of denatured RNase T1 to its native conformation also was catalyzed by the antibody, with the antibody-catalyzed folding reaction inhibitable both by the hapten 1 and hapten analog 13. These results demonstrate that antibodies can catalyze conformational changes in protein structure, a transformation involved in many cellular processes.  相似文献   

20.
Small-molecule activators of RNase L with broad-spectrum antiviral activity   总被引:2,自引:0,他引:2  
RNase L, a principal mediator of innate immunity to viral infections in higher vertebrates, is required for a complete IFN antiviral response against certain RNA stranded viruses. dsRNA produced during viral infections activates IFN-inducible synthetases that produce 5'-phosphorylated, 2',5'-oligoadenylates (2-5A) from ATP. 2-5A activates RNase L in a wide range of different mammalian cell types, thus blocking viral replication. However, 2-5A has unfavorable pharmacologic properties; it is rapidly degraded, does not transit cell membranes, and leads to apoptosis. To obtain activators of RNase L with improved drug-like properties, high-throughput screening was performed on chemical libraries by using fluorescence resonance energy transfer. Seven compounds were obtained that activated RNase L at micromolar concentrations, and structure-activity relationship studies resulted in identification of an additional four active compounds. Two lead compounds were shown to have a similar mechanistic path toward RNase L activation as the natural activator 2-5A. The compounds bound to the 2-5A-binding domain of RNase L (as determined by surface plasmon resonance and confirmed by computational docking), and the compounds induced RNase L dimerization and activation. Interestingly, the low-molecular-weight activators of RNase L had broad-spectrum antiviral activity against diverse types of RNA viruses, including the human pathogen human parainfluenza virus type 3, yet these compounds by themselves were not cytotoxic at the effective concentrations. Therefore, these RNase L activators are prototypes for a previously uncharacterized class of broad-spectrum antiviral agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号