首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Nonwoven fabrics prepared via an electrospinning method, so-called electrospun fibermats, are expected to be promising scaffold materials for bone tissue engineering. In the present work, poly(L-lactic acid) (PLLA) fibermats, consisting of fibers with diameters ranging from 1 to 10 μm, were prepared by electrospinning. Mouse osteoblast-like cells (MC3T3-E1) were seeded on the fibermats with various fiber diameters (10, 5 and 2 μm; they are denoted by samples A, B and C, respectively) and cultured in two different directions in order to compare the migration behaviours into the scaffold of the normal condition and the anti-gravity condition. The cells in/on the fibermats were observed by laser confocal microscopy to estimate the cellular migration ability into them. When the MC3T3-E1 cells were cultured in the normal direction, the thickness of their layer increased to approx. 90 μm in the sample A, consisting of 10-μm fibers after 13 days of culture, while that in the sample C, consisting of 2-μm fibers, did not increase. When the MC3T3-E1 cells were cultured in the anti-gravity condition, the thickness of the cell layer in the sample A increased to approx. 60 μm. These results mean that the MC3T3-E1 cells migrated into the inside of sample A in either the normal direction or the anti-gravity one. The cellular proliferation showed no significant difference among the fibermats with three different fiber diameters; MC3T3-E1 cells on the fibermat with 2 μm fiber diameter grew two-dimensionally, while they grew three-dimensionally in the fibermat with 10 μm fiber diameter.  相似文献   

2.
A biodegradable composite with silicon-species releasability was prepared using poly(l-lactic acid) (PLLA) and silicon-doped vaterite (SiV) particles. SiV with particle diameters of approximately 1 mum was prepared using aminopropyltriethoxysilane (APTES) as the silicon species by a carbonation process and then mixed with PLLA in methylene chloride according to a SiV to PLLA weight ratio of 1:2, resulting in the preparation of composite slurry. A composite film was prepared by dipping a cover glass in the slurry. The composite films were incubated in a culture medium for 7 days and the silicon concentration of the medium was measured to estimate the species releasability of the composites. A trace amount of silicon species was continuously released from the composites for 7 days, the amount depending on the content of APTES in SiV. On the composite releasing silicon species, mouse osteoblast-like cells (MC3T3-E1 cells) were significantly stimulated to proliferate and differentiate in comparison with those on a composite containing no silicon species. The proliferation of the cells on the composites releasing larger amounts of silicon species (0.51mgl(-1)day(-1)) was higher than that on the composites releasing smaller amount of the species (0.21mgl(-1)day(-1)). The silicon species in the composites were effective in enhancing the cellular functions. The composites were expected to be useful as a scaffold material for bone tissue engineering.  相似文献   

3.
The osteoconductive property of titanium (Ti) surfaces is important in orthopedic and dental implant devices. Surface modifications of Ti have been proposed to further improve osseointegration. In this study, three different materials, silicon (Si), silicon oxide (SiO(2)), and titanium oxide (TiO(2)), were used to construct nanofibers for surface coating of Ti alloy Ti-6Al-4 V (Ti alloy). MC3T3-E1 osteoprogenitor cells were seeded on nanofiber-coated discs and cultured for 42 days. DNA, alkaline phosphatase, osteocalcin, and mineralization nodules were measured using PicoGreen, enzyme-linked immunosorbent assay, and calcein blue staining to detect the attachment, proliferation, differentiation, and mineralization of MC3T3-E1 cells, respectively. The results demonstrated that the initial cell attachments on nanofiber-coated discs were significantly lower, although cell proliferation on Si and SiO(2) nanofiber-coated discs was better than on Ti alloy surfaces. TiO(2) nanofibers facilitated a higher cellular differentiation capacity than Ti alloy and tissue culture-treated polystyrene surfaces. Thus, surface modification using nanofibers of various materials can alter the attachment, proliferation, and differentiation of osteoprogenitor cells in vitro.  相似文献   

4.
Bone cells contacting nickel (Ni)-containing implant materials may be affected by Ni species via disturbed signaling pathways involved in bone cell development. Here we analyze effects of the Ni-containing steel 316L and major metal constituents thereof on bone morphogenetic protein-2 (BMP-2)-induced alkaline phosphatase (ALP) of MC3T3-E1 cells. While cells grew normally on 316L, cellular Ni content increased 10-fold vs. control within 4 days. With respect to the major components of 316L, Ni2+ (3-50 microM) was most inhibitory to BMP-2-induced ALP, whereas even 50 microM Fe3+, Cr3+, Mo5+, or Mn2+ had no such effect. In line with this, BMP-2-induced ALP was significantly reduced in cells on 316L. This effect was not prevented by the metal ion chelator diethylenetriaminepentaacetic acid (DTPA). Instead, DTPA abolished the stimulatory effect of BMP-2 on ALP, pointing to chelatable metal ions involved. Zn2+, as one possible candidate, antagonized the Ni2+ inhibition of BMP-2-induced ALP in both MC3T3-E1 and human bone marrow stromal cells. Results show that cells contacting 316L steel are exposed to increased concentrations of Ni which suffice to impair BMP-2-induced ALP activity. Zn2+, as a competitor of this inhibition, may help to restore normal osteoblastic function and bone development under these conditions.  相似文献   

5.
For bone morphogenetic protein (BMP) gene therapy to be a viable approach for enhancing implant osseointegration clinically, requires the development of efficient nonviral delivery vectors that can coat the implant. This study evaluated a multilayer cationic liposome-DNA complex (LDc) coating as a delivery vehicle for recombinant human BMP-2 (rhBMP-2). Multilayered coatings, comprising hyaluronic acid (HA) and LDc, were fabricated onto titanium using a layer-by-layer (LBL) assembly technique. Preosteoblastic MC3T3-E1 cells were cultured on the roughened titanium surfaces coated with multilayers of HA/LDc, or on uncoated or HA/liposome only surfaces as controls. The amount of rhBMP-2 secreted by the MC3T3-E1 cells and the effect of the various surfaces on cell viability, proliferation, alkaline phosphatase (ALP) activity, osteocalcin (OC) secretion, and calcium deposition were evaluated. Messenger RNA levels of OC, ALP, Runx2, and Osx were also investigated. The results demonstrated that rhBMP-2 protein secreted into culture medium at 3 days was significantly higher than control groups. MC3T3-E1 cells cultured on the HA/LDc coating displayed significantly higher ALP activity and OC secretion at 7 days and 14 days culture, respectively. MC3T3-E1 cells cultured on HA/LDc upregulated expression of the osteoblast differentiation markers, especially on days 12 for OC and on days 6 and 12 for ALP and Osx. In conclusion, MC3T3-E1 cell cultured on the multilayer HA/LDc coating surface can secret rhBMP-2 protein and the protein levels were effective in inducing early osteogenic differentiation. ? 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A 100A: 2766-2774, 2012.  相似文献   

6.
BackgroundMethylglyoxal (MG) is associated with the pathogenesis of age- and diabetes-related complications. Spironolactone is a competitive antagonist of aldosterone that is widely employed in the treatment of hypertension and heart failure. This study examined the effects of spironolactone on MG-induced cellular dysfunction in MC3T3-E1 osteoblastic cells.MethodsMC3T3-E1 cells were treated with spironolactone in the presence of MG. The mitochondrial function, bone formation activity, oxidative damage, inflammatory cytokines, glyoxalase I activity, and glutathione (GSH) were measured.ResultsPretreatment of MC3T3-E1 osteoblastic cells with spironolactone prevented MG-induced cell death, and improved bone formation activity. Spironolactone reduced MG-induced endoplasmic reticulum stress, production of intracellular reactive oxygen species, mitochondrial superoxides, cardiolipin peroxidation, and inflammatory cytokines. Pretreatment with spironolactone also increased the level of reduced GSH and the activity of glyoxalase I. MG induced mitochondrial dysfunction, but markers of mitochondrial biogenesis such as mitochondrial membrane potential, adenosine triphosphate, proliferator-activated receptor gamma coactivator 1α, and nitric oxide were significantly improved by treatment of spironolactone.ConclusionSpironolactone could prevent MG-induced cytotoxicity in MC3T3-E1 osteoblastic cells by reduction of oxidative stress. The oxidative stress reduction was explained by spironolactone''s inhibition of advanced glycation end-product formation, restoring mitochondrial dysfunction, and anti-inflammatory effect.  相似文献   

7.
目的 研究离子硅对体外培养的成骨细胞NF-kappa B核转录因子活性的影响。 方法 分别用终浓度为1 mmol/L和2 mmol/L离子硅(SiO32-)处理MC3T3-E1成骨细胞,处理时间分别为6、12、24和48 h,设置对照组(不加处理因素);采用流式细胞术检测细胞周期,计算细胞的增殖指数;Western blotting方法检测NF-kappa B信号通路的相关蛋白表达量及其变化。 结果 流式细胞术结果显示,与对照组相比,1 mmol/L浓度的离子硅处理24 h组和48 h组,MC3T3-E1细胞增殖明显;Western blot结果显示,1 mmol/L浓度的离子硅促进成骨细胞增殖与p-NF-kappa B表达上升密切相关。 结论 骨材料中释放的微量的硅不会引起成骨细胞损伤,相反,微量的硅酸盐可能通过激活NF-kappa B诱导成骨细胞增殖。  相似文献   

8.
Isama K  Tsuchiya T 《Biomaterials》2003,24(19):3303-3309
Poly(L-lactide) (PLLA) has bioabsorbability and biocompatibility, and it is used as biodegradable screws, pins and plates for internal bone fixation. The purpose of this study was to clarify the effects of low molecular weight (Mw) PLLA on the proliferation and differentiation of mouse osteoblast-like MC3T3-E1 cells. MC3T3-E1 cells were cultured with the concentration of 5-50 microg/ml of PLLA with weight average Mw of 5000 (PLLA-5k) and 10,000 (PLLA-10k) for 2 weeks using the micromass culture. Both PLLAs did not affect the proliferation of MC3T3-E1 cells. However, the calcifications of MC3T3-E1 cells were stimulated with increasing the concentration of the PLLAs. Then PLLA-5k increased the calcification of MC3T3-E1 cells more than PLLA-10k. Additionally, both PLLAs increased the alkaline phosphatase (ALP) activity and calcium content of MC3T3-E1 cells up to the similar level to the calcification. These results indicated that low Mw PLLA enhanced the differentiation of MC3T3-E1 cells with no effect on the proliferation. Moreover, it was suggested that the increase of the ALP activity was a key step to stimulate the calcification of MC3T3-E1 cells. The osteoconductivity of implanted PLLA would be based on the enhancing effect of low Mw PLLA on the differentiation of the osteoblasts.  相似文献   

9.
10.
Implant success requires a direct bond between bone and implant surface. Bioinert implants, such as titanium alloys, are commonly plasma-spray-coated with a bone-bonding, bioactive material such as hydroxyapatite. Such coatings tend to be chemically and topographically inhomogeneous without reproducible properties. A family of bioactive glasses that can be enameled and reliably adheres to titanium alloy has been developed. In this study the cytocompatibility of two of these glass compositions was tested in the as-cast condition. The effects of these glasses on the early and late events of osseous tissue formation in vitro were determined with MC3T3-E1.4 mouse osteoblast-like cells. MC3T3-E1.4 cells were cultured on glasses containing 55 and 50 wt % SiO(2), with titanium alloy (Ti6Al4V) and tissue culture polystyrene as controls. Cellular adhesion and proliferation, and alkaline phosphatase activity were studied over 5 to 15 days in culture. Qualitative and quantitative assays of mineralization were conducted. The osteoblast-like cells showed increased proliferation when grown on a bioactive glass containing 50 wt % silica. However, the adhesion, differentiation and mineralization behavior were similar on both glass compositions used in this study. These bioactive glasses proved to be cytocompatible substrata for osteoblast-like cell culture, and yielded higher cellular proliferation than titanium alloy.  相似文献   

11.
Although iliac crest autologous bone graft remains the gold standard for treatment of bone defects, delayed- and nonunions, and arthrodeses, several alternative strategies have been attempted, including the use of mesenchymal stem cells. Whether cells from the osteoblast lineage demonstrate systemic recruitment to an acute bone defect or fracture, and whether these cells directly participate in bone healing is controversial. This study tests two hypotheses: (1) that exogenous murine MC3T3-E1 osteoprogenitor cells with a high propensity for osteoblast differentiation are able to systemically migrate to a bone defect and (2) that the migrated MC3T3-E1 cells enhance bone healing. Two groups of nude mice were used; a bone defect was drilled in the left femoral shaft in both groups. MC3T3-E1 were used as reporter cells and injected in the left ventricle of the heart, to avoid sequestration in the lungs. Injection of saline served as a control. We used bioluminescence and microCT to assay cell recruitment and bone mineral density (BMD). Immunohistochemical staining was used to confirm the migration of reporter cells. MC3T3-E1 cells were found to systemically migrate to the bone defect. Further, BMD at the defect was significantly increased when cells were injected. Systemic cell therapy using osteoprogenitor cells may be a potential strategy to enhance bone healing.  相似文献   

12.
背景:对于富血小板血浆促进组织再生的理想血小板浓度、哪些成分担当重要作用以及通过何种机制发挥作用等基础问题目前还不是很清楚。 目的:观察洗涤血小板对小鼠成骨细胞株——MC3T3-E1的增殖及其产生前列腺素E2作用的相关性。 方法:将从健康成人男性志愿者身上采集并制备的洗涤血小板经反复液氮冻溶后作用于小鼠成骨细胞株MC3T3-E1,分别加入体积分数5%-15%的洗涤血小板、富血小板血浆、乏血小板血浆或和其他样品(消炎痛、肿瘤坏死因子α和转化生长因子β抑制剂SB431542)培养。采用细胞和前列腺素E2测定试剂盒测定细胞增殖与前列腺素E2的生成量,采用RT-PCR测定环氧酶2 mRNA的表达。 结果与结论:体积分数5%洗涤血小板作用于MC3T3-E1细胞1 h后开始表达环氧酶2 mRNA、并诱导产生前列腺素E2,作用3 h时环氧酶2 mRNA的表达达到峰值,而前列腺素E2的产生量在作用后6 h达到峰值(40.5 μg/L)。随着体积分数的升高,洗涤血小板对MC3T3-E1细胞增殖的促进作用逐渐降低,并且当其体积分数达到15%时呈现对MC3T3-E1细胞增殖的显著抑制作用,而洗涤血小板对MC3T3-E1细胞产生前列腺素E2的作用随着其浓度的倍比增加而显著增强。添加消炎痛会明显抑制5%洗涤血小板对MC3T3-E1细胞增殖及前列腺素E2产生的促进作用,而添加肿瘤坏死因子α(100 μg/L)则会明显增大洗涤血小板对MC3T3-E1细胞产生前列腺素E2的促进作用。另外,SB431542(15 μmol/L)可明显抑制体积分数5%的洗涤血小板对MC3T3-E1细胞增殖及前列腺素E2产生的促进作用。提示洗涤血小板促进MC3T3-E1增殖与其诱导该细胞生成前列腺素E2有密切的相关性。  相似文献   

13.
This work is part of a general effort to demonstrate the effect of the bulk microstructure of titanium as a model bone implant material on viability of osteoblasts (bone-forming cells). The objective of this work was to study the proliferation of preosteoblastic MC3T3-E1 cells extracted from mice embryos on commercial purity titanium substrates. Two distinct states of titanium were considered: as-received material with an average grain size of 4.5 microm and that processed by equal channel angular pressing (ECAP), with an average grain size of 200 nm. We report the first results of an in vitro study into the effect of this extreme grain refinement on viability and proliferation of MC3T3-E1 cells. By means of MTT assays it was demonstrated that ECAP processing of titanium enhances MC3T3-E1 culture proliferation in a spectacular way. This finding suggests that bone implants made from ECAP processed titanium may promote bone tissue growth.  相似文献   

14.
Metallic implants are widely used in orthopedic surgery and dentistry. Durable osseous fixation of an implant requires that osteoprogenitor cells attach and adhere to the implant, proliferate, differentiate into osteoblasts, and produce mineralized matrix. In the present study, we investigated the interactions between human mesenchymal stem cells (MSCs) and smooth surfaces of titanium (Ti), tantalum (Ta), and chromium (Cr). Mean cellular area was quantified using fluorescence microscopy (4 h). Cellular proliferation was assessed by (3)H-thymidine incorporation and methylene blue cell counting assays (4 days). Osteogenic differentiation response was quantified by cell-specific alkaline phosphatase activity (ALP) assay (4 days), expression analysis of bone-related genes (4 days), and mineralization assay (21 days). Undifferentiated and osteogenically stimulated MSCs cultured on the different surfaces showed the same tendencies for proliferation and differentiation. MSCs exposed to Ti surfaces demonstrated enhanced proliferation compared with Ta and Cr surfaces. Cultivation of MSCs on Ta surfaces resulted in significantly increased mean cellular area and cell-specific ALP activity compared with the other surfaces tested. Cells cultured on Cr demonstrated reduced spreading and proliferation. In conclusion, Ta metal, as an alternative for Ti, can be considered as a promising biocompatible material, whereas further studies are needed to fully understand the role of Cr and its alloys in bone implants.  相似文献   

15.
Many research and commercial applications use a synthetic substrate which is seeded with cells in a serum-containing medium. The surface properties of the material influence the composition of the adsorbed protein layer, which subsequently regulates a variety of cell behaviors such as attachment, spreading, proliferation, migration, and differentiation. In this study, we examined the relationships among cell attachment, spreading, cytoskeletal organization, and migration rate for MC3T3-E1 osteoblasts on glass surfaces modified with -SO(x), -NH(2), -N(+)(CH(3))(3), -SH, and -CH(3) terminal silanes. We also studied the relationship between cell spread area and migration rate for a variety of anchorage-dependent cell types on a model polymeric biomaterial, poly(acrylonitrile-vinylchloride). Our results indicated that MC3T3-E1 osteoblast behavior was surface chemistry dependent, and varied with individual functional groups rather than general surface properties such as wettability. In addition, cell migration rate was inversely related to cell spread area for MC3T3-E1 osteoblasts on a variety of silane-modified surfaces as well as for different anchorage-dependent cell types on a model polymeric biomaterial. Furthermore, the data revealed significant differences in migration rate among different cell types on a common polymeric substrate, suggesting that cell type-specific differences must be considered when using, selecting, or designing a substrate for research and therapeutic applications.  相似文献   

16.
Size-dependent cellular toxicity of silver nanoparticles   总被引:2,自引:0,他引:2  
Silver nanoparticles (AgNPs) have found a variety of uses including biomedical materials; however, studies of the cytotoxicity of AgNPs by size effects are only in the beginning stage. In this study, we examined the size-dependent cellular toxicity of AgNPs using three different characteristic sizes (~ 10, 50, and 100 nm) against several cell lines including MC3T3-E1 and PC12. The cytotoxic effect determined based on the cell viability, intracellular reactive oxygen species generation, lactate dehydrogenase release, ultrastructural changes in cell morphology, and upregulation of stress-related genes (ho-1 and MMP-3) was fairly size- and dose-dependent. In particular, AgNPs stimulated apoptosis in the MC3T3-E1 cells, but induced necrotic cell death in the PC12 cells. Furthermore, the smallest sized AgNPs (10 nm size) had a greater ability to induce apoptosis in the MC3T3-E1 cells than the other sized AgNPs (50 and 100 nm). These data suggest that the AgNPs-induced cytotoxic effects against tissue cells are particle size-dependent, and thus, the particle size needs careful consideration in the design of the nanoparticles for biomedical uses.  相似文献   

17.
Polyethylene wear debris induces progressive osteolysis by increasing bone degradation and suppressing bone formation. Polyethylene particles inhibit the function of mature osteoblasts, but whether polyethylene particles also interfere with the proliferation and differentiation of osteoprogenitor cells is unknown. In this study, we investigated the effects of ultrahigh molecular weight polyethylene (UHMWPE) particles on the osteogenic activity of primary murine bone marrow osteoprogenitors and MC3T3-E1 preosteoblastic cells in vitro. Submicron-sized UHMWPE particles generated from wear simulator tests were isolated from serum-containing solution by density gradient centrifugation. The particles were coated onto the surface of culture wells at concentrations of 0.038, 0.075, 0.150, 0.300, and 0.600% v/v in a layer of type I collagen matrix. Primary murine bone marrow cells and MC3T3-E1 preosteoblasts were seeded onto the particle-collagen matrix and induced to differentiate in osteogenic medium for 20 days. Exposure of both cell populations to UHMWPE particles resulted in a dose-dependent decrease in mineralization, proliferation, alkaline phosphatase activity, and osteocalcin production when compared with control cells cultured on collagen matrix without particles. Complete suppression of osteogenesis was observed at particle concentrations > or =0.150% v/v. This study demonstrated that UHMWPE particles inhibit the osteogenic activity of osteoprogenitor cells, which may result in reduced periprosthetic bone regeneration and repair.  相似文献   

18.
Different types of calcium phosphate compounds [calcium-deficient apatite (CDA); beta-tricalcium phosphate (beta-TCP); biphasic calcium phosphate (BCP)] are commercially available for medical and dental applications as bone substitute materials. Most of the reported in vitro studies on cell-material interactions have used osteoblast-like cells. The purpose of this study was to investigate the in vitro response of osteoblast-like (MC3T3-E1) and odontoblast-like (MDPC23) cells on unsubstituted (HA) and substituted (F-substituted) apatites. MC3T3-E1 and MDPC23 were cultured in alpha-modified medium containing 10% fetal bovine serum, ascorbic acid (50 microg/mL) and beta-glycerophosphate (2 mM). The cells were seeded on pellets made from HA, and FAp (with low, medium, and high F concentrations). Cell morphology was observed after 7 and 14 days using scanning electron microscopy (SEM). Cell attachment and differentiation were determined from the DNA content, alkaline phosphatase (ALP) activity, and total collagen content. Pellet surface composition was characterized by using Fourier Transform infrared spectroscopy. MC3T3-E1 and MDPC23 cells on HA were normal in shape and in fusion but not on FAp. Results of this study showed that the pattern of cell proliferation of osteoblast-like cells was different from that of the odontoblast-like cells. This study suggests that cell morphology, fusion, and proliferation on biomaterial surfaces depend on cell type (osteoblast-like vs odontoblast-like cell) and biomaterial composition (unsubstituted vs substituted F-apatites).  相似文献   

19.
As robust osteoinductive cytokines, bone morphogenetic proteins (BMPs) play a significant role in bone tissue engineering. Constituted of two different polypeptides, heterodimeric BMPs are more effective than the homodimers in bone formation. While most studies focused on the murine cell lines, such as murine preosteoblasts MC3T3-E1, the role of heterodimeric BMPs in the osteogenic differentiation of human cells remains uncertain, which hinders their application to practical treatment. In this study, we compared the osteoinductive effects of BMP-2/7 heterodimer in human adipose-derived stem cells (hASCs) with their homodimers BMP-2 and BMP-7, in which MC3T3-E1 cells were utilized as a positive control. The results indicated that BMP-2/7 was not a stronger inducer during the osteogenic differentiation of hASCs as that for MC3T3-E1, and extracellular-signal-regulated kinase signaling played a role in the different effects of BMP-2/7 between hASCs and MC3T3-E1. Our study demonstrates the osteoinductive effects of heterodimeric BMP-2/7 present in a cell-specific pattern and cautions should be taken when applying heterodimeric BMP-2/7 to clinical practice.  相似文献   

20.
A poly(organophosphazene) hydrogel has been synthesized which exhibits thermoreversible sol-gel transition behavior against temperature. Viscometric measurements indicated that a thermosensitive hydrogel exhibiting excellent strength could be formed at body temperature from the polymer solutions, at concentrations of 10 wt%. In this study, we have conducted an evaluation of this poly(organophosphazene) hydrogel with regard to its efficacy and suitability as an injectable tissue-engineering matrix within an in vivo system. A 10 wt% solution of poly(organophosphazene) containing MC3T3-E1 mouse preosteoblasts and collagen was injected subcutaneously into nude mice, thereby forming an in situ gelation-injected site. In order to determine the optimal conditions for subcutaneous injection, various cell numbers and collagen concentrations were tested in this nude mouse model. Cellular proliferation was found to depend on the collagen concentration employed (0.001-0.1 wt%), as well as the number of cells ((2-10) x 10(5)). Cellular proliferation increased gradually after injection into nude mouse (1, 3, 5 and 7 days) at the given collagen concentration (0.01 wt%). The proliferative characteristics of MC3T3-E1 cells were shown to be enhanced dramatically in the poly(organophosphazene)-based collagen containing construct when injected into the model nude mice, whereas no increases in proliferation were observed in the only poly(organophosphazene) gel lacking collagen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号