首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated changes in the mutagenic activity of organic fractions from soil contaminated with polycyclic aromatic hydrocarbons (PAHs) during pilot‐scale bioslurry remediation. Slurry samples were previously analyzed for changes in PAH and polycyclic aromatic compound content, and this study examined the correspondence between the chemical and toxicological metrics. Nonpolar neutral and semipolar aromatic fractions of samples obtained on days 0, 3, 7, 24, and 29 of treatment were assayed for mutagenicity using the Salmonella mutation assay. Most samples elicited a significant positive response on Salmonella strains TA98, YG1041, and YG1042 with and without S9 metabolic activation; however, TA100 failed to detect mutagenicity in any sample. Changes in the mutagenic activity of the fractions across treatment time and metabolic activation conditions suggests a pattern of formation and transformation of mutagenic compounds that may include a wide range of PAH derivatives such as aromatic amines, oxygenated PAHs, and S‐heterocyclic compounds. The prior chemical analyses documented the formation of oxygenated PAHs during the treatment (e.g., 4‐oxapyrene‐5‐one), and the mutagenicity analyses showed high corresponding activity in the semipolar fraction with and without metabolic activation. However, it could not be verified that these specific compounds were the underlying cause of the observed changes in mutagenic activity. The results highlight the need for concurrent chemical and toxicological profiling of contaminated sites undergoing remediation to ensure elimination of priority contaminants as well as a reduction in toxicological hazard. Moreover, the results imply that remediation efficacy and utility be evaluated using both chemical and toxicological metrics. Environ. Mol. Mutagen. 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Atmospheric particulate matter (PM) is genotoxic and recently was classified as carcinogenic to humans by the International Agency for Research on Cancer. PM chemical composition varies depending on source and atmospheric conditions. The Salmonella/microsome assay is the most used mutagenicity test and can identify the major chemical classes responsible for observed mutagenicity. The objective of this work was to characterize the mutagenicity of PM samples from a countryside city, Limeira, Brazil, which is influenced by heavy traffic and sugar cane biomass burning. Six samples of total PM were collected. Air mass backward trajectories were calculated. Organic extracts were assayed using the Salmonella/microsome microsuspension mutagenicity assay using TA98, YG1041, and TA1538, with and without metabolic activation (S9). YG1041 was the most sensitive strain and mutagenicity reached 9,700 revertants per m3 without metabolic activation. Potency for TA1538 was higher than TA98, indicating that this strain should be considered in air mutagenicity studies. The increased response to YG1041 relative to TA98, and the decreased response with S9, suggests that nitroaromatics are the major contributors. Limeira is among the most mutagenic cities in the world. High mutagenicity in Limeira seems to occur when the air mass from the area of sugarcane production is mixed with air from the region impacted by anthropogenic activities such as traffic. An increase in the formation of nitro‐polycyclic aromatic hydrocarbons may result from longer contact time between the aromatic compounds and the atmosphere with high NOx and ozone concentration, although more studies are required to confirm this hypothesis. Environ. Mol. Mutagen. 57:41–50, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
Biomass combustion is used in heating and electric power generation in many areas of the world. Airborne particulate matter (PM) is released when biomass is brought to a facility, stored, and combusted. Occupational exposure to airborne PM within biomass‐fueled facilities may lead to health problems. In March and August of 2006, airborne PM was collected from a biomass‐fueled facility located in Denmark. In addition, source‐specific PM was generated from straw and wood pellets using a rotating drum. The PM was analyzed for polycyclic aromatic hydrocarbons (PAHs), metals, microbial components, mutagenic activity, and ability to generate highly reactive oxygen species (hROS) in cell‐free aqueous suspensions. PM collected from the boiler room and the biomass storage hall had higher levels of mutagenic activity, PAHs and metals, and a higher hROS generating potential than the source specific PM. The mutagenic activity was generally more potent without S9 activation, and on the metabolically enhanced strain YG1041, relative to TA98. Significant correlations were found between mutagenicity on YG1041 (without S9) and PAH concentration and mutagenicity on YG1041 (with S9) and hROS generating ability. PM collected in March was more toxic than PM collected in August. Overall, airborne PM collected from the facility, especially that from the boiler room, were more toxic than PM generated from straw and wood chips. The results suggest that exposure to combustion PM in a biomass‐fueled facility, which likely includes PM from biomass combustion as well as internal combustion vehicles, may contribute to an elevated risk of adverse health effects. Environ. Mol. Mutagen., 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
The present investigation evaluated the capacity of the Salmonella mutagenicity test, the comet assay, and the micronucleus assay to detect and characterize the genotoxic profile of river sediments. Three stations were selected on an urban river (Bouches du Rhône, France) exposed to various sources of industrial and urban pollution (StA, StB, and StC) and one station on its tributary (StD). One station in a nonurban river was included (REF). The concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) were determined by HPLC, and the genotoxicity of the sediments was monitored by the Salmonella mutagenicity test (TA98 + S9, YG1041 ± S9), the comet assay, and the micronucleus assay on CHO cells. Chemical analysis showed that the total PAH concentrations ranged from 23 μg kg?1 dw (REF) to 1285 μg kg?1 dw (StD). All the sediments were mutagenic in the Salmonella mutagenicity test. The mutagenicity was probably induced by the presence of nitroarenes (StA, StB, StC, and StD) and aromatic amines (REF) as deduced from the mutagenicity profiles of strains YG1041 ± S9 and TA98 + S9. The comet assay revealed direct DNA lesions in REF, StA, and StB sediments and metabolization‐dependent DNA damage in StC and StD. The micronucleus assay showed an absence of clastogenicity for StA ± S9 and StC‐S9, and a significant clastogenicity ± S9 for the three other stations. The genotoxicity ranking determined by the comet assay + S9 matched the ranking of total and carcinogenic PAH concentrations, and this assay was found to be the most sensitive. Environ. Mol. Mutagen., 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

5.
Soil contamination enters aquatic ecosystems affecting sediment quality. The region studied is the Taquari River, Brazil, close to a site contaminated by wood preservatives, with a runoff route into the river. The first stage of the remediation process (In this article, the terms intervention and remediation have been used with slightly different meanings. We consider intervention to be the first phase of the remediation process, which aims to remove active sources) was an intervention to remove the main active sources. The Salmonella/microsome assay and polycyclic aromatic hydrocarbons (PAHs) were used to assess sediment quality in organic extracts during different intervention phases. The strains used were TA98, TA97a, and TA100 with and without S9mix (±S9). The results indicated the presence of pro‐mutagens at site Ta010 (closest to the contaminated site) in all samplings, and the highest result occurred before intervention for TA100 + S9 (1,672 ± 215.9 rev/g). These values decreased during (83 ± 23.6 rev/g) and after this process (403 ± 105.9 rev/g), although the PAHs concentrations increased. Samples from this site presented PAHs with a carcinogenic potential during the assessed periods. After intervention, Ta006 (4 km downstream from Ta010) showed the most significant mutagenesis for TA100 + S9 (764 ± 230.2 rev/g) and, although the total PAHs values were lower, the species considered carcinogenic had higher concentrations. Mutagenesis predicted values of PAHs confirmed that carcinogenic species were predominantly detected by TA100, and the other PAHs by TA97a strains. Marked contaminant release to the river was observed, mainly in Ta010 at different periods. Mutagenicity and PAHs values in an internal stream, upstream from Ta010, showed a dispersion route of these agents. Thus, contamination in Ta010 and possible contribution to Ta006, after intervention, provides a warning regarding environmental quality in the region. Environ. Mol. Mutagen. 59:625–638, 2018. © 2018 Wiley Periodicals, Inc.  相似文献   

6.
Synthetic dyes are released in wastewater from textile manufacturing plants, and many of these dyes are genotoxic. In the present study, the mutagenicity of azo, anthraquinone, and triphenyl methane dyes was investigated before and after successive biodegradation with activated sludge and the ligninolytic fungus, Irpex lacteus. Two biodegradation systems were used to reduce the genotoxicity of dyes that were not efficiently inactivated by activated sludge alone. Mutagenicity was monitored with the Salmonella reversion assay conducted with the base-pair substitution detector strains, TA100 and YG1042, and the frame-shift detector strains, TA98 and YG1041, with and without rat liver S9. All dyes except for Congo Red (CR) were mutagenic with S9 activation. Assays conducted with the dyes indicated that only the azo dye Reactive Orange 16 (RO16) was mutagenic in both TA98 and TA100. Methyl Red and Disperse Blue 3 (DB3) were mutagenic in TA98, YG1041 and YG1042, while Reactive Black 5 was mutagenic in YG1041 and YG1042. Remazol Brilliant Blue R (RBBR), Crystal violet (CV) and Bromophenol Blue (BPB) were mutagenic only in TA98, but the toxicity of the latter two dyes complicated the evaluation of their mutagenicity. CR was not mutagenic in any of the tester strains. Biodegradation studies conducted with RO16 and DB3 indicated that the two-step biodegradation process reduced the mutagenic potential of RO16 and DB3 to a greater extent than activated sludge alone; the mutagenicity of the two dyes was reduced by 95.2% and 77.8%, respectively, by the two-step process. These data indicate that the combined biodegradation process may be useful for reducing the mutagenicity associated with wastewater from textile factories that contain recalcitrant dyes.  相似文献   

7.
During sugar cane harvesting season, which occurs from May to November of each year, the crops are burnt, cut, and transported to the mills. There are reports showing that mutagenic activity and PAH content increase during harvesting season in some areas of São Paulo State in comparison with nonharvesting periods. The objective of this work was to preliminarily characterize the mutagenic activity of the total organic extracts as well as corresponding organic fractions of airborne particulate matter (PM) collected twice from two cities, Araraquara (ARQ) and Piracicaba (PRB), during sugar cane harvesting season using the Salmonella/microsome microssuspension assay. One sample collected in São Paulo metropolitan area was also included. The mutagenicity of the total extracts ranged from 55 to 320 revertants per cubic meter without the addition of S9 and from not detected to 57 revertants per cubic meter in the presence of S9 in areas with sugar cane plantations. Of the three fractions analyzed, the most polar ones (nitro and oxy) were the most potent. A comparison of the response of TA98 with YG1041 and the increased potencies without S9 indicated that nitro compounds are causing the observed effect. More studies are necessary to verify the sources of the mutagenic activity such as burning of vegetal biomass and combustion of heavy duty vehicles used to transport the sugar cane to the mills. The Salmonella/microsome assay can be an important tool to monitor the atmosphere for mutagenicity during sugar cane harvesting season. Environ. Mol. Mutagen. 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

8.
Waters receiving textile discharges can exhibit genotoxic and mutagenic activity, which has been related to the presence of dyes and aromatic amines as synthesis precursors or byproducts. The aim of this study was to identify dyes and aromatic amines in water samples impacted by textile discharges, and to evaluate the genotoxic responses of these samples using the Salmonella/microsome assay in strains TA98 and YG1041, and the Fpg‐modified comet assay in the RTL‐W1 fish cell line. The genotoxicity of river samples downstream of the discharge was greater than the upstream samples in both of the Ames tests. The Fpg‐modified comet assay detected similar levels of DNA damage in the upstream and downstream samples. Mutagenicity was not detected with TA98, except for the Quilombo River samples, but when YG1041 was used as the tester strain mutagenicity was detected for all sites with a very different profile in upstream sites relative to the other sites. The mutagenic response strongly indicated that aromatic amines or dyes were contributing to the mutagenic activity downstream. The impact of textile discharges was also confirmed by chemical analysis, because the highest concentrations of azo dyes and aromatic amines were detected in the river downstream. This study shows the value of combining assays measuring complementary endpoints to better characterize the mutagenicity of environmental samples, with the advantage that this approach provides an indication of what classes of compounds are responsible for the effect. Environ. Mol. Mutagen. 57:559–571, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

9.
Despite the promutagenic/procarcinogenic potential, polycyclic aromatic amines are widely spread in the environment. Biotransformation of the polycyclic aromatic amine 2-aminofluorene (2-AF) was proved in mammals and higher plants. The algal cell/microbe coincubation assay is an additional system that complemented those proved in mammals and higher plants, useful for detection and conversion of environmental promutagens, mainly in aquatic environments. The unicellular green algae may be a good activating system in coincubation assays in that the algal cells exist as a natural system. To increase the effectiveness of this metabolizing system, different modifications of the standard experimental procedure were conducted. Algae can accumulate and metabolize promutagenic pollutants, some of which may differ from those activated by the animal microsome metabolizing system (S9 mix) and by the plant cell/microbe coincubation assay. 2-AF was activated in the algal cell/microbe coincubation assay in which wild-type Chlamydomonas reinhardtii cells were used as an activating system and the bacteria Salmonella typhimurium TA98, YG1024, and yeast Saccharomyces cerevisiae D7 as the genetic indicator organisms. It was converted to the mutagenic product(s) for the strain YG1024, but the strain TA98 did not exhibit any increase in the mutant yield of His+ revertants. Consequently, metabolites from 2-AF are substrates for O-acetyltransferase. A direct comparison of algal 2-AF activation with mammalian activation system (S9 mix) proved the higher activity of mammalian microsome system (S9 mix). After the combination of both activation systems, a slight synergetic effect was found. Although the genetic endpoints induced by 2-AF using both modifications of the algal cell/S. cerevisiae coincubation assay and those obtained in intact yeast cells were similar at the equitoxic concentrations, 2-AF activation by the algal supernatant slightly increased the genetic endpoints studied. Environ. Mol. Mutagen. 31:383–389, 1998 © 1998 Wiley-Liss, Inc.  相似文献   

10.
The isomers of various two-, three-, and four-ring amino polycyclic aromatic hydrocarbons were tested for mutagenic activity using a microbial plate incorporation test with four Salmonella typhimurium strains (TA98, TA100, TA1535, and TA1537). All compounds were assayed with an S9 metabolic activating enzyme system. The two-ring compounds were tested only with TA98. All were weakly mutagenic (1-10 rev/micrograms) except 2-aminobiphenyl, which was not mutagenic under these test conditions. All except two of the 13 fused three-ring compounds (aminofluorenes, aminoanthracenes, and aminophenanthrenes) were active frame shift mutagens; only the aminophenanthrenes were active base-pair mutagens. The potency of this group of isomeric compounds ranged from moderately (approximately 20 rev/microgram) to strongly (greater than 5,000 rev/microgram) mutagenic. As a group, the pericondensed four-ring amino compounds were the most mutagenic of the three groups tested. All of the aminofluoranthene and aminopyrene isomers showed significant mutagenic activity with TA98, TA100, and TA1537. In general, the mutagenic potency of the amino polycyclic aromatic compounds tested was highly dependent on the structural position of the amino group.  相似文献   

11.
The use of 1-nitropyrene (1-NP) as a marker for the occupational exposure to diesel exhaust (DE) mutagens was investigated in workplace atmospheres contaminated with DE from a variety of emission sources, such as power supplies, forklifts, trucks, caterpillar vehicles, trains, ships' engines, and vehicles in city traffic. Total suspended particulate matter was collected by area sampling. The 1-NP content of acetone extracts of these samples as determined by gas chromatography-high resolution mass spectrometry varied from 0.080 to 17 μg/g acetone extractable matter, corresponding to air concentrations of 0.012 to 1.2 ng/m3. A sample collected in a rural area contained 0.0017 ng/m3 1-NP. The mutagenicity of the extracts was tested in the Salmonella typhimurium strains TA98 and TA1538, using the microsuspension assay with and without metabolic activation by an exogeneous metabolizing system (rat liver S9-fraction). In addition, the S. typhimurium strains YG1021 and YG1024 were used because of their high sensitivity towards the mutagenicity of nitro polycyclic aromatic hydrocarbons. When plotting the mutagenic potency of the air sample extracts as determined in the absence of liver S9 versus the particle-associated 1-NP level, a relatively high correlation (r = 0.80–0.91) was observed in all of the S. typhimurium strains. High correlations (r = 0.80–0.93) were also observed when plotting the results of mutagenicity testing after activation by S9 versus the outcome of chemical analysis. These results show that the 1-NP content of workplace air samples is associated with their mutagenic potency, suggesting that 1-NP may be used as a marker for occupational exposure to DE-de-rived particle-associated mutagens © 1995 Wiley-Liss, Inc.  相似文献   

12.
The Salmonella/microsome assay is the most used assay for the evaluation of air particulate matter (PM) mutagenicity and a positive correlation between strain TA98 responses and benzo[a]pyrene (B[a]P) levels in PM has been found. However, it seems that the major causes of PM mutagenicity in this assay are the nitro and oxy‐PAHs. Salmonella YG5161, a 30‐times more responsive strain to B[a]P has been developed. To verify if YG5161 strain was sufficiently sensitive to detect mutagenicity associated with B[a]P mutagenicity, PM samples were collected in Brazil and Sweden, extracted with toluene and tested in the Salmonella/microsome microsuspension assay. PAHs and B[a]P were determined and the extracts were tested with YG5161 and its parental strain TA1538. The extracts were also tested with YG1041 and its parental strain TA98. For sensitivity comparisons, we tested B[a]P and 1‐nitropyrene (1‐NP) using the same conditions. The minimal effective dose of B[a]P was 155 ng/plate for TA1538 and 7 ng/plate for YG5161. Although the maximum tested dose, 10 m3/plate containing 9 ng of B[a]P in the case of Brazilian sample, was sufficient to elicit a response in YG5161, mutagenicity was detected at a dose as low as 1 m3/plate (0.9 ng). This is probably caused by nitro‐compounds that have been shown to be even more potent than B[a]P for YG5161. It seems that the mutagenicity of B[a]P present in PM is not detectable even with the use of YG5161 unless more efficient separation to remove the nitro‐compounds from the PAH extract is performed. Environ. Mol. Mutagen. 55:510–517, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
Seven carbon black pastes used as commercial leather dyes weretested for their mutagenicity in the Salmonella/microsome test(TA98 and TA100 strains). All the samples assayed either directlyor after extraction with a 30-min sonication in benzene weredevoid of mutagenicity both in the presence and absence of ametabolic activation preparation. After a 48-h extraction withboiling toluene in a Soxhlet apparatus, four samples were mutagenicin TA98 strain in the presence of S9 mix. The activity rangedfrom 1.3 to 9.6 induced revertants/mg equivalent of extract.A weak direct mutagenic activity in strain TA98 was shown byone extract. Polycyclic aromatic hydrocarbons (PAH) were determinedin the toluene extracts by high resolution gas chromatography/massspectrometry. The presence of PAH could explain the mutagenicityof only one sample (8.79 µg of total PAH/100 mg equivalentsof extract), while low or undetectable levels of PAH were foundin the other mutagenic extracts. The mutagenic activity wasevident only after a vigorous extraction process, thus a lowbioavailability of the mutagens present in these compounds issuggested. 2To whom correspondence should be addressed  相似文献   

14.
Ayahuasca is a beverage used in religious rituals of indigenous and nonindigenous groups, and its therapeutic potential has been investigated. Ayahuasca is obtained by decoction of the Banisteriopsis caapi that contains β-carbolines (harmine, harmaline, and tetrahydroharmine) plus Psychotria viridis that contains N,N-dimethyltryptamine. Although plants used in folk medicine are recognized as safe, many of them have genotoxic potential. The Salmonella/microsome assay is usually the first line of the mutagenicity evaluation of products intended for therapeutic use. Our objective was to evaluate the mutagenicity of ayahuasca beverage and their constituents using the Salmonella/microsome assay with TA98 and TA100. We analyzed two ayahuasca samples, and also beverage samples prepared each individual plant P. viridis and B. caapi. Harmine and harmaline were also tested. All beverage samples were chemically characterized and both ayahuasca samples could be considered representative of the beverages consumed in religious rituals. Both ayahuasca samples were mutagenic for TA98 and TA100 with and without S9, with similar potencies. The beverage obtained from P. viridis was not mutagenic, and beverage obtained from B. caapi was mutagenic for TA98 with and without S9. Harmine was nonmutagenic and harmaline was mutagenic only for TA98 without S9. Harmaline fully explain the mutagenicity observed with TA98 without S9 of both ayahuasca samples and the B. caapi beverage samples. We conclude that the ayahuasca samples are mutagenic and this effect is partially explained by harmaline, one of the β-carbolines present in the beverage. Other mutagenic compounds seem to be present and need to be further investigated. Environ. Mol. Mutagen. 60:269–276, 2019. © 2018 Wiley Periodicals, Inc.  相似文献   

15.
Organic extracts of emissions from wood combustion have been fractionated by high performance liquid chromatography (HPLC) into 25–28 fractions. Each fraction was tested for mutagenic activity in a modified Ames Salmonella/microsome bioassay requiring one-third of the test volumes needed for the ususal test. Direct mutagenic activity was noted predominantly in the most polar fractions, whereas indirect mutagenic activity was associated with the fractions containing polycyclic aromatic hydrocarbons (PAH) and with polar fractions probably consisting of aza-arenes and aromatic amines.  相似文献   

16.
Mutagenic activity of nine nitro derivatives of benzanthrone, namely 1-nitro-, 2-nitro-, 3-nitro-, 9-nitro-, 11-nitro-, 1,9-dinitro-, 3,9-dinitro-, 3,11-dinitro- and 3,9,11-trinitrobenzanthrone were tested with Salmonella strains TA98, TA100, YG1021 and YG1024 in both the presence and absence of an S9 mix. Each compound exhibited mutagenic activity with all the strains. Among these nine isomers, 3-nitrobenzantrone exhibited the most mutagenic activity with all the strains without the S9 mix. The mutagenic activities of the dinitro and trinitro derivatives of benzanthrone were lower than that of the 3-nitro derivative; this is evident from the mutagenic activity of nitrated polyaromatic hydrocarbons (PAH), which is generally enhanced with an increase in nitration. The physicochemical properties of nitrated benzanthrone (reduction potential, hydrophobicity and orientation of nitro groups to the aromatic ring) demonstrated that mononitrated benzanthrone exhibits a lower reduction potential than mononitroPAHs such as 1-nitropyrene and 3-nitrofluoranthene, but was almost equivalent to that of dinitroPAH. Moreover, the mutagenic activity of mononitrobenzanthrones clearly depend on the reduction potential of each compound; however, this tendency was not observed in polynitrobenzanthrones, probably because the reduction of the nitro groups to amino groups of polynitrated benzanthrone might be predominant without a sufficient formation of corresponding hydroxyamines. These results suggest that aromatic compounds that contain keto groups, when nitrated, may act as potentially powerful direct-acting mutagens.  相似文献   

17.
When testing new products, potential new products, or their impurities for genotoxicity in the Ames test, the quantity available for testing can be a limiting factor. This is the case for a dye repository of around 98,000 substances the Max Weaver Dye Library (MWDL). Mutagenicity data on dyes in the literature, although vast, in several cases is not reliable, compromising the performance of the in silico models. In this report, we propose a strategy for the generation of high‐quality mutagenicity data for dyes using a minimum amount of sample. We evaluated 15 dyes from different chemical classes selected from 150 representative dyes of the MWDL. The purity and molecular confirmation of each dye were determined, and the microplate agar protocol (MPA) was used. Dyes were tested at the limit of solubility in single and concentration‐response experiments using seven strains without and with metabolic activation except for anthraquinone dyes which were tested with eight strains. Six dyes were mutagenic. The most sensitive was YG1041, followed by TA97a > TA98 > TA100 = TA1538 > TA102. YG7108 as well as TA1537 did not detect any mutagenic response. We concluded that the MPA was successful in identifying the mutagenicity of dyes using less than 12.5 mg of sample. We propose that dyes should be tested in a tiered approach using YG1041 followed by TA97a, TA98, and TA100 in concentration‐response experiments. This work provides additional information on the dye mutagenicity database available in the literature.  相似文献   

18.
Paraoxon (diethyl-p-nitrophenylphosphate) is the toxic, but non-mutagenic metabolite of the organo-phosphorus ester insecticide parathion. Although this agent has been used as a deacetylase inhibitor in many studies, we discovered a mutagenic synergy when paraoxon was incubated with plant-activated m-phenylenediamine (mPDA) or with direct-acting 2-acetoxyacetylaminofluorene (2AAAF) and S. typhimurium tester strains. Using non-toxic concentrations of plant-activated mPDA and paraoxon a 10-fold increase in the mutant yield of S. typhimurium was observed. The mutagenicity of the plant-activated mPDA product required that O-acetyltransferase (OAT) be expressed by the S. typhimurium tester strain. However, the paraoxon-dependent mutagenic synergy was observed using the direct-acting arylamine metabolite, 2AAAF, with strains YG1024, TA98 and TA98/1,8-DNP6 regardless of their OAT activity. This mutagenic synergy is dependent upon the presence of an activated acetylated form of the arylamine. The data presented here demonstrate that this mutagenic synergy is limited to paraoxon and not to the parent compound (parathion) or to a major metabolite of parathion (p-nitrophenol). © 1996 Wiley-Liss, Inc.  相似文献   

19.
A highly sensitive mutation assay for indoor mutagenicity monitoringwas investigated by a combination of Salmonella typhimuriumYG strains and the microsuspension method. Tester strains wereYG1024, YG1029, YG1041 and YG1042. YG1041 gave the highest sensitivityin the mutagenicity test for the extracts of airborne particulates.The sensitivity of the microsuspension assay using S.typhimuriumYG1041 in the absence of S9 mix was  相似文献   

20.
Most studies of the health effects and chemical characterization of the dust resulting from the catastrophic collapse of the World Trade Center (WTC) on September 11, 2001, have focused on the large inorganic fraction of the dust; however, chemical analyses have identified mutagens and carcinogens in the smaller organic fraction. Here, we determined the mutagenicity of the organic fraction of WTC dust in Salmonella. Only 0.74% of the mass of the particulate matter (PM) <53 μm in diameter was extractable organic matter (EOM). Because the EOM was 10 times more mutagenic in TA100 +S9 than in TA98 +S9 and was negative in TA98 −S9, we inferred, respectively, that polycyclic aromatic hydrocarbons (PAHs) played a role in the mutagenicity and not nitroarenes. In TA98 +S9, the mutagenic potency of the EOM (0.1 revertant/μg EOM) was within the range of EOMs from air and combustion emissions. However, the EOM-based mutagenic potency of the particles (0.0007 revertants/μg PM) was 1–2 orders of magnitude lower than values from a review of 50 combustion emissions and various air samples. We calculated that 37 PAHs analyzed previously in WTC EOM were 5.4% of the EOM mass and 0.04% of the PM mass; some air contained 0.3 μg WTC EOM/m3 (0.02 μg PAHs/m3). Populations exposed to WTC dust have elevated levels of prostate and thyroid cancer but not lung cancer. Our data support earlier estimates that PAH-associated cancer risk among this population, for example, PAH-associated lung cancer, was unlikely to be significantly elevated relative to background PAH exposures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号