首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In humans, several HLA‐DRB loci (DRB1/3/4/5) encode diverse β‐chains that pair with α‐chains to form DR molecules on the surface of APC. While DRB1 and DRB5 have been extensively studied, the role of DRB3/4 products of DR52/DR53 haplotypes has been largely neglected. To clarify the relative expression of DRB3, we quantified DRB3 mRNA levels in comparison with DRB1 mRNA from the same haplotype in both B cells and monocytes, observing quantitatively significant DRB3 synthesis. In CD19+ cells, DRB1*03/11/13 was 3.5‐fold more abundant than DRB3, but in CD14+ this difference was only two‐fold. Monocytes also had lower overall levels of DR mRNA compared with B cells, which was confirmed by cell surface staining of DRB1 and DRB3. To evaluate the functional role of DRB3, tetramer‐guided epitope mapping was used to detect T cells against tetanus toxin and several influenza antigens presented by DRB3*0101/0202 or DRB1*03/11/13. None of the epitopes discovered were shared among any of the DR molecules. Quantitative assessment of DRB3‐tetanus toxin specific T cells revealed that they are present at similar frequencies as those observed for DRB1. These results suggest that DRB3 plays a significant role in antigen presentation with different epitopic preferences to DRB1. Therefore, DRB3, like DRB5, serves to extend and complement the peptide repertoire of DRB1 in antigen presentation.  相似文献   

2.
The human major histocompatibility complex class II isotype HLA‐DR is currently used as an activation marker for T cells. However, whether an endogenous protein expression or a molecular acquisition accounts for the presence of HLA‐DR on T cells remains undetermined and still controversial. To further characterize this phenomenon, we compared several aspects of the presence of the HLA‐DR protein to the presence of associated mRNA (HLA‐DRB1), focusing on human T cells from peripheral blood of healthy individuals. Using a flow cytometric approach, we determined that the HLA‐DR observed on CD4+ T cells was almost exclusively cell surface‐associated, while for autologous CD19+ B cells, the protein could be located in the plasma membrane as well as in the cytoplasm. Moreover, negligible expression levels of HLA‐DRB1 were found in CD4+ T cells, using an HLA‐DRB1 allele‐specific qPCR assay. Finally, the presence of HLA‐DR was not confined to activated CD4+ and CD8+ T cells, as evaluated by the co‐expression of CD25. The functional role of the HLA‐DR molecule on T cells remains enigmatic; however, this study presents evidence of fundamental differences for the presence of HLA‐DR on T cells from HLA‐DR in the context of antigen‐presenting cells, which is a well‐known phenomenon. Although an inducible endogenous protein expression cannot be excluded for the T cells, our findings suggest that a re‐evaluation of the HLA‐DR as a T cells activation marker is warranted.  相似文献   

3.
Detection of CD4+ T cells specific for tumor‐associated antigens is critical to investigate the spontaneous tumor immunosurveillance and to monitor immunotherapy protocols in patients. We investigated the ability of HLA‐DR*1101 multimers to detect CD4+ T cells specific for three highly promiscuous MAGE‐A3 derived peptides: MAGE‐A3191–205 (p39), MAGE‐A3281–295 (p57) and MAGE‐A3286–300 (p58). Tetramers stained specific CD4+ T cells only when loaded with p39, although all peptides activated the specific T cells when presented by plastic‐bound HLA‐DR*1101 monomers. This suggested that tetramer staining ability was determined by the mode rather than the affinity of peptide binding to HLA‐DR*1101. We hypothesized that peptides should bear a single P1 anchor residue to bind all arms of the multimer in a homogeneous register to generate peptide‐HLA‐DR conformers with maximal avidity. Bioinformatics analysis indicated that p39 contained one putative P1 anchor residue, whereas the other two peptides contained multiple ones. Designing p57 and p58 analogues containing a single anchor residue generated HLA‐DR*1101 tetramers that stained specific CD4+ T cells. Producing HLA‐DR*1101 monomers linked with the optimized MAGE‐A3 analogues, but not with the original epitopes, further improved tetramer efficiency. Optimization of CD4+ T‐cell epitope‐binding registers is thus critical to generate functional HLA‐DR tetramers.  相似文献   

4.
Mast cells (MCs) are immune cells residing in tissues where pathogens are first encountered. It has been indicated that MCs might also be involved in setting the outcome of T‐cell responses. However, little is known about the capacity of human MCs to express MHC class II and/or to capture and present antigens to CD4+ T cells. To study the T‐cell stimulatory potential of human MCs, CD34+ stem cell derived MCs were generated. These cells expressed HLA‐DR when stimulated with IFN‐γ, and, importantly, presented peptide and protein for activation of antigen‐specific CD4+ T cells. The interplay between MC and T cell led to increased HLA‐DR expression on MCs. MCs were present in close proximity to T cells in tonsil and expressed HLA‐DR and CD80, indicating their ability to present antigens to CD4+ T cells in T‐cell areas of human LNs. Our data show that MCs can present native antigens to human CD4+ T cells and that HLA‐DR expressing MCs are present in tonsil tissue, indicating that human MCs can directly activate T cells and provide a rationale to study the potential of MCs to prime and/or skew human T‐cell responses.  相似文献   

5.
Cellular immune responses against the oncoantigen anaplastic lymphoma kinase (ALK) in patients with ALK‐positive anaplastic large cell lymphoma (ALCL) have been detected using peptide‐based approaches in individuals preselected for human leucocyte antigen (HLA)‐A*02:01. In this study, we aimed to evaluate nucleophosmin (NPM)‐ALK‐specific CD8+ T cell responses in ALCL patients ensuring endogenous peptide processing of ALK antigens and avoiding HLA preselection. We also examined the HLA class I restriction of ALK‐specific CD8+ T cells. Autologous dendritic cells (DCs) transfected with in‐vitro‐transcribed RNA (IVT‐RNA) encoding NPM–ALK were used as antigen‐presenting cells for T cell stimulation. Responder T lymphocytes were tested in interferon‐gamma enzyme‐linked immunospot (ELISPOT) assays with NPM–ALK‐transfected autologous DCs as well as CV‐1 in Origin with SV40 genes (COS‐7) cells co‐transfected with genes encoding the patients’ HLA class I alleles and with NPM–ALK encoding cDNA to verify responses and define the HLA restrictions of specific T cell responses. NPM–ALK‐specific CD8+ T cell responses were detected in three of five ALK‐positive ALCL patients tested between 1 and 13 years after diagnosis. The three patients had also maintained anti‐ALK antibody responses. No reactivity was detected in samples from five healthy donors. The NPM–ALK‐specific CD8+ T cell responses were restricted by HLA‐C‐alleles (C*06:02 and C*12:02) in all three cases. This approach allowed for the detection of NPM–ALK‐reactive T cells, irrespective of the individual HLA status, up to 9 years after ALCL diagnosis.  相似文献   

6.
Human cartilage gp‐39 (HC gp‐39) is a well‐known autoantigen in rheumatoid arthritis (RA). However, the exact localization, fluctuation and function of HC gp‐39 in RA are unknown. Therefore, using a glucose‐6‐phosphate isomerase (GPI)‐induced model of arthritis, we investigated these aspects of HC gp‐39 in arthritis. The rise in serum HC gp‐39 levels was detected on the early phase of GPI‐induced arthritis (day 7) and the HC gp‐39 mRNA was increased significantly on splenic CD4+T cells on day7, but not on CD11b+cells. Moreover, to identify the characterization of HC gp‐39+CD4+T cells, we assessed the analysis of T helper (Th) subsets. As a result, HC gp‐39 was expressed dominantly in CD4+CD25+ forkhead box protein 3 (FoxP3)+ refulatory T cells (Treg), but not in Th1, Th2 or Th17 cells. Furthermore, to investigate the effect of HC gp‐39 to CD4+T cells, T cell proliferation assay and cytokine production from CD4+T cells using recombinant HC gp‐39 was assessed. We found that GPI‐specific T cell proliferation and interferon (IFN)‐γ or interleukin (IL)‐17 production were clearly suppressed by addition of recombinant HC gp‐39. Antigen‐specific over‐expression of HC gp‐39 in splenic CD4+CD25+ FoxP3+ Treg cells occurs in the induction phase of GPI‐induced arthritis, and addition of recombinant HC gp‐39 suppresses antigen‐specific T‐cell proliferation and cytokine production, suggesting that HC gp‐39 in CD4+ T cells might play a regulatory role in arthritis.  相似文献   

7.
Heat shock proteins (HSP) can interact with a wide variety of peptides and the resulting HSP:peptide complexes are known to be highly immunogenic. The ability of HSP:peptide complexes to elicit CD8+ T cell responses by cross-presentation of exogenous antigen via MHC class I is well known. In contrast, their role in the activation of CD4+ T cells is less clearly defined, although several recent studies in mice and T cell lines suggest an involvement of HSP in the presentation of antigenic peptides via MHC class II. In this study we have investigated the potential of antigenic peptides from tetanus toxin and influenza hemagglutinin complexed to the human stress-inducible Hsp70 to enhance activation and proliferation of human memory CD4+ T cells. Hsp70:peptide complexes were found to amplify the proliferation of antigen-specific CD4+ T cells as confirmed by HLA-DR tetramer staining. Complex formation of the antigenic peptide with Hsp70 was absolutely required to elicit an antigen-specific amplification. This effect was most pronounced at low doses of antigen and decreasing APC/CD4+ T cell ratios. Taken together, we show the potential of Hsp70 to enhance antigen-specific CD4+ T cell proliferation and to increase the immunogenicity of presented peptides in human CD4+ T cells.  相似文献   

8.
Several β cell antigens recognized by T cells in the non‐obese diabetic (NOD) mouse model of type 1 diabetes (T1D) are also T cell targets in the human disease. While numerous antigen‐specific therapies prevent diabetes in NOD mice, successful translation of rodent findings to patients has been difficult. A human leucocyte antigen (HLA)‐transgenic mouse model incorporating human β cell‐specific T cells might provide a better platform for evaluating antigen‐specific therapies. The ability to study such T cells is limited by their low frequency in peripheral blood and the difficulty in obtaining islet‐infiltrating T cells from patients. We have worked to overcome this limitation by using lentiviral transduction to ‘reprogram’ primary human CD8 T cells to express three T cell receptors (TCRs) specific for a peptide derived from the β cell antigen islet‐specific glucose‐6‐phosphatase catalytic subunit‐related protein (IGRP265–273) and recognized in the context of the human class I major histocompatibility complex (MHC) molecule HLA‐A2. The TCRs bound peptide/MHC multimers with a range of avidities, but all bound with at least 10‐fold lower avidity than the anti‐viral TCR used for comparison. One exhibited antigenic recognition promiscuity. The β cell‐specific human CD8 T cells generated by lentiviral transduction with one of the TCRs released interferon (IFN)‐γ in response to antigen and exhibited cytotoxic activity against peptide‐pulsed target cells. The cells engrafted in HLA‐A2‐transgenic NOD‐scid IL2rγnull mice and could be detected in the blood, spleen and pancreas up to 5 weeks post‐transfer, suggesting the utility of this approach for the evaluation of T cell‐modulatory therapies for T1D and other T cell‐mediated autoimmune diseases.  相似文献   

9.
Heat‐shock protein 70 (Hsp70)–peptide complexes are involved in MHC class I‐ and II‐restricted antigen presentation, enabling enhanced activation of T cells. As shown previously, mammalian cytosolic Hsp70 (Hsc70) molecules interact specifically with HLA‐DR molecules. This interaction might be of significance as Hsp70 molecules could transfer bound antigenic peptides in a ternary complex into the binding groove of HLA‐DR molecules. The present study provides new insights into the distinct interaction of Hsp70 with HLA‐DR molecules. Using a quantitative binding assay, it could be demonstrated that a point mutation of amino acids alanine 406 and valine 438 in the substrate binding pocket led to reduced peptide binding compared with the wild‐type Hsp70 whereas HLA‐DR binding remains unaffected. The removal of the C‐terminal lid neither altered the substrate binding capacity nor the Hsp70 binding characteristics to HLA‐DR. A truncated variant lacking the nucleotide binding domain showed no binding interactions with HLA‐DR. Furthermore, the truncated ATPase subunit of constitutively expressed Hsc70 revealed similar binding affinities to HLA‐DR compared with the complete Hsc70. Hence, it can be assumed that the Hsp70–HLA‐DR interaction takes place outside the peptide binding groove and is attributed to the ATPase domain of HSP70 molecules. The Hsp70‐chaperoned peptides might thereby be directly transferred into the binding groove of HLA‐DR, so enabling enhanced presentation of the peptide on antigen‐presenting cells and leading to an improved proliferation of responding T cells as shown previously.  相似文献   

10.
Mast cells are innate immune cells usually residing in peripheral tissues, where they are likely to activate T‐cell responses. Similar to other myeloid immune cells, mast cells can function as antigen‐presenting cells. However, little is known about the capacity of human mast cells to costimulate CD4+ T cells. Here, we studied the T‐cell stimulatory potential of human mast cells. Peripheral blood derived mast cells were generated and cocultured with isolated CD4+ T cells. In the presence of T‐cell receptor triggering using anti‐CD3, mast cells promoted strong proliferation of T cells, which was two‐ to fivefold stronger than the “T‐cell promoting capacity” of monocytes. The interplay between mast cells and T cells was dependent on cell–cell contact, suggesting that costimulatory molecules on the mast cell surface are responsible for the effect. However, in contrast to monocytes, the T‐cell costimulation by mast cells was independent of the classical costimulatory molecule CD28, or that of OX40L, ICOSL, or LIGHT. Our data show that mast cells can costimulate human CD4+ T cells to induce strong T‐cell proliferation, but that therapies aiming at disrupting the interaction of CD28 and B7 molecules do not inhibit mast cell mediated T‐cell activation.  相似文献   

11.
Background Accumulating evidence suggests that T cells play an important role in the pathogenesis of atopic dermatitis (AD); yet, little is known of the differentiation status of CD4+ T cells specific for common environmental allergens, such as the major cat allergen, Fel d 1. Objective To determine the frequency, differentiation phenotype and function of circulating Fel d 1‐specific CD4+ T cells in adult individuals with severe persistent AD in comparison with healthy controls. Methods Using HLA class II tetrameric complexes based on a HLA‐DPB1*0401‐restricted Fel d 1 epitope, ex vivo and cultured T cell frequency and phenotype were analysed in individuals with AD and healthy controls. Cytokine secretion was measured by ex vivo and cultured IL‐4 and IFN‐γ ELISpots. Results Ex vivo Fel d 1‐specific DPB1*0401‐restricted CD4+ T cells in both atopics and non‐atopics express high levels of CCR7, CD62L, CD27 and CD28, placing the cells largely within the central memory subgroup. However, the functional phenotype was distinct, with greater IL‐4 production from the cells derived from atopics, which correlated with disease severity. Conclusions and Clinical Relevance Circulating Fel d 1‐specific DPB1*0401‐restricted CD4+ T cells in both atopic and non‐atopic donors maintain a central memory phenotype; however in atopics, the cells had greater Th2 effector function, compatible with a disease model of altered antigen delivery in atopic individuals. Cite this as: L. R. Crack, H. W. Chan, T. McPherson and G. S. Ogg, Clinical & Experimental Allergy, 2011 (41) 1555–1567.  相似文献   

12.
An exclusive feature of dendritic cells (DCs) is their ability to cross‐present exogenous antigens in MHC class I molecules. We analyzed the fate of protein antigen in antigen presenting cell (APC) subsets after uptake of naturally formed antigen‐antibody complexes in vivo. We observed that murine splenic DC subsets were able to present antigen in vivo for at least a week. After ex vivo isolation of four APC subsets, the presence of antigen in the storage compartments was visualized by confocal microscopy. Although all APC subsets stored antigen for many days, their ability and kinetics in antigen presentation was remarkably different. CD8α+ DCs showed sustained MHC class I‐peptide specific CD8+ T‐cell activation for more than 4 days. CD8α? DCs also presented antigenic peptides in MHC class I but presentation decreased after 48 h. In contrast, only the CD8α? DCs were able to present antigen in MHC class II to specific CD4+ T cells. Plasmacytoid DCs and macrophages were unable to activate any of the two T‐cell types despite detectable antigen uptake. These results indicate that naturally occurring DC subsets have functional antigen storage capacity for prolonged T‐cell activation and have distinct roles in antigen presentation to specific T cells in vivo.  相似文献   

13.
Background: It has been reported for the peripheral T cell repertoire that CD4 molecules may enhance adhesion between T cells and antigen presenting cells and, through their physical association with T cell antigen receptors, contribute to signal transduction. Objective: The aims of this study were to determine if the modulation of CD4 molecules had differential effects on T cell recognition, antigen induced cytokine (IL-4 and IFNγ), release and the induction of specific anergy for human TH-0, TH-1 and TH-2 cells. Methods: A panel of anti-CD4 antibodies was examined for its ability to modulate T cell proliferation, cytokine production and tolerance induction in house dust mite (TH-0 and TH-2) and influenza haemagglutinin (TH-1) specific human CD4+ T cell clones all restricted by DRB1*1101 and isolated from dust mite allergic individuals. Results: We observed that anti-CD4 antibodies may inhibit or enhance antigen mediated T cell proliferation, which may reflect the differential requirements of T cells for selective functions of CD4. Furthermore, IFNγ and IL-4 production was differentially modulated depending on the specificity of the anti-CD4 antibody and the clone of T cells. However, pretreatment of T cells with anti-CD4 antibody alone neither induced nor enhanced the susceptibility of T cells to peptide mediated anergy. Conclusion: Antigen recognition by different subsets of human CD4+ T cells has differential requirements on CD4, whereas the induction of specific anergy appeared to be independent of the functions of CD4 molecules. Antigen induced IFNγ production was more susceptible than IL-4 to the inhibitory effects of anti-CD4 antibodies. Furthermore, it appeared that certain anti-CD4 antibodies can dissociate antigen induced IFNγ and IL-4 production, and may downregulate IFNγ synthesis without inhibiting antigen dependent proliferation.  相似文献   

14.
In order to elucidate the mechanisms by which tumour‐specific CD4+ T‐cell responses are impaired during tumour development, an attempt was made to identify factors which impair CD4+ T‐cell responses at a late tumour‐bearing stage. Plasma from mice bearing B16 melanoma for 30 days (plasma d30) showed a more profound immunosuppressive effect on the in vitro proliferation of unrelated antigen‐specific CD4+ T cells in the presence of both antigen and antigen‐presenting cells (APC) than plasma from naïve mice. The level of plasma transforming growth factor (TGF)‐β was elevated in mice bearing B16 melanoma for 30 days compared with naïve mice, and the suppressive effect of plasma d30 was partially diminished by the neutralization of TGF‐β. Interestingly, immunoglobulin (IgG)‐bound TGF‐β, but not IgG‐unbound TGF‐β, in plasma d30 was suggested to be responsible for the immunosuppressive activity. In addition, no suppressive effect of plasma d30 was observed when antigen was added as a class II peptide, thus suggesting that the impaired proliferation of CD4+ T cells in the presence of plasma d30 was due to a dysfunction of antigen uptake/processing by APC. Furthermore, dissociation between IgG and TGF‐β resulted in a loss of the suppressive activity of plasma d30. Taken together, these results suggest that circulating IgG‐bound TGF‐β is, at least in part, responsible for the impaired responses of CD4+ T cells at the late tumour‐bearing stage by suppressing antigen uptake/ processing by APC.  相似文献   

15.
IL‐10 is an anti‐inflammatory cytokine that inhibits maturation and cytokine production of dendritic cells (DCs). Although mature DCs have the unique capacity to prime CD8+ CTL, IL‐10 can promote CTL responses. To understand these paradoxic findings, we analyzed the role of IL‐10 produced by human APC subsets in T‐cell responses. IL‐10 production was restricted to CD1c+ DCs and CD14+ monocytes. Interestingly, it was differentially regulated, since R848 induced IL‐10 in DCs, but inhibited IL‐10 in monocytes. Autocrine IL‐10 had only a weak inhibitory effect on DC maturation, cytokine production, and CTL priming with high‐affinity peptides. Nevertheless, it completely blocked cross‐priming and priming with low‐affinity peptides of a self/tumor‐antigen. IL‐10 also inhibited CD1c+ DC‐induced CD4+ T‐cell priming and enhanced Foxp3 induction, but was insufficient to induce T‐cell IL‐10 production. CD1c+ DC‐derived IL‐10 had also no effect on DC‐induced secondary expansions of memory CTL. However, IL‐15‐driven, TCR‐independent proliferation of memory CTL was enhanced by IL‐10. We conclude that DC‐derived IL‐10 selects high‐affinity CTL upon priming. Moreover, IL‐10 preserves established CTL memory by enhancing IL‐15‐dependent homeostatic proliferation. These combined effects on CTL priming and memory maintenance provide a plausible mechanism how IL‐10 promotes CTL responses in humans.  相似文献   

16.
Studies in mice have shown that CD70 on dendritic cells (DCs) is sufficient to convert T‐cell tolerance into immunity and hence induce anti‐tumour immune responses. Therefore, it is important to investigate (i) optimal stimuli to induce CD70 on human monocyte‐derived DCs (MoDCs), which are widely used for tumour immunotherapy, and (ii) the role of CD70 in functional differentiation of naive CD4+ and CD8+ T cells stimulated with MoDCs. We show that interferon‐α (IFN‐α) is a key cytokine to differentiate monocytes into DCs with the capacity to express CD70 upon maturation. CD70 expression on IFN‐α‐induced MoDCs was elicited by different categories of maturation‐inducing factors (Toll‐like receptor ligands, CD40 ligand and pro‐inflammatory mediators), among which prostaglandin E2 was most effective. Naive T cells stimulated with MoDCs also expressed CD70. Stimulation with MoDCs promoted naive CD4+ T cells to acquire the ability to produce T helper type 1 and 2 cytokines in a CD70‐dependent manner. In contrast, the CD70–CD27 interaction diminished the production of an immunoregulatory cytokine IL‐10. The CD27 signal did not play a dominant role in the induction of effector molecules in naive CD8+ T cells during the stimulation with MoDCs. This study adds a novel function to the versatile cytokines, type I IFNs, that is, the induction of CD70 on MoDCs. CD70 promotes naive CD4+ T cells to acquire immunostimulatory activity through the DC–T‐cell and T‐cell–T‐cell interactions during the stimulation with MoDCs. Hence, the CD70–CD27 interaction may play an important role in inducing effective immune responses in DC‐based immunotherapy.  相似文献   

17.
Background The IgE response against protein antigens is profoundly influenced by the dose used for sensitization. Objective The aim of the study was to identify immune cells that are involved in antigen dose‐dependent regulation of IgE formation. Methods Wild‐type mice as well as T helper (Th)1‐deficient IL‐12p40?/? and IFN‐γ?/? mice were immunized by repeated intraperitoneal injection of either low doses (K01 mice) or high doses (K100 mice) of keyhole limpet haemocyanin adsorbed to aluminium hydroxide. Splenocytes of immunized mice were restimulated in vitro and antigen‐dependent T cell proliferation and cytokine production were measured. The frequency of regulatory T cell subsets among splenocytes from K01 and K100 mice was compared using fluorocytometry and RT‐PCR analysis. Splenocytes or T cell subpopulations were transferred into naïve mice and the effect of lymphocyte transfer on IgE production after priming of recipients with low antigen doses was determined. Results Specific IgE production was considerably impaired in K100 mice. Antigenic restimulation revealed hypoproliferation of K100 splenocytes and reduced production of Th2 cytokines IL‐4, IL‐5 and IL‐13, but no induction of IFN‐γ production. Moreover, lymphocytes from K01 and K100 mice did not show significant differences in the expression of molecules associated with the phenotype or activity of conventional regulatory T cells. Transfer of splenocytes or purified T cells from K100 mice substantially suppressed the induction of IgE production in the recipients in an antigen‐ and isotype‐specific manner. Neither CD4+ nor CD8+ T cells from K100 mice were able to inhibit IgE formation; instead, we identified CD4?CD8? double‐negative T cells (dnT cells) as the principal T cell population, which potently suppressed IgE production. Conclusion Our data demonstrate that CD4?CD8? dnT cells play a major role in the regulation of IgE responses induced by high antigen doses.  相似文献   

18.
While CD4+ T lymphocytes usually recognize antigens in the context of major histocompatibility (MHC) class II alleles, occurrence of MHC class‐I restricted CD4+ T cells has been reported sporadically. Taking advantage of a highly sensitive MHC tetramer‐based enrichment approach allowing detection and isolation of scarce Ag‐specific T cells, we performed a systematic comparative analysis of HLA‐A*0201‐restricted CD4+ and CD8+ T‐cell lines directed against several immunodominant viral or tumoral antigens. CD4+ T cells directed against every peptide‐MHC class I complexes tested were detected in all donors. These cells yielded strong cytotoxic and T helper 1 cytokine responses when incubated with HLA‐A2+ target cells carrying the relevant epitopes. HLA‐A2‐restricted CD4+ T cells were seldom expanded in immune HLA‐A2+ donors, suggesting that they are not usually engaged in in vivo immune responses against the corresponding peptide‐MHC class I complexes. However, these T cells expressed TCR of very high affinity and were expanded following ex vivo stimulation by relevant tumor cells. Therefore, we describe a versatile and efficient strategy for generation of MHC class‐I restricted T helper cells and high affinity TCR that could be used for adoptive T‐cell transfer‐ or TCR gene transfer‐based immunotherapies.  相似文献   

19.
HIV‐induced immune activation leads to expansion of a subset of human CD8+ T cells expressing HLA‐DR antigens. Expansion of CD8+HLA‐DR+ T cells can be also observed in non‐HIV settings including several autoimmune diseases and aging. Although these cells are felt to represent “immune exhaustion” and/or to be anergic, their precise role in host defense has remained unclear. Here, we report that this subset of cells exhibits a restricted repertoire, shows evidence of multiple rounds of division, but lacks markers of recent TCR engagement. Detailed cell cycle analysis revealed that compared with their CD8+HLA‐DR? counterpart, the CD8+HLA‐DR+ T‐cell pool contained an increased fraction of cells in S‐phase with elevated levels of the G2/M regulators: cyclin A2, CDC25C, Cdc2 (CDK1), indicating that these cells are not truly anergic but rather experiencing proliferation in vivo. Together, these data support a hypothesis that antigen stimulation leads to the initial expansion of a CD8+ pool of cells in vivo that undergo further expansion independent of ongoing TCR engagement. No qualitative differences were noted between CD8+HLA‐DR+ cells from HIV+ and HIV? donors, indicating that the generation of CD8+HLA‐DR+ T cells is a part of normal immune regulation that is exaggerated in the setting of HIV‐1 infection.  相似文献   

20.
CD40L is one of the key molecules bridging the activation of specific T cells and the maturation of professional and nonprofessional antigen‐presenting cells including B cells. CD4+ T cells have been regarded as the major T‐cell subset that expresses CD40L upon cognate activation; however, we demonstrate here that a putative CD8+ helper T‐cell subset expressing CD40L is induced in human and murine CD8+ T cells in vitro and in mice immunized with antigen‐pulsed dendritic cells. IL‐12 and STAT4‐mediated signaling was the major instructive cytokine signal boosting the ability of CD8+ T cells to express CD40L both in vitro and in vivo. Additionally, TCR signaling strength modulated CD40L expression in CD8+ T cells after primary differentiation in vitro as well as in vivo. The induction of CD40L in CD8+ T cells regulated by IL‐12 and TCR signaling may enable CD8+ T cells to respond autonomously of CD4+ T cells. Thus, we propose that under proinflammatory conditions, a self‐sustaining positive feedback loop could facilitate the efficient priming of T cells stimulated by high affinity peptide displaying APCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号