首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heterologous prime‐boost strategies hold promise for vaccination against tuberculosis. However, the T‐cell characteristics required for protection are not known. We proposed that boost vaccines should induce long‐lived functional and phenotypic changes to T cells primed by Bacille Calmette Guerin (BCG) and/or natural exposure to mycobacteria. We characterized changes among specific CD4+ T cells after vaccination with the MVA85A vaccine in adults, adolescents, and children. CD4+ T cells identified with Ag85A peptide‐bearing HLA class II tetramers were characterized by flow cytometry. We also measured proliferative potential and cytokine expression of Ag85A‐specific CD4+ T cells. During the effector phase, MVA85A‐induced specific CD4+ T cells coexpressed IFN‐γ and IL‐2, skin homing integrins, and the activation marker CD38. This was followed by contraction and a transition to predominantly IL‐2‐expressing, CD45RA?CCR7+CD27+ or CD45RA+CCR7+CD27+ specific CD4+ T cells. These surface phenotypes were similar to Ag85A‐specific T cells prior to MVA85A. However, functional differences were observed postvaccination: specific proliferative capacity was markedly higher after 6–12 months than before vaccination. Our data suggest that MVA85A vaccination may modulate Ag85A‐specific CD4+ T‐cell function, resulting in greater recall potential. Importantly, surface phenotypes commonly used as proxies for memory T‐cell function did not associate with functional effects of vaccination.  相似文献   

2.
Th1 CD4+ T cells and their derived cytokines are crucial for protection against Mycobacterium tuberculosis. Using multiparametric flow cytometry, we have evaluated the distribution of seven distinct functional states (IFN‐γ/IL‐2/TNF‐α triple expressors, IFN‐γ/IL‐2, IFN‐γ/TNF‐α or TNF‐α/IL‐2 double expressors or IFN‐γ, IL‐2 or TNF‐α single expressors) of CD4+ T cells in individuals with latent M. tuberculosis infection (LTBI) and active tuberculosis (TB). We found that triple expressors, while detectable in 85–90%TB patients, were only present in 10–15% of LTBI subjects. On the contrary, LTBI subjects had significantly higher (12‐ to 15‐fold) proportions of IL‐2/IFN‐γ double and IFN‐γ single expressors as compared with the other CD4+ T‐cell subsets. Proportions of the other double or single CD4+ T‐cell expressors did not differ between TB and LTBI subjects. These distinct IFN‐γ, IL‐2 and TNF‐α profiles of M. tuberculosis‐specific CD4+ T cells seem to be associated with live bacterial loads, as indicated by the decrease in frequency of multifunctional T cells in TB‐infected patients after completion of anti‐mycobacterial therapy. Our results suggest that phenotypic and functional signatures of CD4+ T cells may serve as immunological correlates of protection and curative host responses, and be a useful tool to monitor the efficacy of anti‐mycobacterial therapy.  相似文献   

3.
Mucosal boosting of BCG‐immunised individuals with a subunit tuberculosis (TB) vaccine would be highly desirable, considering that the lungs are the principal port of entry for Mycobacterium tuberculosis (MTB) and the site of the primary infection and reactivation. However, the main roadblock for subunit TB vaccine development is the lack of suitable adjuvants that could induce robust local and systemic immune responses. Here, we describe a novel vaccine delivery system that was designed to mimic, in part, the MTB pathogen itself. The surface of yellow carnauba wax nanoparticles was coated with the highly immunogenic Ag85B Ag of MTB and they were directed to the alveolar epithelial surfaces by the incorporation of the heparin‐binding hemagglutinin adhesion (HBHA) protein. Our results showed that the i.n. immunisation of BCG‐primed BALB/c mice with nanoparticles adsorbed with Ag85B‐HBHA (Nano‐AH vaccine) induced robust humoral and cellular immune responses and IFN‐γ production, and multifunctional CD4+ T cells expressing IFN‐γ, IL‐2 and TNF‐α. Mice challenged with H37Rv MTB had a significantly reduced bacterial load in their lungs when compared with controls immunised with BCG alone. We therefore conclude that this immunisation approach is an effective means of boosting the BCG‐induced anti‐TB immunity.  相似文献   

4.
5.
Tuberculosis (TB) remains an enormous global health problem, and a new vaccine against TB more potent than the current inadequate vaccine, the Bacille Calmette‐Guérin (BCG), is urgently needed. BCG has proven to be an effective recombinant delivery vehicle for foreign antigens because of its ability to induce long‐lived specific humoral and cellular immunity. Experimental evidences have revealed that Ag85B, ESAT‐6 and Rv2608 are important immunodominant antigens of Mycobacterium tuberculosis and are all promising vaccine candidate molecules. In this study, we have constructed a novel recombinant BCG (rBCG) expressing fusion protein Ag85B‐ESAT6‐Rv2608 and evaluated the immunogenicity of rBCG in C57BL/6 mice. Results show there is strong TB‐specific CD4+ and CD8+ T lymphocytes proliferative response in mice immunized with rBCG vaccine, especially the cytotoxic CD8+ T cells playing an important role in protection against TB. And rBCG immunization has induced a significantly strong Th1 immune response, characterized by the increased ratio of IgG2b/IgG1. Results also show that rBCG immunization could increase the secretion of Th1 cytokines such as TNF‐α and IL‐2 and could decrease the secretion of Th2 cytokine IL‐10. Moreover, it was shown that rBCG immunization induced a strong humoral response in mice, characterized by the elevated IgG titre. Therefore, we conclude that this rBCG immunization could increase both cellular immune response and antigen‐specific humoral response significantly as compared to BCG immunization in mice. The above results illustrated that rBCG::Ag85B‐ESAT6‐Rv2608 is a potential candidate against M. tuberculosis for further study.  相似文献   

6.
Although bacillus Calmette–Guérin (BCG) is an established vaccine with excellent efficacy against disseminated Mycobacterium tuberculosis infection in young children, efficacy in adults suffering from respiratory tuberculosis (TB) is suboptimal. Prime‐boost viral vectored vaccines have been shown to induce effective immune responses and lentivectors (LV) have been shown to improve mucosal immunity in the lung. A mucosal boost to induce local immunogenicity is also referred to as a ‘pull’ in a prime and pull approach, which has been found to be a promising vaccine strategy. The majority of infants worldwide receive BCG immunization through current vaccine protocols. We therefore aimed to investigate the role of a boost (or pull) immunization with an LV vaccine expressing the promising TB antigen (Ag85A). We immunized BALB/c mice subcutaneously with BCG or an LV vaccine expressing a nuclear factor‐κB activator vFLIP together with Ag85A (LV vF/85A), then boosted with intranasal LV vF/85A. Prime and pull immunization with LV85A induced significantly enhanced CD8+ and CD4+ T‐cell responses in the lung, but did not protect against intranasal BCG challenge. In contrast, little T‐cell response in the lung was seen when the prime vaccine was BCG, and intranasal vF/85A provided no additional protection against mucosal BCG infection. Our study demonstrates that not all LV prime and pull approaches may be successful against TB in man and careful antigen and immune activator selection is therefore required.  相似文献   

7.
8.
Understanding the immune responses that explain why infants require multiple doses of pertussis vaccine to achieve protection against infection is a high priority. The objective of this study was to compare the function and phenotypes of antigen‐specific CD4+ T cells in adults (n = 12), compared to infants (n = 20), following vaccination with acellular pertussis (DTaP) vaccine. Peripheral blood mononuclear cells (PBMCs) were stimulated with pertussis toxoid (PT), pertactin (PRN) and filamentous haemagglutinin (FHA). Multi‐parameter flow cytometry was used to delineate CD4+ T cell populations and phenotypes producing interferon (IFN)‐γ, interleukin (IL)‐2, tumour necrosis factor (TNF)‐α and IL‐4. Based on surface CD69 expression, infants demonstrated activation of vaccine antigen‐specific CD4+ T cells similar to adults. However, among infants, Boolean combinations of gates suggested that type 1 (Th‐1) CD4+ T cell responses were confined largely to TNF‐α+IL‐2+IFN‐γ or TNF‐α+IL‐2IFN‐γ. A significantly lower percentage of polyfunctional T helper type 1 (Th1) responses (TNF‐α+IFN‐γ+IL‐2+) and type 2 (Th2) responses (IL‐4) were present in the infants compared to adults. Moreover, a significantly higher percentage of infants' functional CD4+ T cells were restricted to CD45RACCR7+CD27+ phenotype, consistent with early‐stage differentiated pertussis‐specific memory CD4+ T cells. We show for the first time that DTaP vaccination‐induced CD4+ T cells in infants are functionally and phenotypically dissimilar from those of adults.  相似文献   

9.
T cells that produce both IL‐17 and IFN‐γ, and co‐express ROR‐γt and T‐bet, are often found at sites of autoimmune inflammation. However, it is unknown whether this co‐expression of T‐bet with ROR‐γt is a prerequisite for immunopathology. We show here that T‐bet is not required for the development of Th17‐driven experimental autoimmune encephalomyelitis (EAE). The disease was not impaired in T‐bet?/? mice and was associated with low IFN‐γ production and elevated IL‐17 production among central nervous system (CNS) infiltrating CD4+ T cells. T‐bet?/? Th17 cells generated in the presence of IL‐6/TGF‐β/IL‐1 and IL‐23 produced GM‐CSF and high levels of IL‐17 and induced disease upon transfer to naïve mice. Unlike their WT counterparts, these T‐bet?/– Th17 cells did not exhibit an IL‐17→IFN‐γ switch upon reencounter with antigen in the CNS, indicating that this functional change is not critical to disease development. In contrast, T‐bet was absolutely required for the pathogenicity of myelin‐responsive Th1 cells. T‐bet‐deficient Th1 cells failed to accumulate in the CNS upon transfer, despite being able to produce GM‐CSF. Therefore, T‐bet is essential for establishing Th1‐mediated inflammation but is not required to drive IL‐23‐induced GM‐CSF production, or Th17‐mediated autoimmune inflammation.  相似文献   

10.
CXCL4 regulates multiple facets of the immune response and is highly upregulated in various Th17‐associated rheumatic diseases. However, whether CXCL4 plays a direct role in the induction of IL‐17 production by human CD4+ T cells is currently unclear. Here, we demonstrated that CXCL4 induced human CD4+ T cells to secrete IL‐17 that co‐expressed IFN‐γ and IL‐22, and differentiated naïve CD4+ T cells to become Th17‐cytokine producing cells. In a co‐culture system of human CD4+ T cells with monocytes or myeloid dendritic cells, CXCL4 induced IL‐17 production upon triggering by superantigen. Moreover, when monocyte‐derived dendritic cells were differentiated in the presence of CXCL4, they orchestrated increased levels of IL‐17, IFN‐γ, and proliferation by CD4+ T cells. Furthermore, the CXCL4 levels in synovial fluid from psoriatic arthritis patients strongly correlated with IL‐17 and IL‐22 levels. A similar response to CXCL4 of enhanced IL‐17 production by CD4+ T cells was also observed in patients with psoriatic arthritis. Altogether, we demonstrate that CXCL4 boosts pro‐inflammatory cytokine production especially IL‐17 by human CD4+ T cells, either by acting directly or indirectly via myeloid antigen presenting cells, implicating a role for CXCL4 in PsA pathology.  相似文献   

11.
Crohn's disease (CD) is a chronic inflammatory condition of the human gastrointestinal tract whose aetiology remains largely unknown. Dysregulated adaptive immune responses and defective innate immunity both contribute to this process. In this study, we demonstrated that the interleukin (IL)‐17A+interferon (IFN)‐γ+ and IL‐22+IFN‐γ+ T cell subsets accumulated specifically in the inflamed terminal ileum of CD patients. These cells had higher expression of Ki‐67 and were active cytokine producers. In addition, their proportions within both the IL‐17A‐producer and IL‐22‐producer populations were increased significantly. These data suggest that IL‐17A+IFN‐γ+ and IL‐22+IFN‐γ+ T cell subsets might represent the pathogenic T helper type 17 (Th17) population in the context of intestinal inflammation for CD patients. In the innate immunity compartment we detected a dramatic alteration of both phenotype and function of the intestinal innate lymphoid cells (ILCs), that play an important role in the maintenance of mucosal homeostasis. In the inflamed gut the frequency of the NKp44CD117ILC1s subset was increased significantly, while the frequency of NKp44+ILC3s was reduced. Furthermore, the frequency of human leucocyte antigen D‐related (HLA‐DR)‐expressing‐NKp44+ILC3s was also reduced significantly. Interestingly, the decrease in the NKp44+ILC3s population was associated with an increase of pathogenic IL‐17A+IFN‐γ+ and IL‐22+IFN‐γ+ T cell subsets in the adaptive compartment. This might suggest a potential link between NKp44+ILC3s and the IL‐17A+IFN‐γ+ and IL‐22+IFN‐γ+ T cell subsets in the terminal ileum of CD patients.  相似文献   

12.
Th1 and Th2 cell fates are traditionally viewed as mutually exclusive, but recent work suggests that these lineages may be more plastic than previously thought. When isolating splenic CD4+ T cells from mice infected with the parasitic helminth Schistosoma mansoni, we observed a defined population of IFN‐γ/IL‐4 double‐positive cells. These IFN‐γ+IL‐4+ cells showed differences in DNA methylation at the Ifng and Il4 loci when compared with IFN‐γ+IL‐4? (Th1) and IFN‐γ?IL‐4+ (Th2) cells, demonstrating that they represent a distinct effector cell population. IFN‐γ+IL‐4+ cells also displayed a discrete DNA methylation pattern at a CpG island within the body of the Gata3 gene, which encodes the master regulator of Th2 identity. DNA methylation at this region correlated with decreased Gata3 levels, suggesting a possible role in controlling Gata3 expression. These data provide important insight into the molecular mechanisms behind the co‐existence of Th1 and Th2 characteristics.  相似文献   

13.
14.
Tuberculosis (TB) remains a global health problem. The solution involves development of an effective vaccine, but has been limited by incomplete understanding of what constitutes protective immunity during natural infection with Mycobacterium tuberculosis. In this study, M. tuberculosis‐specific responses following an overnight whole‐blood assay were assessed by intracellular cytokine staining and luminex, and compared between TB cases and exposed household contacts. TB cases had significantly higher levels of IFN‐γ+TNF‐α+IL‐2+CD4+T cells compared with contacts. TB cases also had a significantly higher proportion of cells single‐positive for TNF‐α, but lower proportion of cells producing IL‐2 alone and these differences were seen for both CD4+and CD8+ T cells. Cytokine profiles from culture supernatants were significantly biased toward a Th1 phenotype (IFN‐γ and IL‐12(p40)) together with a complete abrogation of IL‐17 secretion in TB cases. Our data indicate that despite a robust response to TB antigens in active TB disease, changes in the pattern of cytokine production between TB infection and disease clearly contribute to disease progression.  相似文献   

15.
Yersinia pestis is a facultative bacterium that can survive and proliferate inside host macrophages and cause bubonic, pneumonic and systemic infection. Apart from humoral response, cell‐mediated protection plays a major role in combating the disease. Fraction 1 capsular antigen (F1‐Ag) of Y. pestis has long been exploited as a vaccine candidate. In this study, F1‐multiple antigenic peptide (F1‐MAP or MAP)‐specific cell‐mediated and cytokine responses were studied in murine model. MAP consisting of three B and one T cell epitopes of F1‐antigen with one palmitoyl residue was synthesized using Fmoc chemistry. Mice were immunized with different formulations of MAP in poly DL‐lactide‐co‐glycolide (PLGA) microspheres. F1‐MAP with CpG oligodeoxynucleotide (CpG‐ODN) as an adjuvant showed enhanced in vitro T cell proliferation and Th1 (IL‐2, IFN‐γ and TNF‐α) and Th17 (IL‐17A) cytokine secretion. Similar formulation also showed significantly higher numbers of cytokine (IL‐2, IFN‐γ)‐secreting cells. Moreover, F1‐MAP with CpG formulation showed significantly high (< 0.001) percentage of CD4+ IFN‐γ+ cells as compared to CD8+ IFN‐γ+ cells, and also more (CD4‐ IFN‐γ)+ cells secrete perforin and granzyme as compared to (CD8‐ IFN‐γ)+ showing Th1 response. Thus, the study highlights the importance of Th1 cytokine and existence of CD4+ and CD8+ immune response. This study proposes a new perspective for the development of vaccination strategies for Y. pestis that trigger T cell immune response.  相似文献   

16.
Galectin‐9 (Gal‐9) plays pivotal roles in the modulation of innate and adaptive immunity to suppress T‐cell‐mediated autoimmune models. However, it remains unclear if Gal‐9 plays a suppressive role for T‐cell function in non‐autoimmune disease models. We assessed the effects of Gal‐9 on experimental hypersensitivity pneumonitis induced by Trichosporon asahii. When Gal‐9 was given subcutaneously to C57BL/6 mice at the time of challenge with T. asahii, it significantly suppressed T. asahii‐induced lung inflammation, as the levels of IL‐1, IL‐6, IFN‐γ, and IL‐17 were significantly reduced in the BALF of Gal‐9‐treated mice. Moreover, co‐culture of anti‐CD3‐stimulated CD4 T cells with BALF cells harvested from Gal‐9‐treated mice on day 1 resulted in diminished CD4 T‐cell proliferation and decreased levels of IFN‐γ and IL‐17. CD11b+Ly‐6ChighF4/80+ BALF M? expanded by Gal‐9 were responsible for the suppression. We further found in vitro that Gal‐9, only in the presence of T. asahii, expands CD11b+Ly‐6ChighF4/80+ cells from BM cells, and the cells suppress T‐cell proliferation and IFN‐γ and IL‐17 production. The present results indicate that Gal‐9 expands immunosuppressive CD11b+Ly‐6Chigh M? to ameliorate Th1/Th17 cell‐mediated hypersensitivity pneumonitis.  相似文献   

17.
IL‐18 has been implicated in inflammatory bowel disease (IBD), however its role in the regulation of intestinal CD4+ T‐cell function remains unclear. Here we show that murine intestinal CD4+ T cells express high levels of IL‐18Rα and provide evidence that IL‐18Rα expression is induced on these cells subsequent to their entry into the intestinal mucosa. Using the CD45RBhi T‐cell transfer colitis model, we show that IL‐18Rα is expressed on IFN‐γ+, IL‐17+, and IL‐17+IFN‐γ+ effector CD4+ T cells in the inflamed colonic lamina propria (cLP) and mesenteric lymph node (MLN) and is required for the optimal generation and/or maintenance of IFN‐γ‐producing cells in the cLP. In the steady state and during colitis, TCR‐independent cytokine‐induced IFN‐γ and IL‐17 production by intestinal CD4+ T cells was largely IL‐18Rα?dependent. Despite these findings however, IL‐18Rα?deficient CD4+ T cells induced comparable intestinal pathology to WT CD4+ T cells. These findings suggest that IL‐18‐dependent cytokine induced activation of CD4+ T cells is not critical for the development of T‐cell‐mediated colitis.  相似文献   

18.
19.
Type I interferons (IFNs) have the dual ability to promote the development of the immune response and exert an anti‐inflammatory activity. We analyzed the integrated effect of IFN‐α, TCR signal strength, and CD28 costimulation on human CD4+ T‐cell differentiation into cell subsets producing the anti‐ and proinflammatory cytokines IL‐10 and IFN‐γ. We show that IFN‐α boosted TCR‐induced IL‐10 expression in activated peripheral CD45RA+CD4+ T cells and in whole blood cultures. The functional cooperation between TCR and IFN‐α efficiently occurred at low engagement of receptors. Moreover, IFN‐α rapidly cooperated with anti‐CD3 stimulation alone. IFN‐α, but not IL‐10, drove the early development of type I regulatory T cells that were mostly IL‐10+ Foxp3? IFN‐γ? and favored IL‐10 expression in a fraction of Foxp3+ T cells. Our data support a model in which IFN‐α costimulates TCR toward the production of IL‐10 whose level can be amplified via an autocrine feedback loop.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号